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Supplementary Text 

Defining micropylar and peripheral endosperm nuclei cluster identity 

After fertilization, Arabidopsis endosperm undergoes three rounds of rapid synchronous 

nuclear replication without cytokinesis, forming a syncytium of nuclei surrounded by cytoplasm 

(1,2). Then, three morphologically distinct domains are formed: the micropylar, peripheral, and 

chalazal endosperm regions (Fig. 1e, 3). Nuclei divide synchronously within a domain but 

asynchronously with other domains. At one pole of the seed, the dense micropylar endosperm 

surrounds the embryo, while at the other pole the chalazal endosperm lies adjacent to the 

termination of maternal vascular tissue. The peripheral endosperm lies between the poles and 

consists of a large central vacuole with nuclei arranged along the outer periphery, connected by 

cytoplasmic bridges (2). Several days post-fertilization, endosperm cellularization proceeds in a 

wave from the micropylar to chalazal pole. The chalazal endosperm does not fully cellularize. 

 We first evaluated the expression of previously defined marker genes (Supplementary 

Data 2) for micropylar, peripheral, and chalazal endosperm tissue obtained from published 

microarray analysis of laser capture microdissection (LCM) of wild-type Ws-0 seeds at a similar 

stage of development (4, 5). Markers for each endosperm domain were enriched in several 

clusters, while some clusters lacked enrichment for markers of any domain (Fig. 1c). To further 

refine cluster identity, we identified differentially expressed genes by performing all possible 

comparisons among nuclei clusters (Fig. S4, Supplementary Data 2). GO term analysis 

indicated that several probable peripheral and micropylar endosperm clusters had increased 

expression of genes characteristic of S- and M-phase (Fig. 1d, Extended Data Fig. 5, 

Supplementary Data 2), suggesting that some of the variability between endosperm nuclei could 

be attributed to differences in cell cycle stage. We therefore performed a trajectory analysis to 

map each nucleus onto a linear path representing progression through the cell cycle (Extended 

Data Fig. 7, Supplementary Data 3) (6,7). To determine the extent to which cell cycle 
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differences were driving endosperm nuclei clustering, we repeated the clustering while omitting 

1,065 genes whose expression varied significantly along the cell cycle trajectory 

(Supplementary Data 3). Similar endosperm clusters were recovered, indicating that cell cycle 

stage is not sufficient to explain the observed clustering (Fig. S7).  

Multiple endosperm nuclei clusters showed elevated expression of genes related to M-

phase, such as mitotic chromosome condensation and cytokinesis (Fig. 1d, Extended Data Fig. 

5). To examine where these nuclei were distributed in the endosperm, we performed RNA in 

situ hybridization for AT4G11080/3XHMG-BOX1, which was most frequently expressed in VxC 

E2 and CxV E4, E8 and E10 nuclei (Extended Data Fig. 6). In each of these clusters, the 

majority of nuclei were identified as being in M-phase (Extended Data Fig. 7). Hybridization 

signal was detected in a spotty pattern in the embryo, in the micropylar endosperm, and along 

the cellularization boundary of the peripheral endosperm (Extended Data Fig. 6), consistent with 

dividing nuclei. Among the clusters expressing AT4G11080, VxC E2 and CxV E4 had the 

strongest expression of other M-phase related genes (Fig. S4, Supplementary Data 2), had 

similar overall expression patterns (Fig. S4, S5), and were enriched in genes associated with 

peripheral endosperm (Fig. 1c). Based on these distinct lines of evidence, we concluded that 

both VxC E2 and CxV E4 clusters represent M-phase peripheral endosperm nuclei (Fig. 1e). 

CxV E8, consisting of only 6 nuclei, appears to be a distinct class of possibly mid M-phase 

peripheral endosperm nuclei (Fig. 1e).  

In contrast, CxV E10 and VxC E4 showed some upregulation of M-phase related genes 

(Fig. 1d) and AT4G11080/3XHMG-BOX1, but were transcriptionally distinct from the peripheral 

M-phase clusters (Fig. S4) and had some expression of LCM micropylar endosperm markers 

(Fig. 1c). Yet only one cluster, VxC E3, was strongly enriched for the expression of LCM 

micropylar endosperm markers (Fig. 1c, Fig. S5). However, VxC E3 shared some gene 

expression features with VxC E4 (Fig. 1b, Fig. S4) and CxV E9, E10, and E11, including 
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expression of AT1G09380/UMAMIT25, which encodes an amino acid exporter (8) (Extended 

Data Fig. 6). We found that UMAMIT25 transcript was detected in the micropylar endosperm in 

both crosses and in 25% of Col x Cvi F1 seeds it was also detected on the leading edge of the 

cellularization boundary in peripheral endosperm (Extended Data Fig. 6). RNA was also 

detected in the seed coat, as expected based on snRNA-seq data from the seed coat clusters 

(Extended Data Fig. 6). This suggests that both VxC E3 and E4 represent distinct populations of 

micropylar nuclei. VxC E4 and CxV E10 both express M-phase related genes (Fig. 1d) and have 

similar expression patterns (Fig. S4), suggesting that together CxV E10 and VxC E4 correspond 

to actively dividing micropylar nuclei. CxV E11 has upregulation of S-phase related genes (Fig. 

1d) and may correspond to micropylar nuclei in S-phase. Unlike these clusters, cell cycle 

trajectory analysis indicated that VxC E3 contains nuclei only in G2 or G0, suggesting these are 

fully differentiated, non-dividing micropylar nuclei (Fig. 1e, Extended Data Fig. 7). In Col x Cvi 

seeds, RGE1/ZOU/AT1G49770, which is expressed in the embryo surrounding region of the 

micropylar endosperm and is required for embryo cuticle formation (9), is highly expressed in 

CxV E9, but not E10 or E11 (Supplementary Data 2). This suggests that CxV E9 represents the 

micropylar nuclei in the embryo surrounding region in CxV (Fig. 1e). 

 Several clusters corresponded to peripheral endosperm, which comprises the bulk of the 

nuclei in endosperm (Fig. 1d,e). While some were most strongly associated with a particular cell 

cycle phase, a distinctive subset were characterized by upregulation of the photosynthetic 

machinery and were classified as ‘energy-generating’ peripheral endosperm. These three 

clusters were distinguished from each other by GO terms specific to certain clusters, such as 

translation and fatty acid biosynthesis for energy-generating peripheral I (Fig. 1d, Extended 

Data Fig. 5, Supplementary Data 2). This suggests that there are distinct nuclei populations 

within peripheral endosperm whose function is primarily to carry out photosynthesis and 

biosynthesis of different nutrients. In contrast to these clusters, VxC E5 was enriched for down-
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regulation of photosynthesis genes and fructose 1,6 bisphosphate metabolism, but had few 

upregulated genes overall and appeared relatively metabolically inactive. This cluster was 

therefore classified as ‘inactive’ peripheral endosperm (Fig. 1e). 

 

Defining seed coat nuclei cluster identity 

The developing seed coat consists of five distinct cell layers and the chalazal seed coat 

region (Extended Data Fig. 3, Fig. S3). The innermost cell layer ii1, or endothelium, is 

characterized by elevated production of proanthocyanidins (10). Genes related to 

proanthocyanidin production were strongly upregulated in VxC E7 and E8 (Extended Data Fig. 

3). Two other clusters, CxV S4 and VxC S4, had high expression of BAN, a gene known to be 

expressed in the endothelium, but not TT12, another endothelium marker. By contrast, CxV S6 

and VxC S7, S8 had high expression of both genes (Fig. S3). Based on these and other gene 

expression data, we characterized CxV S4 and VxC S4 as ‘potential endothelium’ and VxC S7, 

S8 as ‘proanthocyanidin-synthesizing endothelium’. The ‘potential endothelium’ clusters were 

also characterized by enriched expression of genes involved in dNTP synthesis and glutamine 

metabolism (Extended Data Fig. 3). Clusters CxV S2 and VxC S2 likely correspond to the 

epidermal layer (oi2). Both clusters expressed the epidermal cell fate transcription factor 

GLABRA2, and were enriched for cutin biosynthesis and transport (Extended Data Fig. 3). The 

clusters with the most nuclei, CxV S1 and VxC S1, had elevated expression of genes related to 

the synthesis of flavonol, which is produced in the outer integument layers (Extended Data Fig. 

3, 11). The chalazal seed coat clusters, CxV S3 and VxC S6, were enriched for sucrose 

biosynthesis, mannose response, and glucose response, all consistent with a nutrient transfer 

function for this region. The chalazal seed coat also had elevated expression of multiple 

transcription factors, including the MADs domain transcription factors AGL15, AGL16, AGL18, 
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AGL2/SEP1, AGL69/MAF4, and the interacting factors AGL9/SEP3 and AGL11/STK, which 

influence mechanical properties of the seed coat (12). 

 

Supplementary Methods 

Confocal microscopy 

Controlled floral pollinations were performed for each cross depicted in Fig. 1a. Siliques were 

collected 4 DAP, dissected to open up the carpel wall, and fixed in FAA overnight at 4°C. 

Samples were dehydrated with an ethanol series to 100% ethanol, and cleared by gradual 

infiltration with immersion oil (Immersol 518F, Zeiss). Seeds were removed from cleared siliques 

and mounted on slides. Whole seeds were imaged on a Zeiss LSM700 Confocal Microscope, 

with settings optimized to detect auto-fluorescence (Excitation: 405nm at 0.1% power, 488nm 

11% power, 555nm at 28% power. Detection: from 415 to 735 nm). 

 

Probes for in situ hybridization 

Name Gene ID Length 
(bp) 

Forward Primer (5’-3’) Reverse Primer( 5’-3’) 

CYCD4;2 AT5G10440 437 ACCAAAGCAAATTCTACAATAGAG GTCCAAATTGAAGTTCCTCACAG 
GA20OX5 AT1G44090 530 TAGGCAACCATCGTCAAGAGATC CCTGTGGTAACAACTCCTGTAG 
MEE56 AT4G13380 472 AGGCAGAAATCTTGACGATGAAT

G 
GCCATTTCTTTCTCATCATCACTAC 

UMAMIT25 AT1G09380 585 AGGCATCAGCACAAGCCAAAG ATACGAACTAGAGACCAATAACCAG 
HMG1,2 AT4G11080 634 GACGGAGCTGAAGAAACTGC CGCCATCTGATCATAAGGAGCC 
NEP-
interacting 

AT2G44240 622 GGTTTTGCGGTAGCTCTGATG GATAAACCTGCCAACCAGCTTA 

 

Metaplots of coverage over genes and introns 

To generate plots in Fig. S2, bigWig coverage files for each library were generated using the 

deepTools function bamCoverage (13, v.3.2.0) with options -bs 1 --normalizeUsing CPM. 

Coverage over genes and introns was calculated using deepTools computeMatrix in scale-

regions mode with options -a 500 -b 500 -m 2000 -bs 50 for genes and -a 200 -b 200 -m 200 -bs 

10 for introns. Average profiles for each library were then obtained using deepTools plotProfile 
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with option --perGroup and extracting matrix file with --matrixFile option. Average and s.d. of 

coverage across all libraries was calculated for each bin in the profile and used to generate 

plots in Fig. S2. 

 

Plots of average total or allelic expression of genes or gene groups over clusters 

Dot plots of average total expression of either individual genes (e.g. Fig. 2a, Extended Data Fig. 

6) or groups of genes (e.g. Fig. 1c, Extended Data Fig. 2) were made using a custom script 

(single_cell_RNAseq_plots.R) available in the Github repository, in ‘dot’ mode. Briefly, the raw 

count matrix (rows: n genes x m columns: nuclei) was first converted into log2(CPM) values, and 

for each gene, average log2(CPM>0) was calculated across all nuclei in each cluster to obtain a 

matrix of n genes x c clusters. Only nuclei with nonzero CPM values (CPM > 0) were used to 

calculate the average. The fraction of nuclei in each cluster with at least one detected read 

(CPM > 0) was also calculated. Plots were generated by indicating average log2(CPM>0) using 

dot color, and fraction of nuclei with at least one detected read in gene as dot size. For plots 

aggregating groups of genes (e.g. Fig. 1c), average log2(CPM>0) and fraction of zeros were 

also averaged across all genes in each group to obtain a single value per group. 

 Plots of average total or allelic expression of individual genes shown in Fig. 3c,e, 

Extended Data Fig. 3D, Extended Data Fig. 9, Fig. S3, S13, and S16 were made using the 

same custom script (single_cell_RNAseq_plots.R) in ‘lin’ mode. For total expression, average 

log2(CPM>0) and fraction of zeros were obtained as above. For allelic expression, log2(CPM>0) 

and fraction of zeros were obtained for maternal and paternal counts separately. Paternal 

counts from each cluster were also fit to the appropriate distribution (NB or ZINB, see ‘Modeling 

maternal and paternal counts’ in Supplementary Material), and two values were randomly drawn 

from this distribution and summed for each nucleus in the cluster to simulate a doubling of 
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paternal dosage (dotted blue lines). Plots in Fig. S8 were made using the same script in ‘cmp’ 

mode. 

 Lists of marker genes from seed compartment RNA-seq data obtained by laser capture 

microdissection (LCM) of seed tissue (4) were obtained from Schon et al. 2017 (5). All genes 

that were considered markers for different tissues at different timepoints (n = 181) were 

discarded. Markers for globular and heart stages (the stages used in this study) were then kept 

for analysis (n = 1,945, list of markers provided in Supplementary Data 2). Note that some 

tissue marker genes are confounded with other features. For example, embryo ‘markers’ are 

confounded with cell cycle phase, such that an apparent enrichment for embryo identity in some 

differentially expressed gene groups is because of the expression of M-phase genes (Fig. S4, 

Supplementary Data 2).  

 

Identifying differentially expressed genes 

To identify genes that were differentially expressed within our dataset, DEsingle was run on all 

possible pairs of clusters within the 14 CxV endosperm clusters, within the 11 VxC endosperm 

clusters, between the CxV and VxC endosperm clusters, within the 6 CxV seed coat clusters, 

within the 8 CxV seed coat clusters, between the CxV and VxC seed coat clusters, and between 

each endosperm cluster and each seed coat cluster (741 comparisons). Finally, to control for 

batch effects that might confound the DE analysis, DEsingle was also used to look for DE genes 

between all batches (batches = 96-well plates, prepared on different days) within the CxV and 

VxC seed coat and endosperm (8 batches represented in each of CxV endo, CxV seed coat, 

VxC endo and VxC seed coat, 28 * 4 = 112 comparisons).  

 For each non-batch comparison, all genes that passed stringent significance cutoffs 

(pval < 0.0001 and abs[log2(fold change)] > 2) were extracted. These were combined across all 

comparisons to obtain a list of 4,540 genes that were significantly differentially expressed 
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across at least one experimental comparison (cluster, genotype or tissue). This was repeated 

for all batch comparisons, resulting in 97 genes called as differentially expressed across at least 

one pair of batches/plates, suggesting that batch effects in our data are minimal. 40 of the batch 

differentially expressed genes were also differentially expressed in the main analysis and were 

censored, yielding a final set of 4,500 differentially expressed genes (Supplementary Data 2). 

 

Cell cycle analysis 

A list of 22 genes associated with various phases of the cell cycle, including G0, was manually 

curated from the literature (6, 7). The count matrix (n=1,437 nuclei) was first filtered to remove 

lowly expressed genes, and count values were converted to CPM. Of the 1,437 nuclei, 1,309 

(91%) had expression of at least one of the 22 cell cycle marker genes and were retained for 

further analysis. t-SNE was first performed over CPM values for the 22 cell cycle genes, using 

the Rtsne package (14) with initial_dims = 2 and perplexity = 100. Projected points were then 

clustered using k-means clustering with k = 6, corresponding approximately to the G0, G1, G1 

to S, S, G2 and M phases of the cell cycle (Supplementary Data 3).  

Dijkstra's algorithm was used to trace a trajectory that was required to pass through the 

medoid of each k-means cluster. The trajectory was recalculated 200 times, sampling only 50% 

of the nuclei each time. Each of the 200 trajectories were then combined (15) and averaged to 

build a single smoothed, consensus trajectory through the tSNE plot. Each point in the plot 

(representing a single nucleus) was then projected onto the consensus trajectory to estimate the 

positioning of each nucleus along the cell cycle. To identify other genes that vary significantly 

according to the cell cycle in our dataset, library depth-normalized counts were obtained using 

the procedure used by edgeR (16). A hurdle model, which uses a truncated distribution to model 

the additional zeros present in single-cell RNA-seq data and has been used previously in similar 

contexts (17) was used to model the normalized counts. The distribution used for the non-zero 
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component of the hurdle model was the negative binomial distribution, which is used frequently 

to model count data from RNA-seq (16,18). We used this count model to test each gene using a 

regression approach (hurdle() function in R pscl package (19) to determine whether the cell 

cycle trajectory explains a significant amount of the variation in each gene's expression. P-

values were adjusted using the Bonferroni method, and genes with adjusted p-values < 0.01 

were considered significantly cell-cycle dependent. This analysis identified a total of 1,065 cell-

cycle-dependent genes (Supplementary Data 3).  

 

Identifying imprinted genes from snRNA-seq data 

We developed a method for assessing imprinting that accounts for maternal and paternal 

dosage in endosperm (single_cell_ASE_analysis.R, in Github repository). 

1. Modeling maternal and paternal counts and testing for parental bias 

Paternal counts were fit to the negative binomial (NB) and zero-inflated negative 

binomial (ZINB) distributions, and the Akaike Information Criterion was used determine which 

had the best fit (Fig. S8). The NB distribution is commonly used to model counts in bulk RNA-

seq (16,18), while the ZINB extends the NB with an additional parameter to model dropout 

events and has been used for scRNA-seq analysis (20,21). To account for maternal genome 

dosage, maternal count data were instead modeled as the sum of two independent, identically 

distributed ZINB or NB random variables. The NB has parameters µ,s, representing the mean 

and variance respectively, and the ZINB has an additional n parameter modeling zero inflation 

(22): 
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Distribution Equation Mean Variance 

𝑋~𝑁𝐵(µ,s) 𝑃)(𝑥|	µ, s) =
Γ/𝑥 + 1

23
Γ/123Γ(𝑥 + 1)

5
sµ

1 + sµ
6
7
5

1
1 + sµ

6
8
s

 𝐸[𝑋] = µ 𝑉𝑎𝑟(𝑋) = µ+ sµ? 

𝑋~𝑍𝐼𝑁𝐵(n,µ,s) 

 

𝑃(𝑥|n,µ, s)

= 	 Bn +
(1 − n) ∗ 𝑝)F(0|	µ, s) 𝑖𝑓	𝑥 = 0

(1 − n) ∗ 𝑝)F(𝑥|	µ,s) 𝑖𝑓	𝑥 = 1,2,3… 

 

where 𝑋′~𝑁𝐵(µ,s) 

 

𝐸[𝑋]

= (1

− n)µ 

𝑉𝑎𝑟(𝑋) = µ(1 − n) 

∗ (1 + (n+ s)µ) 

 

Parameter estimates were obtained by Maximum Likelihood (23). Maternal and paternal 

parameter estimates were well-correlated with each other (Fig. S9), suggesting that the overall 

transcriptional kinetics of the maternal and paternal alleles are similar for most genes in our 

dataset. Both imaging studies and single-cell studies have found that the two alleles of most 

genes function independently and share similar kinetics (24).  

Our analysis revealed minor but consistent skew in favor of higher maternal allele 

expression at most genes, and maternal (1-n) and µ estimates were consistently slightly higher 

than paternal estimates (Fig. S9). This effect was more pronounced in Col x Cvi than in Cvi x 

Col F1 nuclei, suggesting that technical factors, such as mapping bias in favor of the sequenced 

strain Col, played a role, though we cannot rule out biological factors (also see ‘identifying 

imprinted genes below’). In light of this, we tested an adjusted null hypothesis for deviation from 

the expected 2m:1p ratio that accounted for the average skew in the data.  

Under the null hypothesis that the gene was not imprinted and that the maternal and 

paternal ZINB/NB parameters were equal after adjusting for average maternal skew, p-values 

were obtained using a likelihood ratio test.  
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2. Evaluating our approach using simulated count data 

To test the power and accuracy of our approach, we simulated maternal and paternal 

count data resembling the CxV and VxC datasets, but with varying levels of overall expression, 

parental bias, nuclei-to-nuclei variability, and number of nuclei (Extended Data Fig. 8). Counts 

were drawn from ZINB distributions with known parameters. Our approach was able to 

accurately identify genes with parental bias under a wide range of conditions, with accuracy 

increasing as expression levels or parental bias increased. Simulations included a degree of 

maternal skew similar to the one in the real data, and showed that failing to adjust for this skew 

when testing for parental bias led to high false positive maternal bias calls, while an adjusted 

hypothesis had very few false positives (Extended Data Fig. 8).  

Our method also identified maternal and paternal bias in simulations of highly expressed 

or highly biased genes from as few as 5 or 10 simulated nuclei, though with a high false 

negative rate (Extended Data Fig. 8). Our approach therefore likely has a high false negative 

rate for lowly expressed genes or genes expressed only in rare subpopulations. For example, 

SUVH7 and MEA are both well-known imprinted genes (25, 26), but were not among the PEGs 

and MEGs identified in this study. However, SUVH7 expression is limited to the chalazal cyst, a 

relatively rare population in our dataset. Although our method found that SUVH7 is clearly 

paternally biased in VxC, which has more cyst nuclei, we lacked power to identify bias in CxV, 

which has only 6 cyst nuclei (Supplementary Data 4). Similarly, MEA displays maternal bias in 

the data (Supplementary Data 4), but is only strongly expressed in CxV E14, a cluster with only 

11 nuclei. Therefore, our analysis likely undercounts the true number of imprinted genes. 

However, false positive rates were low across all conditions tested, suggesting that our method 

has high specificity but tends to be conservative (Extended Data Fig. 8). 

 

3. Identifying imprinted genes 
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Using the method outlined above, p-values for significant parental bias were generated 

for each gene in that had at least 10 allelic counts, and corrected using the Benjamini-Hochberg 

method (27). The 4 DAP CxV and VxC datasets were analyzed separately. Genes with adjusted 

p-value < 0.05 and a log2(m/p) value more than 0.5 away from the median log2(m/p) value 

across all genes were considered significantly biased (Fig. S10, Supplementary Data 4). Genes 

were divided into weak, medium, or strong bias based on log2(m/p) values, and results from 

both CxV and VxC datasets were combined into a final ‘overall status’: MEGs/PEGs 

(maternal/paternal bias in both crosses), Col/Cvi bias (bias in favor of the same strain in both 

crosses), bias in only one cross, or no bias (Fig. S10, Fig. S11, Supplementary Data 4). 

Unbiased genes with fewer than 20 allelic counts overall likely lacked statistical power and were 

classified as having ‘too few reads’.  

Of the MEGs and PEGs previously identified from whole-endosperm RNA-seq (28) with 

sufficient data for our analysis, most were also considered imprinted based on our dataset (Fig. 

S12). However, a number of the MEGs and PEGs identified in this study were not previously 

identified (Fig. S12). Some of these lacked data in the previous study, either because they were 

not detected or the annotation did not yet exist. However, a number of the MEGs identified in 

this study were censored from the analysis in the previous study because laser-capture 

microdissection datasets suggest that these genes are more highly expressed in the seed coat 

than in the endosperm (4). An ongoing concern with bulk endosperm datasets is that 

contamination from the seed coat, a maternal tissue, can lead to false positives among MEGs; 

this type of contamination has been shown to occur in some manually dissected endosperm 

datasets (5). However, with our data, it is possible to carefully separate nuclei derived from seed 

coat from nuclei derived from endosperm based on a number of expression features (Fig. 1), so 

our CxV and VxC endosperm datasets should not have seed coat contamination. Thus, many 

MEGs identified here are indeed more highly expressed in seed coat than in endosperm (Figs. 
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S12, S13, 3). After also noting a widespread skew towards maternal expression in the data 

(Figs. S9, S11), we tested the possibility that this phenomenon was caused by mRNAs from the 

seed coat being carried over in the sorting buffer during FANS by adding an additional wash 

step prior to sorting (see ‘Seed Nuclei FANS’). Surprisingly, endosperm nuclei that had been 

treated with the extra wash step showed an even more pronounced maternal skew compared to 

unwashed nuclei (Supplementary Data 1), and washed nuclei had even stronger maternal 

expression of most MEGs compared to unwashed nuclei (Fig. S14). It remains unclear whether 

this phenomenon is biological, or a consequence of technical factors related to snRNA-seq 

data. However, overall these results suggest that our approach is able to identify imprinted 

genes that could not previously be evaluated by bulk RNA-seq.  
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Supplementary Figures 

 
 
Fig. S1. Summary of library quality and comparison to controls. (a) Left: summary of libraries 
obtained: water ctrl = Nextera XT library built with water (no DNA); no cell ctrl = no nucleus sorted into 
well, but carried through the entire prep; 1 x 3C = single nucleus from 3C FANS peak, 1 x 4C = single 
nucleus from 4C FANS peak (2 DAP only, due to no visible 3C peak); 1 x 6C = single nucleus from 6C 
FANS peak, 2 x 3C = two nuclei sorted from 3C peak. The 1,437 non-control libraries highlighted in green 
passed basic QC cutoffs (see Methods). Right: 1,437 high-quality libraries by ploidy and genotype (top) or 
stage (bottom). (b-d) Distribution in control, failed, and high-quality libraries, of (b) the fraction of reads 
that mapped to TAIR10, (c) the fraction of reads that mapped to the ERCC spike-in genome, and (d) the 
number of genes detected. 1x3C, 1x6C and 2x3C are libraries that passed QC filters. Number of nuclei in 
each category shown in (a). Median, interquartile range and upper-/lower-adjacent values (1.5*IQR) 
indicated by center line, box, and whiskers of each boxplot, respectively. In (c), panel on right is zoomed-
in view of libraries that passed QC. (e) Total number of genes detected as the number of single nuclei 
sequenced that passed QC increases, defined as at least 1 read mapping to gene. For allelic expression, 
gene detection was defined as at least 1 allele-specific read (read overlapping a SNP) mapping to gene. 
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Fig. S2. Comparison of bias in gene and intron coverage in Smart-seq2 libraries vs. published 
bulk mRNA-seq data. Single-nuclei Smart-seq2 libraries generated in this study were compared to 6 
published bulk whole-cell RNA-seq libraries (3 replicates each of Col and Cvi parent lines, 29). Central 
solid line indicates overall average, red for Smart-seq2 libraries (average of all 1437 Smart-seq2 libraries 
that passed QC) and blue for bulk mRNA-seq (average of 6 libraries, 29). Dotted lines and shaded area 
indicate +/- 1 SD. 
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Fig. S3. Expression of genes with known cell layer or region-specific seed coat expression 
patterns in seed coat nuclei clusters. Genes were curated from the literature and only considered if 
expression pattern was determined either by GUS staining or in situ hybridization (11, 30-38). Schematic 
at left of each plot shows the localization of the gene according to the indicated study. Red star: gene was 
significantly upregulated in that cluster (p < 0.05, permutation test). TT1, TT10, TT16, SCL15 and SUC2 
were too lowly expressed to evaluate statistical significance. (Top Left) Schematic of seed showing 
location of the chalazal seed coat region (CSC), as well as embryo (EB), endosperm (EN), and chalazal 
cyst (CC). Inset: schematic of the five cell layers in seed coat, from ii1 (the endothelium, innermost cell 
layer) to oi2 (epidermis, outermost cell layer). 
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Fig. S4. Overall expression patterns of 4,500 genes significantly differentially expressed among 
the endosperm and seed coat clusters. (a) Heatmap of gene expression ‘enrichment scores’ for all 
4,500 genes clustered by k-means clustering (k =60). Genes used for in situ hybridization (Fig. 2, 
Extended Data Fig. 6) indicated at left. Nuclei clusters are labeled according to cluster identity (Fig. 1e); 
clusters enriched for genes related to M-phase or S-phase (Fig. 1d) also indicated. Columns on right 
indicate relative enrichment score in seed coat vs. endosperm and Col x Cvi vs. Cvi x Col. (b) 
Significance of overlap between genes in each k-means cluster from (a), and marker genes for different 
seed compartments (4, curated by 5). P-values were computed using the hypergeometric test. 
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Fig. S5. Overlap between significantly up- and down-regulated genes across all 4 DAP nuclei 
clusters and with published seed domain markers. (a) Significance of overlap of significantly up- and 
down-regulated genes between Col x Cvi and Cvi x Col 4 DAP endosperm or seed coat clusters. p-value 
obtained using hypergeometric test. Values above 100 (-log(pval)) were truncated to 100 for plotting. (b) 
Significance of overlap between genes significantly up- or down-regulated in the nuclei clusters, and 
marker genes for six seed tissues (4, 5). Legend same as (a). PEN = peripheral endosperm, MCE = 
micropylar endosperm, CZE = chalazal endosperm, EP = embryo proper, CZSC = chalazal seed coat, 
GSC = general seed coat 
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Fig. S6. Significance of overlap between nuclei in each of the endosperm and seed coat clusters 
and nuclei in each stage of the cell cycle. Cell cycle phase obtained from clustering analysis shown in 
Extended Data Fig. 7. p-value obtained from hypergeometric test. 
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Fig. S7. Omitting cell cycle correlated genes does not substantially alter clusters. SC3 clustering 
was repeated while omitting the 1065 genes whose expression patterns correlated significantly with cell 
cycle trajectory (Supplementary Data 3). The nuclei in each of the new clusters obtained without cell-
cycle correlated genes (CC-) were compared to those in the original clusters obtained from the full 
dataset (CC+), and the percent of CC+ nuclei that were present in the indicated CC- cluster are shown in 
plots at right. Most nuclei from CC+ clusters fell largely (>75%) into a single CC- cluster, suggesting the 
clustering was mostly unaffected by omitting the cell-cycle correlated genes. Clusters with strong 
expression of cell-cycle related genes (e.g. CxV E7; see Fig. 1d) were also not strongly affected. 
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Fig. S8. ZINB distribution accurately models allelic count data. Examples of maternal and paternal 
count data from four genes fit to the zero-inflated negative binomial (ZINB) and negative binomial (NB) 
distributions. The fraction of nuclei with nonzero count values is given in bar chart to the left of each plot, 
with a histogram of the nonzero values on the right. Black dots on the bar chart and black lines in 
histogram indicate predicted values from ZINB (top) or NB (bottom) fit to the count data. On the left are 
genes where the ZINB distribution is better than the NB, on the right are genes where they are equivalent. 
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Fig. S9. Exploration of maternal:paternal ratio and parameter estimates for fitted ZINB and NB 
models from the single-nuclei allelic count data. (a) Histogram of the log2 ratio of maternal to paternal 
counts for all genes in the dataset, with the expected 2:1 ratio indicated as a grey vertical dotted line. (b) 
Fraction of maternal reads in CxV (Col x Cvi) and VxC (Cvi x Col) endosperm and seed coat. Maternal 
bias is more pronounced in CxV libraries than VxC, suggesting that the maternal bias is partially due to 
mapping bias in favor of the sequenced strain (Col). Number of nuclei in each category indicated at top of 
plot. Median, interquartile range and upper-/lower-adjacent values (1.5*IQR) indicated by center line, box, 
and whiskers of each boxplot, respectively. (c) Scatterplot of parameter estimates for the three ZINB 
parameters ν, μ, and σ. Parameter estimates for maternal counts are plotted against estimates for 
paternal counts. Results shown from Col x Cvi. Each dot represents a single gene. (d) Scatterplot of 
parameter estimates for the two NB parameters μ and σ, for maternal and paternal count distributions. 
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Fig. S10. Genes displaying allelic bias in reciprocal crosses of Col and Cvi. (a) Scatterplot 
comparing weighted average log2(m/p) across all nuclei with allelic reads, in Col x Cvi compared to Cvi x 
Col. Quadrants of the plot corresponding to maternal, paternal, Col, and Cvi bias indicated. Genes that 
were significantly biased highlighted in corresponding color, with larger point size. Average log2(m/p) 
across all genes in Col x Cvi (mCxV) and Cvi x Col (mVxC) indicated by dotted black lines. Quadrants are 
divided into three subregions: weak bias (m ± 0.5), medium bias (m ± 2) and strong bias (m ± 5). (b) 
Table corresponding to (a), indicating number of genes in each category. Final classifications based on 
both Col x Cvi and Cvi x Col results, along with combined gene counts for each category, are shown in 
table at right. 
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Fig. S11. Summary of allelic bias under all conditions evaluated. (a) Table of average percent 
maternal in CxV (Col x Cvi) and VxC (Cvi x Col) 4 DAP endosperm data, as well as average log2(m/p) in 
each cross. (b) Number of MEGs and PEGs displaying strong, medium and weak bias (> 5, > 2, and > 0.5 
s.d. away from median log2(m/p) in dataset, respectively). (c) GO-term analysis of all MEGs, all PEGs, 
PEGs preferentially expressed in chalazal endosperm (chalazal PEGs, Fig. 3a), PEGs not preferentially 
expressed in chalazal endosperm (non-chalazal PEGs), and MEGs with higher expression in endosperm 
than in seed coat (endo MEGs). Heatmap colors according to -log10(p-value) of significance of enrichment 
of indicated GO-term among genes of indicated category. Color scale is truncated at -log10(pval) = 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 30 

 
 
Fig. S12. Comparison of imprinting status determined by snRNA-seq and conventional whole-
endosperm mRNA-seq. (a) Classification results from this study for the 122 MEGs and 52 PEGs 
identified between Col and Cvi  7 DAP endosperm in (28). Categories as shown in Fig. S10. For genes in 
the ‘CxV only, Col bias’ and similar categories, the null hypothesis could only be rejected for the indicated 
cross, but the other cross direction may also exhibit bias (but lack sufficient data to reject). (b) Status in 
(28) of all MEGs and PEGs identified in this study. (28) involved successive thresholds for assessing a 
gene’s imprinting status: p-value < 0.01 -> IF (imprinting factor) > 2 -> % maternal either >85% (mat. bias) 
or <50% (pat. bias) -> imprinted. Genes that failed to meet all the imprinting criteria in (28) were therefore 
re-classified according to which cutoff they had failed. Additionally, maternally biased genes (p < 0.01) 
were subjected to an additional criterion that eliminated genes with much higher expression in seed coat 
vs. endosperm, to minimize potential biases that might be caused by seed coat contamination (28). 
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Fig. S13. Summary of MEG and PEG expression patterns across endosperm and seed coat 
clusters. (a,c) Hierarchical clustering of gene expression enrichment scores (ES) for all (a) PEGs and (c) 
MEGs, controlling for tissue and genotype. Separate heatmaps of ES calculated by genotype and by 
tissue on right. (b,d) Hierarchical clustering for (b) PEGs and (d) MEGs performed separately over ES 
from genotype, tissue and wash (yes = isolated nuclei were washed 2x prior to sorting, no = no extra 
wash steps). (e) Example expression profiles across nuclei clusters for two MEGs, AT1G75900 (strong 
MEG) and AT3G23060 (medium MEG). Locations of these genes in (c) indicated by black arrows. 
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Fig. S14. Total and allelic expression patterns across the endosperm clusters, for all imprinted 
genes. Top panel shows all PEGs, middle all MEGs, and bottom panel shows a subset of MEGs whose 
expression is enriched in endosperm. Expression enrichment scores (ES) for total expression shown in 
heatmap on the left. On right, ES for maternal (♀) and paternal (♂) allelic expression enrichment scores 
are shown separately for each cluster, with row and column order otherwise identical to the leftmost 
heatmap. Scores were also calculated across factors cross (genotype of seed, CxV = Col x Cvi or VxC = 
Cvi x Col), and wash (nuclei were either washed 2x in sorting buffer prior to sorting, or not washed). 
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Fig. S15. Total and allelic expression patterns of 4,500 genes significantly differentially expressed 
among the endosperm and seed coat clusters. (a) Heatmap of gene expression enrichment scores 
(ES) (same as Fig. S4a). (b) Heatmap of difference between the maternal (ESMat) and paternal (ESPat) 
expression enrichment scores in the Col, Cvi 4 DAP endosperm dataset. Pink indicates relatively higher 
enrichment of maternal expression compared to paternal expression, while blue indicates the opposite. 
Far right: heatmaps comparing the ESMat - ESPat values as a function of sample prep (nuclei were either 
washed 2x in sorting buffer prior to sorting, or not washed) and genotype are also shown. Order of rows 
same in all plots. 
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Fig. S16. Effect of cell cycle on expression of imprinted genes. (a) Enrichment scores for maternal 
(M) and paternal (P) allelic expression over different phases of the cell cycle, for all MEGs, all PEGs, 
MEGs specifically expressed in endosperm (’endo MEG’), and a random subset of 500 genes that show 
no overall allelic bias. Controlled for genotype and prep (extra washes). (b-d) Example total (top, grey) 
and allelic (bottom, red = maternal, blue = paternal, dotted blue line = simulated 2x paternal) expression 
patterns across cell cycle phases for (b) three example MEGs, (c) two example PEGs and (d) an example 
non-imprinted gene. Genes in b-d are marked with white arrows in appropriate heatmap in (a). Values 
from heatmaps in (a) shown at bottom of each plot. (e) Same as (a), except enrichment scores were 
computed by permuting cell cycle labels over nuclei in chalazal clusters only (CxV E12, 13 and 14, VxC 
E1, 6, N = 76 chalazal nuclei with cell cycle information). Controlled for genotype. Legend and scale same 
as (a). Chalazal-enriched and non-chalazal-enriched PEGs (Fig. 3a) shown. 


