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Supplementary Figure 1. Parent-of-origin-specific gene expression analysis in blastocysts 

(related to Fig. 1). 

Supplementary Figure 2. Parent-of-origin-specific gene expression analysis in blastocysts 

(related to Fig. 1). 

Supplementary Figure 3. Identification of novel DMRs in uniparental embryos (related to 

Fig. 2). 

Supplementary Figure 4. Identification of novel DMRs in uniparental embryos (related to 

Fig. 2). 

Supplementary Figure 5. Integrated expression and methylome analysis (related to Fig. 3). 

Supplementary Figure 6. Correlation of gamete-specific H3K27me3 with parental allele-

specific gene expression (related to Fig. 4). 

Supplementary Figure 7. Functional dependence of novel candidate genes on maternal 

H3K27me3 or maternal DNA methylation (related to Fig. 5). 

Supplementary Figure 8. Novel imprinting clusters and novel genes in known clusters 

(related to Fig. 6).   
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Supplementary Figure 1 | Parent-of-origin-specific gene expression analysis in blastocysts 
(related to Fig. 1). a Schematic overview of experimental approach for the identification of 
parent-of-origin-specific gene expression. FW: cross between Mus musculus domesticus 
C57BL/6 (B6) female and M. m. castaneus (cast) male. RV: cross between cast female and B6 
male. n, number of single blastocysts analysed per cross. b Distribution of SNP-containing 
RNA-seq reads between maternal and paternal alleles in nBsX genes. c Venn diagram showing 
the overlap between BsX and BiX genes. d Venn diagram showing the overlap between nBsX 
and nBiX genes. e Electropherogram showing RT-PCR Sanger sequencing-based validation of 
allele-specific expression of the confirmed published imprinted genes, Peg3 and Bbx at E3.5. 
f Electropherogram showing RT-PCR Sanger sequencing-based analysis of allele-specific 
expression of the confirmed published imprinted genes, Peg3 and Bbx at E6.5. g 
Electropherogram showing RT-PCR Sanger sequencing-based analysis of allele-specific 
expression of Pon2 and Commd1 using E3.5 embryo samples; these are published imprinted 
genes for which we could not confirm parent-of-origin-specific expression in blastocysts. h 
Electropherogram showing RT-PCR Sanger-sequencing-based validation of nBsX genes in E3.5 
embryos. i Electropherogram showing RT-PCR Sanger-sequencing-based analysis of nBsX 
genes in E6.5 embryos. Source data are provided as Source Data files.  
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Supplementary Figure 2 | Parent-of-origin-specific gene expression analysis in blastocysts 
(related to Fig. 1). a Heatmap visualizing single-cell RNA-seq data 1, showing parent-of-origin-
specific expression of published and novel imprinted genes at the indicated stages during 
preimplantation development. KO refers to an Xist KO cell line. Colours indicate the allelic 
ratio of maternal and paternal reads (log2 scale).. b Violin plot showing absolute log2fold 
changes of indicated groups between ESCs (2i) and cells at an early stage of differentiation 
(24h after 2i withdrawal) 2. Source data are provided as Source Data files. 
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Supplementary Figure 3 | Identification of novel DMRs in uniparental embryos (related to 
Fig. 2). a Representative immunofluorescence analysis showing OCT4 and CDX2 expression in 
ICSI, androgenetic haploid (andro1N) and parthenogenetic haploid (partheno1N) blastocysts. 
b Quantification of embryos of (a). Errors bars show the standard error of the means. n, 
number of independent blastocysts analysed. c Schematic overview of sample preparation 
for DNA methylation analysis. d Overview of number of detected CpGs (upper) and global 
DNA methylation levels (lower) in all samples. All regions with µWGBS signals were used as 
background. e Heatmap showing DNA methylation signals for 24 known GL-DMRs in ICM 
samples from previous data 3, distinguishing between maternal and paternal alleles. Grey 
boxes with an X indicate lack of data. Colour scale represents percentage of 5mC compared 
to 5C. f Heatmap representing DNA methylation levels from this work over known somatic 
DMRs. g RT-qPCR analysis indicating expression levels of four published imprinted genes in 
two androgenetic (ahaESCs), three parthenogenetic (phaESCs) and three biparental ESCs 
cultured in 2i (left in each pair) and for 24h after 2i withdrawal (24h diff.). Mean and standard 
deviation are shown for two independent experiments, with each replicate in each cell line 
shown as a dot.  h RT-qPCR analysis indicating expression levels of pluripotency and early 
differentiation markers in two androgenetic (ahaESCs), three parthenogenetic (phaESCs), and 
three biparental ESCs cultured in 2i (left in each pair), and for 24h after 2i withdrawal. Mean 
and standard deviation are shown for two independent experiments with each replicate in 
each cell line shown as a dot. Source data are provided as Source Data files.  
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a

c

oo
cy

te
sp

er
m

ki
dn

ey

ph
aE

S4
ph

aE
S3

ph
aE

S2
ph

aE
S1

ES
−m

1
ES
−m

2
ES
−f
2

ES
−f
1

ES
−f
3

ah
aE

S1
ah

aE
S2

ah
aE

S3

clu
st

er

4

2

1

3

5

b

methylated unmethylated

paternal GL-DMR maternal GL-DMR

H19  gene Impact gene

published candidate

parthenogenotes
(pha)

biparental
(ICSI)

androgenotes
(aha)

al
ig

ne
d 

re
ad

 c
ov

er
ag

e

DMR coordinates

100%

50%

0%

5m
C 

/ 5
C

DMR−C1
DMR−C2
DMR−C3
DMR−C4
DMR−C5

cluster

ah
a1

ah
a2

ph
a1

ph
a2

IC
SI

1
IC

SI
2

biparental
parthenogenote (ph)
androgenote (ah)

candidate
published

al
ig

ne
d 

re
ad

 c
ov

er
ag

e

parthenogenotes
(pha)

biparental
(ICSI)

androgenotes
(aha)

 Snurf/Snrpn genes (overlapping)

chr7:59,990,004-60,015,044 (mm10)

methylated unmethylated



Supplementary Figure 4 | Identification of novel DMRs in uniparental embryos (related to 
Fig. 2). a Genome browser plots showing DNA methylation signals for a paternal GL-DMR 
(H19) and a maternal GL-DMR (Impact). Published coordinates and coordinates determined 
in our analysis are indicated in blue and gold, respectively. b Genome browser plot showing 
DNA methylation signals at the Snurf/Snrpn locus. Published DMR coordinates and 
coordinates determined in our analysis are indicated in blue and gold, respectively. c Heatmap 
for all 859 DMRs identified in this work. Clustering was based on DNA methylation levels in 
oocyte and sperm from published datasets 3. ESC and somatic cell DNA methylation data 
extend analysis from Figure 2c. Source data are provided as a Source Data files.  
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Supplementary Figure 5 | Integrated expression and methylome analysis (related to Fig. 3). 
a-c Bar charts showing associations between paternally- or maternally-expressed nBiX, nBsX 
and pubBsX genes with DMRs. Distances from nearest respective DMRs are colour-coded per 
Figure 3b. n, number of genes belonging to each group and displayed in the relative graph. d 
Co-occurrence of BsX genes and DMRs within the same TADs. The blue line indicates the 
number of BsX genes associated with at least one DMR within the same TAD at each time 
point. The expected distribution of the number of such genes by randomly shifting TADs 
coordinates (while maintaining TAD-DMR distances similar to the experimental group) is 
plotted as histogram in grey bars. The histogram shows the expected probability-density of 
observing certain number of genes co-occurring with DMR within the same TADs. Empirical 
p-values are stated. e Bar chart showing associations between H3K27me3-associated TSSs 
and published non-canonical (H3K27me3-associated) imprints 4. Source data are provided as 
Source Data files.   
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Supplementary Figure 6 | Correlation of gamete-specific H3K27me3 with parental allele-
specific gene expression (related to Fig. 4). Enlarged version of the heatmap of Figure 4a to 
show individual gene names. Source data are provided as a Source Data file. 
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Supplementary Figure 7 | Functional dependence of novel candidate genes on maternal 
H3K27me3 or maternal DNA methylation (related to Fig. 5). a Extended version of the 
heatmap of Figure 5a, including published genes for which parent-of-origin specific 
expression at the blastocyst stage was not confirmed (published unconfirmed imprints). Only 
genes with significant allelic bias (adj. p<0.1, DESeq2 5) in at least one WT morula were 
included in the analysis (*, adj. p<0.1; **, adj. p<0.01; ***, adj. p<0.001). Allelic expression 
bias is shown in the first two columns of each WT-mKO set (colour coded from red to blue). 
The third column of each WT-mKO pair indicates mKO induced changes in the allelic 
expression bias (colour coded from red to blue; *, adj. p<0.05; **, adj. p<0.01; ***, adj. 
p<0.001. b Pie charts representing the number of genes within indicated groups (HCon 
imprints and published non-canonical imprints) losing parent-of-origin specific expression 
following maternal deletion of either Dnmt3l (dependent on mDnmt3l), Eed (dependent on 
mEed) or both (dependent on both) in morulae. Genes not dependent on either are also 
indicated. c Box plots illustrating how allelic ratio (absolute log2FC) of high confidence 
repository (HCon) imprints and published non-canonical imprints are affected by maternal 
deletion of Dnmt3l (mDnmt3l KO) or Eed (mEed KO) at the morula stage. Only genes with 
significant allelic bias (adj. p<0.1) in at least one WT morula were included in the analysis. 
Paired two-tailed Wilcoxon signed rank test was performed for WT vs KO comparisons (WT-1 
vs mDnmt3l KO and WT-2 vs mEed KO). Two-tailed Wilcoxon rank sum test were performed 
to compare the two WT datasets (WT-1 vs WT-2) and the WT vs KO differences between 
datasets. p values for individual comparisons are indicated in the figure. All boxplots show the 
25th percentile, median and 75th percentile; whiskers indicate minimum and maximum values. 
d Box plot indicating the effect of maternal deletion of Dnmt3l (mDnmt3l KO) or Eed (mEed 
KO) at the morula stage on the allelic expression of all genes considered for analysis in (a) (BsX 
and published imprinted genes with significant allelic bias in at least one WT morula). Paired 
two-tailed Wilcoxon signed rank test was performed for WT vs KO comparisons (WT-1 vs 
mDnmt3l KO and WT-2 vs mEed KO). Two-tailed Wilcoxon rank sum tests were performed to 
compare the two WT datasets (WT-1 vs WT-2) and the WT vs KO differences between 
datasets. p values for individual comparisons are indicated in the Figure. All boxplots show 
the 25th percentile, median and 75th percentile; whiskers indicate minimum and maximum 
values. e Bar charts showing the associations between functional responses to loss of either 
mDnmt3l or mEed (as defined in (b)) with physical proximity to DMRs (within 250 kb or in the 
same TAD) or the presence of TSS-associated H3K27me3 (±5kb) for HCon repository imprints 
and published non-canonical imprints. Source data are provided as Source Data files. 
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Supplementary Figure 8 | Novel imprinting clusters and novel genes in known clusters 
(related to Fig. 6). a and b Close-up views as per Figure 6a and 6b, for (a) gene clusters 
containing published imprinted genes and at least one pubBsX gene (1-12) and (b) gene 
clusters containing published imprinted genes with no evidence of parent-of-origin specific 
expression in blastocysts (13-22). Source data are provided as a Source Data file. Red indicates 
maternal, and blue paternal allelic expression (genes quadrant, uppermost; based on our 
data), maternal/paternal H3K27me3 (H3K27me3 quadrant; based on 6), maternal/paternal 
DMR (DMR quadrant; based on our data), maternal/paternal TAD (TAD quadrant; based on 
7). Grey colour for specified genes indicates published imprinted genes for which parent-of-
origin specific expression was not confirmed; grey genes without gene names represent 
neighbouring genes not included in the cluster analysis. ncRNAs are indicated in italics. nBsX 
genes are indicated in bold. Source data are provided as Source Data files. 
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