Guard cells control hypocotyl elongation through HXK, HY5 and PIF4

Gilor Kelly¹, Danja Brandsma¹, Aiman Egbaria^{1,2}, Ofer Stein¹, Adi Doron-Faigenboim¹, Nitsan Lugassi¹, Eduard Belausov¹, Hanita Zemach¹, Felix Shaya¹, Nir Carmi¹, Nir Sade² and David Granot^{1*} ¹Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel

²School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel

*Corresponding author: David Granot, granot@agri.gov.il

This file includes:

Supplementary Tables 1-6

Supplementary Figures 1-6

Supplementary Material

Supplementary Table 1 qPCR primers used in this study.

Supplementary Table 2 Primers used for mutant genotyping.

Supplementary Table 3 Primers used for cloning and the identification of transgenic

plants.

Supplementary Table 4 Accession numbers and probe ID numbers of AtHY5 and

AtHYH used in the microarray database analysis.

Supplementary Table 5 Optimized LC-MS-MS parameters for quantification of

plant hormones.

Supplementary Table 6 Solvent gradient program for auxins

Supplementary Figure 1 Genes differentially expressed in GCHXK transgenic seedlings relative to the WT

Supplementary Figure 2 Pathways changed by GCHXK

Supplementary Figure 3 Gene ontology (GO) analysis of differentially expressed, down-regulated (a) biological processes, (b) cellular components and (c) molecular functions in GCHXK, relative to the WT

Supplementary Figure 4 Gene ontology (GO) analysis of differentially expressed, up-regulated (a) biological processes, (b) cellular components and (c) molecular functions in GCHXK, relative to the WT

Supplementary Figure 5 Distribution of GCHY5-GFP and chlorophyll autofluorescence in the epidermis of young seedlings

Supplementary Figure 6 HY5 and HYH expression in response to glucose

Gene	Primer sequence	Accession No.		
TUB2 f (a)	TUB2 f (a) AAACTCACTACCCCCAGCTTTG			
TUB2 r	r CACCAGACATAGTAGCAGAAATCAAGT			
HXK1 f (a)	GCCTTTGAAGAGGATTGTGC	A+4a20120		
HXK1 r	K1 r CATGACACGGAAGTTTGTCC			
HY5 f	HY5 f TCAGAACGAGAACCAGATGC			
HY5 r	GAAGGAGATCAAAGGCTTGC			
HY5 f	TCAGAACGAGAACCAGATGCT	ATEC 44000		
HY5 r	CAGCATTAGAACCACCACCA	A15G11200		
PIF1 f	GGAGCTTTTATGGCAGAACG	AT2C20180		
PIF1 r	AAATCATCGTCACGGAGAGG	A12020100		
PIF3 f	ACGGACCACAGTTCCAAGTC	AT1C00520		
PIF3 r	ATTGCCAATCGTCGAAGAAC	ATTG09550		
PIF4 f	TCCTCAAGTCATGCCTCCTC	AT2C/2010		
PIF4 r	TAGGTCCAACGGTCGTTACC	A12G43010		
PIF5 f	TCAAAACCCGGTACAGTTGC			
PIF5 r	ACGGTCTGCATCTGATTTCC	A13G39000		
SAUR50 f (b)	CACTTCCCTGTCTATGTCGGA	AT4G34760		
SAUR50 r	TCTTCCTCGGCTCGTTGTAA			
SAUR65 f (b)	AACAAAGAGCTGCCCTCAAGA	AT1C20460		
SAUR65 r	AAACAGCCCTTCTCCACAGC	ATT029400		
AtEXP8 f (c)	CTCTTTCCGAAGAGTACCATGT	AT2G40610		
AtEXP8 r	GTGTACGTCTCCTGCTCCTC			
YUC8 f (c)	CGATGAGACCAGTGGCTTGT	AT4G28720		
YUC8 r	TTTTCTCCCGTAGCCACCAC			
XTR7 f (c)	CGGCTTGCACAGCCTCTT	AT4G14130		
XTR7 r	TCGGTTGCCACTTGCAATT			
PHYB f	ACCGTCGTCAAGTCACACTC	AT2C49700		
PHYB r	TGATTCGCCGGATTGTTCGA	A12G10790		
COP1 f	GGTACTCGCTGCGTGATTC	AT2G32950		
COP1 r	GAGGAGTGTTCCAAGGCAAG			
DET1 f	TTCCACAACCACCCTACCTC			
DET1 r	GTAGCGAAAAGACCGAAACG			

Supplementary Table 1. qPCR Primers used in this study

(a) Primers adapted from Kelly *et al.* (2012)

(b) Primers adapted from Sun *et al.* (2016)

(c) Primers adapted from Gangappa et al. (2017)

Supplementary Table 2. Primers used for mutant genotyping

Gene	Accession No.	Primer sequence	Method
<i>pif4-101</i> (d)	AT2G43010	LP-AATACATTTTGCAGGCAATCG RP-CGTAATGAAGTTGCACGTTTACTC LB3-TAGCATCTGAATTTCATAACCAATCTCGATACAC	PCR
Cop1-4 (d)	AT2G32950	GCCACATGAGAAGAACCAGATTG TGAGTAGACAAGGAGGAACAAACC	Sequencing
hy5	AT5G11260	LP-ATTCCTTCCCAAAATGTCTCG RP-ATGCGAGTGAATGACCATTTC LBal TGGTTCACGTAGTGGGCCATCG	PCR

(d) Primers adapted from Pacin *et al.* (2016)

Supplementary Table 3. Primers used for cloning and transgenic plants identification

Promoter/gene	Primer sequence		
GCHXK	TCTCAACAAATTCCCCTTGC CATGACACGGAAGTTTGTCC		
GCHXK2 hemi/homo zygoute	ACCAACCACCAACTAACCTCA GCTCCCTGGATACAACGACA TGCCTGCTTGCCGAATATCA		
35SHXK	CAACCACGTCTTCAAAGCAA CATGACACGGAAGTTTGTCC		
35SFRK1	CAACCACGTCTTCAAAGCAA AACATACGGCCGAACTCATC		
35SFRK2	CAACCACGTCTTCAAAGCAA ACGATGTTTCTATGCTCCTCCCT		
GCHY5	TCTCAACAAATTCCCCTTGC ACCACCTCCTCTTGTTTCC		
35SHY5	CAACCACGTCTTCAAAGCAA ACCACCTCCTCTTGTTTCC		
GCPIF4	TCTCAACAAATTCCCCTTGC ACCGGGATTGTTCTGAATTG		
GCHY5-GFP	TCTCAACAAATTCCCCTTGC ACCACCTCCTCTCTTGTTTCC ACTGGGTGCTCAGGTAGTGG		

Supplementary Table 4. Accession numbers and probe ID numbers of *AtHY5*, *AtHYH* used in the microarray database analysis

Gene name	Accession	Probe set ID
AtHY5	AT5G11260	250420_AT
AtHYH	AT3G1769	258349_AT

Analite and IS	Retention time (min)	lonization mode	MRM transition (m/z)	Dwell time (msec)	Cone (V)	Collision (V)
IAA	7.50	+	176>130	70	18	26
	7.50		176>103			28
	7.40	+	181>134	70	20	16
D5-IAA	AA 7.42		181>106			30
14.4 a.m	F F0		291>134	100	20	12
IAASp	5.50	+ 291>	291>130	100		20
DNUAA			297>136	100	20	12
DN-IAASp	5.40	+	297>134	100		22
	r 77		305>148	100	22	12
IAGIU	5.77	5.77 +	305>130	100	22	16
DN-IAGlu	E 04	+	311>150	100	20	12
	5.81		311>134			20
OxIAA	5.18 +		192>146	50	14	14
		+	192>128			24

Supplementary Table 5. Optimized LC-MS-MS parameters for quantification of plants hormone.

Supplementary Table 6. Solvent gradient program for auxins

Time (min)	Phase A %	Phase B %
Initial	95	5
0.5	95	5
14	50	50
15	5	95
18	5	95
19	95	5
22	95	5

Minor CHO

Supplementary Figure 1 Genes differentially expressed in GCHXK transgenic seedlings relative to the WT. Transcriptome analysis of 4-day-old GCHXK and WT seedlings. **a** The total number of transcripts that were up-regulated (blue) and down-regulated (red) in GCHXK relative to WT. **b** MapMan functional overview of transcript level changes in GCHXK seedlings relative to the WT. Genes are grouped into functional categories. c MapMan metabolism overview showing transcript level changes in GCHXK seedlings relative to WT. Light reactions, Calvin cycle, carbonic anhydrases and cell-wall groups are highlighted in orange. d GCHXK-regulated genes in the photosynthetic light reaction, as visualized by MapMan. b-d Genes up-regulated by GCHXK are stained blue and genes down-regulated by GCHXK are stained red.

Changed pathways

Supplementary Figure 2 Pathways changed by GCHXK. Pathways changed in GCHXK, relative to the WT, displayed by the number of genes significantly changed for each pathway. Changed pathways were analyzed by enrichment analysis using KOBAS (based on the KEGG PATHWAY and BioCyc databases). Pathways with more than three changed genes are displayed.

Down-regulation

⁻log10(p-value)

Molecular functions

С

Up-regulation

Supplementary Figure 4 Gene ontology (GO) analysis of differentially expressed, up-regulated (a) biological processes, (b) cellular components and (c) molecular functions in GCHXK, relative to the WT. GO terms are shown on the y-axis. The log10 of the *P*-values of the GO terms are displayed on the x-axis. REVIGO analysis was performed on enriched GO terms with corrected P-values < 0.05.

Supplementary Figure 5 Distribution of GCHY5-GFP and chlorophyll autofluorescence in the epidermis of young seedlings. Representative confocal images of GCHY5-GFP epidermis taken from the cotyledon of a 7-day-old seedling. a GFP fluorescence (stained green). **b** Chlorophyll autofluorescence (stained magenta). **c** White light. **d** Merged image of (**a-c**). Bar = 20μ M.

Supplementary Figure 6 HY5 and HYH expression in response to glucose. Data were obtained from the NASCArrays microarray database, Experiment No. 593, in which 7-day-old seedlings were exposed to 3% glucose for 6 h, followed by microarray analysis. The colors red and green represent induced or reduced expression, respectively, and the intensity of the color indicates the strength of expression. The accession number and the Affimetrix probe ID number for each gene are listed in Table S4.