Acceptability of vaccination against COVID-19 and its associated predictors: a systematic review and meta-analysis #### **Supplement materials** ### Content Method1: Calculation of relationship between infections and acceptance rates Table S1 Characteristics of 38 included studies Table S2 Quality assessment of 38 included articles Figure S1 Forest plot of acceptance rate Table S3 Results of meta-regression Table S4 Association between willingness rate and cumulative/daily increased cases Table S5 Description of different predictors using HBM framework $Table\ S6\ Factors\ associated\ with\ vaccine\ willingness\ during\ influenza\ pandemic\ in\ four\ systematic$ reviews References #### Method1: Calculation of relationship between infections and acceptance rates We analyzed the relationship between acceptance rates, number of cumulative infections, and daily increased infections in the global context and surveyed country context during the survey period. The surveys tended to last for some time. We chose the median time during the survey period as the "specific survey day", For example, the survey was performed from June 16 to June 20, and we chose the June 18 as the "specific survey day". We estimated "specific survey day" for each survey reporting the study period. The number of cumulative infections (CI) and daily increased infections (DII) on the "specific survey day" were derived from the WHO website (https://covid19.who.int/). We first analyzed the direct correlation between acceptance rate and CI and DII in the global context. For each "specific survey day", we reported one willingness rate, CI, and DII. If the "specific survey day" for multiple articles was the same day, we would pool the acceptance rates of these articles. Then we analyzed the direct correlation between acceptance rate and CI and DII in the surveyed country context. If the study failed to report in detail the acceptance rate of each country, we will delete the study. Similarly, if a country reported multiple rates on the same "specific survey day", we would pool those rates. Additionally, the association between acceptance and some lagged value of cumulative/daily infections was explored further. ## Table S1 Characteristics of 38 included studies ^a | Def | First Arithan | laumal | Autiala manau | Study | Surveyed | Sampling | Sample | Survey | Study | Massurament | Sample | |-----|--------------------------|--|---------------|----------------------------------|-----------|----------------------------------|-----------------------|---|--------------------------------|-------------------------|--------| | Ref | First Author | Journal | Article paper | period | location | method | representability | method | population | Measurement | size | | 1 | Paul L.Reiter | Vaccine | Article | May 2020 | America | Convenience sampling | NA | Online | Mixed
general
population | 5-point Likert
scale | 2006 | | 2 | Harapan
Harapan | Frontiers in Public
Health | Article | March 25
and April
6, 2020 | Indonesia | Convenience sampling | NA | Online | General population and HCWs | Dichotomy
scale | 1359 | | 3 | Jiahao Wang | Vaccines | Article | March
2020 | China | Random
stratified
sampling | Representative sample | Online | Mixed
general
population | 5-point Likert
scale | 2058 | | 4 | Luigi Roberto
Biasio | Human Vaccines & Immunotherapeutics | Article | June
5,2020 | Italy | Convenience sampling | NA | Online | Mixed
general
population | 4-point Likert scale | 885 | | 5 | Dimitrios
Papagiannis | International Journal
of Environmental
Research and
Public Health | Article | February
10-25,
2020 | Greece | Convenience
sampling | NA | Questionnaire
via personal
interviews | HCWs | 5-point Likert
scale | 461 | | 6 | Kimberly A.
Fisher | Annals of Internal
Medicine | Article | April 16-
20, 2020 | America | NA | Representative sample | Online and telephone | Mixed
general
population | Trichotomy scale | 991 | | Ref | First Author | Journal | Article paper | Study
period | Surveyed location | Sampling
method | Sample representability | Survey
method | Study population | Measurement | Sample size | |-----|-----------------------|--------------------------------------|----------------|---|--|--------------------|-------------------------|----------------------|--------------------------------|--------------------------|-------------| | 7 | Ran D. Goldman | Vaccine | Article | March 26 -
May 31,
2020 | America, Canada, Israel, Japan, Spain, and Switzerland | NA | . NA | Online | Mixed
general
population | 10-point Likert
scale | 1541 | | 8 | Ran D. Goldman | Clinical
Therapeutics | Article | March 26 -
June 30,
2020 | America, Canada, Israel, Japan, Spain, and Switzerland | NA | NA | Online | Mixed
general
population | Dichotomy
scale | 2524 | | 9 | Valerie A
Earnshaw | Translational
Behavioral Medicine | Article | April 13–
14, 2020 | America | NA | NA | Online | Mixed
general
population | 5-point Likert
scale | 845 | | 10 | Gul Deniz Salali | Psychological
Medicine | Correspondence | April 30-
beginning
of June
2020 | UK and
Turkey | NA | NA | Online | Mixed
general
population | Trichotomy
scale | 5024 | | 11 | Amyn A. Malik | EClinicalMedicine | Article | May 20,
2020 | America | NA | Representative sample | Online and telephone | Mixed
general
population | 5-point Likert
scale | 672 | | Ref | First Author | Journal | Article paper | Study
period | Surveyed location | Sampling
method | Sample representability | Survey
method | Study population | Measurement | Sample size | |-----|-----------------------|----------------------------------|------------------------|----------------------------------|-------------------|----------------------------------|-------------------------|------------------|--------------------------------|-------------------------|-------------| | 12 | Jeremy K. Ward | Social Science & Medicine | Short communication | each week
of April
2020 | France | Random
stratified
sampling | Representative sample | Online | Mixed
general
population | 4-point Likert scale | 5018 | | 13 | The COCONEL
Group | The Lancet
Infectious Disease | Comment | March 27–
29,2020 | France | NA | Representative sample | Online | Mixed
general
population | NA | 1012 | | 14 | Jeffrey V.
Lazarus | Nature medicine | Brief
Communication | June 16 -
20, 2020 | 19
countries | Random
stratified
sampling | NA | Online | Mixed
general
population | 5-point Likert scale | 13426 | | 15 | Kendall Pogue | Vaccines | Article | NA | America | NA | NA | Online | NA | 5-point Likert scale | 316 | | 16 | Kailu Wang | Vaccine | Article | February
26- March
31,2020 | China | NA | NA | Online | HCWs | Trichotomy scale | 856 | | 17 | Maëlle Detoc | Vaccine | Article | March 26 -
April 20,
2020 | France | NA | NA | Online | General population and HCWs | 5-point Likert
scale | 3259 | | 18 | Anthea Rhodes | The Lancet
Infectious Disease | Correspondence | June 15–
23, 2020 | Australia | NA | Representative sample | Online | Mixed
general
population | Trichotomy scale | 2018 | | Ref | First Author | Journal | Article paper | Study
period | Surveyed location | Sampling
method | Sample representability | Survey
method | Study
population | Measurement | Sample
size | |-----|----------------------------|---|--------------------------|---------------------------------|----------------------------|----------------------|-------------------------|------------------|--|-------------------------|----------------| | 19 | Christopher
Hogan | International Journal
of Emergency
Medicine | Brief Research
Report | April 20,
2020 | America | NA | NA | Online | Non- healthcare- worker general population | Dichotomy
scale | 101 | | 20 | Rine Christopher
Reuben | Journal of
Community Health | Article | March 30 -
April 12,
2020 | Nigeria | Convenience sampling | NA | Online | Mixed
general
population | Trichotomy
scale | 598 | | 21 | Ahmed Samir
Abdelhafiz | Journal of
Community Health | Article | March 20,
2020 | Egypt | NA | NA | Online | Non-
healthcare-
worker
general
population | 5-point Likert
scale | 559 | | 22 | Katharine J.
Head | Science
Communication | Research Notes | May 4-11,
2020 | America | NA | NA | Online | Mixed
general
population | 7-point Likert
scale | 3159 | | 23 | Luca Pierantoni | Acta Paediatrica | Brief report | July 10-
August 10,
2020 | Italy | Convenience sampling | NA | Online | Mixed
general
population | Trichotomy
scale | 1812 | | 24 | Sebastian
Neumann-Böhme | The European Journal of Health Economics | Editorial | April 2 -15,
2020 | 7
European
countries | NA | Representative sample | Online | Mixed
general
population | Trichotomy scale | 7662 | | Ref | First Author | Journal | Article paper | Study
period | Surveyed location | Sampling
method | Sample representability | Survey
method | Study population | Measurement | Sample size | |-----|-------------------------|---|---------------|--------------------------------|---|-------------------------|-------------------------|------------------|--------------------------------|-------------------------|-------------| | 25 | A.R. Jazieh | Annals of Oncology | Abstract | April 24 -
May 15,
2020 | Middle East and North Africa region, Brazil, and the Philippines | NA | NA | Online | HCWs | NA | 910 | | 26 | Sadie Bell | Vaccine | Article | April 19th – May 11, 2020 | UK | NA | NA | Online | Mixed
general
population | 4-point Likert scale | 1252 | | 27 | Khawla F Ali | Journal of medical
internet research | Article | March 28 -
April 4,
2020 | Arabian Gulf countries: Bahrain, Kuwait, Saudi Arabia, and United Arab Emirates | Convenience
sampling | NA | Online | Mixed
general
population | 5-point Likert
scale | 5677 | | 28 | Elijah Edache
Ehoche | Borneo Journal of
Pharmacy | Article | April 4 -
May 16,
2020 | Nigeria | NA | NA | Online | Mixed
general
population | 4-point Likert scale | 204 | | Ref | First Author | Journal | Article paper | Study | Surveyed | Sampling | Sample | Survey | Study | Measurement | Sample | |------|-------------------------|---|---------------|-------------------------------|----------------------------|----------------------------------|------------------|--------|--|-------------------------|--------| | 1101 | Thorrano. | Joanna | Altiolo papo. | period | location | method | representability | method | population | Mododi oilloll | size | | 29 | Kate Faasse | Frontiers in Psychology | Article | March 2 -
March 9,
2020 | Australia | NA | NA | Online | Mixed
general
population | 5-point Likert
scale | 2174 | | 30 | Dong Dong | Health Expect | Article | June and
July, 2020 | China | NA | NA | Online | Mixed
general
population | 5-point Likert
scale | 1236 | | 31 | Guendalina
Graffigna | Vaccines | Article | May 2020 | Italy | Random
stratified
sampling | NA | NA | Mixed
general
population | 5-point Likert
scale | 1004 | | 32 | Riham Muqattash | Data in Brief | Article | July 4 -
August
4, 2020 | United
Arab
Emirates | Convenience sampling | NA | Online | Mixed
general
population | 4-point Likert
scale | 1109 | | 33 | Lynn Williams | British journal of
health psychology | Article | April 1-11,
2020 | UK | Convenience
sampling | NA | Online | Older
adults and
chronic
respiratory
disease | 5-point Likert
scale | 526 | | 34 | Li Ping Wong | Human Vaccines & Immunotherapeutics | Article | April 3 –
12, 2020 | Malaysia | NA | NA | Online | Mixed
general
population | 5-point Likert
scale | 1159 | | 35 | Victor Grech | Early Human
Development | Article | September
11 – 16,
2020 | Malta | NA | NA | Online | HCWs | 5-point Likert
scale | 1002 | | Ref | First Author | Journal | Article nanor | Study | Surveyed | Sampling | Sample | Survey | Study | Magauramant | Sample | |-----|---------------------|---------------------|----------------|-----------|-----------|-------------|------------------|--------|------------|-------------|--------| | Kei | First Author | Journal | Article paper | period | location | method | representability | method | population | Measurement | size | | | | European Journal of | | | | Convenience | | | Mixed | Trichotomy | | | 36 | Serena Barello | Epidemiology | Article | NA | Italy | sampling | NA | NA | general | scale | 735 | | | | Epidemiology | | | | Sampling | | | population | Scale | | | | | European Journal of | | March 19, | | | | | General | | | | 37 | 7 Amiel A. Dror | • | Article | 2020 | Israeli | NA | NA | NA | population | NA | 1661 | | | | Epidemiology | | 2020 | | | | | and HCWs | | | | | | The Lancet | | April 17 | | | | | Mixed | Trichotomy | | | 38 | Rachael H Dodd | Infectious Disease | Correspondence | April 17– | Australia | NA | NA | Online | general | • | 4362 | | | . tas.idoi i i Bodo | iniectious Disease | | 21, 2020 | | | | | population | scale | | ^aNA represented not applicable; HCWs represented healthcare workers Table S2 Quality assessment of 38 included articles | | Title | | ntrod sction | | | | | Methods | | | essiii | | | | Results | | | | | | | Other information | | |-----|--------------------|----------------------|--------------|--------------|---------|--------------|-----------|---------------------------|------|------------|------------------------|---------------------|--------------|------------------|--------------|--------------|----------------|-------------|-------------|----------------|------------------|-------------------|-------| | Ref | Title and abstract | Background/rationale | Objectives | Study design | Setting | Participants | Variables | Data sources/ measurement | Bias | Study size | Quantitative variables | Statistical methods | Participants | Descriptive data | Outcome data | Main results | Other analyses | Key results | Limitations | Interpretation | Generalisability | Funding | Score | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 18 | | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 17 | | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 18 | | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 16 | | 5 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 18 | | | Title | | Introduction | | | | | Methods | | | | | | | Results | | | | Diaceasion | | | Other information | | |----------|--------------------|----------------------|--------------|--------------|---------|--------------|-----------|---------------------------|------|------------|------------------------|---------------------|--------------|------------------|--------------|--------------|----------------|-------------|-------------|----------------|------------------|-------------------|----------| | Ref | Title and abstract | Background/rationale | Objectives | Study design | Setting | Participants | Variables | Data sources/ measurement | Bias | Study size | Quantitative variables | Statistical methods | Participants | Descriptive data | Outcome data | Main results | Other analyses | Key results | Limitations | Interpretation | Generalisability | Funding | Score | | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 17 | | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 16 | | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 16 | | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 18 | | 10 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 11 | | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 20 | | 12
13 | 1 | 1 | 1
1 | 0 | 1
1 | 1
1 | 1 | 1
0 | 0 | 0 | 0
0 | 1
0 | 0 | 1
1 | 1
1 | 1
0 | 0 | 1 | 1
0 | 0
0 | 0
0 | 1
0 | 15
10 | | 14 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 16 | | 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 14 | | | Title | | Introduction | | | | | Methods | | | | | | | Results | | | | Diaceanon | | | Other information | | |----------|--------------------|----------------------|--------------|--------------|---------|--------------|-----------|---------------------------|--------|------------|------------------------|---------------------|--------------|------------------|--------------|--------------|----------------|-------------|-------------|----------------|------------------|-------------------|----------| | Ref | Title and abstract | Background/rationale | Objectives | Study design | Setting | Participants | Variables | Data sources/ measurement | Bias | Study size | Quantitative variables | Statistical methods | Participants | Descriptive data | Outcome data | Main results | Other analyses | Key results | Limitations | Interpretation | Generalisability | Funding | Score | | 16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 19 | | 17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 18 | | 18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 10 | | 19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 11 | | 20 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 12 | | 21 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 17 | | 22 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 16 | | 23
24 | 1 | 1 | 1 | 1 | 1 | 1
0 | 1
0 | 0
0 | 0
0 | 0 | 0
0 | 1
0 | 0 | 1 | 1 | 1 | 0 | 1 | 1
0 | 1
0 | 1
1 | 0 | 15
11 | | | | | | | | U | U | U | U | U | U | U | 0 | | | | 0 | | U | U | | | 1.1 | | | Title | | Introduction | | | | | Methods | | | | | | | Results | | | | 000000 | | | Other information | | |----------|--------------------|----------------------|--------------|--------------|---------|--------------|-----------|---------------------------|--------|------------|------------------------|---------------------|--------------|------------------|--------------|--------------|----------------|-------------|-------------|----------------|------------------|-------------------|----------| | Ref | Title and abstract | Background/rationale | Objectives | Study design | Setting | Participants | Variables | Data sources/ measurement | Bias | Study size | Quantitative variables | Statistical methods | Participants | Descriptive data | Outcome data | Main results | Other analyses | Key results | Limitations | Interpretation | Generalisability | Funding | Score | | 26 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 17 | | 27 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 18 | | 28 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 15 | | 29 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 15 | | 30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 17 | | 31 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 16 | | 32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | | 33 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 17 | | 34
35 | 1 1 | 1 | 1
1 | 1 | 1
1 | 1
1 | 1 | 1
1 | 0
0 | 0
0 | 0
0 | 1
1 | 0 | 1
1 | 1
1 | 1
1 | 0 | 1 | 1
0 | 1
1 | 1
0 | 1
0 | 17
14 | | | Title | | | | | | | Methods | | | | | | | Results | | | | | Discussion | | Other information | | |-----|--------------------|----------------------|------------|--------------|---------|--------------|-----------|---------------------------|------|------------|------------------------|---------------------|--------------|------------------|--------------|--------------|----------------|-------------|-------------|----------------|------------------|-------------------|-------| | Ref | Title and abstract | Background/rationale | Objectives | Study design | Setting | Participants | Variables | Data sources/ measurement | Bias | Study size | Quantitative variables | Statistical methods | Participants | Descriptive data | Outcome data | Main results | Other analyses | Key results | Limitations | Interpretation | Generalisability | Funding | Score | | 36 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 12 | | 37 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 15 | | 38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 10 | Figure S1 Forest plot of acceptance rate Table S3 Results of meta-regression ^a | | Variables | Coefficient | 95% CI | t | Р | Adjusted
R ² (%) | |------------------------------------|---|--|---|--|---|--------------------------------| | Univariate analysis | | | | | | 1 (70) | | Sampling method | Convenience sampling
Random stratified sampling
Not mentioned | ref
-0.017
-0.013 | ref
(-0.114,0.079)
(-0.104,0.078) | ref
-0.36
-0.29 | ref
0.719
0.772 | -3.35 | | Sample representativeness | Non-representative sample Representative sample | ref
0.004 | ref (-0.063,0.070) | ref
0.11 | ref
0.909 | -1.74 | | | Mixed general population HCWs | ref
-0.158 | ref
(-0.253,-0.064) | ref
-3.34 | ref
0.001 | 14.56 | | Survey population | General population without
HCWs
Older adults and chronic | 0.090 | (-0.104,0.283) | 0.93 | 0.358 | | | | respiratory disease patients
Not mentioned | 0.116
-0.053 | (-0.132,0.364)
(-0.311,0.205) | 0.93
-0.41 | 0.354
0.684 | | | WHO region | Americas
Europe
South-East Asia
Eastern Mediterranean
Africa
Western Pacific | ref
-0.015
0.063
0.062
-0.072
0.066 | ref
(-0.106,0.076)
(-0.106,0.232)
(-0.107,0.231)
(-0.228,0.084)
(-0.047,0.179) | ref
-0.33
0.75
0.73
-0.93
1.18 | ref
0.743
0.458
0.468
0.358
0.244 | 1.06 | | Country income levels ^b | High-income economies Upper-Middle-income economies Lower-Middle-income | ref
0.082 | ref
(0.000,0.164) | ref
1.99 | ref
0.051 | 4.42 | | | economies | -0.028 | (-0.151,0.095) | -0.46 | 0.646 | | | Study period | February
March
April
May
June
July
August | ref
0.275
0.306
0.310
0.296
0.288 | ref
(0.001,0.55)
(0.034,0.579)
(0.038,0.583)
(0.027,0.564)
(-0.012,0.589) | ref
2.01
2.25
2.28
2.21
1.92 | ref
0.049
0.028
0.026
0.031
0.059 | 2.22 | | | September
Not mentioned | 0.086
0.345 | (-0.279,0.451)
(0.023,0.667) | 0.47
2.14 | 0.639
0.036 | | | Vaccine recipient | For self
For children | ref
-0.027 | ref
(-0.116,0.062) | ref
-0.61 | ref
0.542 | -1.21 | | Measurement
method | Dichotomy scale Trichotomy scale 4-point Likert scale 5-point Likert scale 7-point Likert scale 10-point Likert scale Not mentioned | ref
-0.081
0.091
-0.029
-0.094
-0.104
-0.063 | ref
(-0.231,0.070)
(-0.076,0.258)
(-0.167,0.108)
(-0.373,0.184)
(-0.385,0.177)
(-0.223,0.097) | ref
-1.07
1.10
-0.43
-0.68
-0.74
-0.79 | ref
0.288
0.278
0.670
0.500
0.461
0.433 | 3.62 | | Vaccine payment | No free assumption
Free assumption | ref
0.086 | ref
(-0.096,0.268) | ref
0.95 | ref
0.348 | -0.26 | | Multivariate analysis | | | | | | 28.02 | | Survey population | Mixed general population HCWs General population without HCWs | ref
-0.183 | ref
(-0.334,-0.031) | ref
-2.43 | ref
0.019 | | | Survey population | Older adults and chronic respiratory disease patients Not mentioned | 0.137
0.120
-0.226 | (-0.085,0.36)
(-0.128,0.367)
(-0.572,0.119) | 1.25
0.97
-1.32 | 0.219
0.336
0.193 | | | Country income levels ^b | High-income economies Upper-Middle-income economies | ref
0.083 | ref (0.002,0.165) | ref
2.06 | ref
0.045 | | | | | 16 | (= = , =) | | | | | Variables | | Coefficient | 95% CI | t | Р | Adjusted R ² (%) | |-----------------------|-----------------------|-------------|-----------------|-------|-------|-----------------------------| | | Lower-Middle-income | | | | | | | | economies | -0.093 | (-0.213, 0.027) | -1.56 | 0.125 | | | | February | ref | ref | ref | ref | | | | March | 0.163 | (-0.126, 0.452) | 1.14 | 0.261 | | | | April | 0.119 | (-0.176,0.415) | 0.81 | 0.420 | | | | May | 0.101 | (-0.199, 0.400) | 0.68 | 0.502 | | | Study period | June | 0.091 | (-0.192, 0.375) | 0.65 | 0.519 | | | | July | 0.095 | (-0.231,0.421) | 0.59 | 0.559 | | | | August | - | - | - | - | | | | September | 0.086 | (-0.237, 0.409) | 0.54 | 0.593 | | | | Not mentioned | 0.297 | (-0.083, 0.677) | 1.57 | 0.123 | | | | Dichotomy scale | ref | ref | ref | ref | | | | Trichotomy scale | -0.021 | (-0.183, 0.142) | -0.25 | 0.800 | | | Managemana | 4-point Likert scale | 0.170 | (0.001,0.340) | 2.02 | 0.049 | | | Measurement
method | 5-point Likert scale | 0.031 | (-0.122, 0.185) | 0.41 | 0.682 | | | | 7-point Likert scale | -0.024 | (-0.277,0.230) | -0.19 | 0.852 | | | | 10-point Likert scale | -0.052 | (-0.325,0.220) | -0.39 | 0.701 | | | | Not mentioned | 0.029 | (-0.199,0.258) | 0.26 | 0.798 | | a HCWs: healthcare workers; -: No data; ref: as the reference b division came from https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups Table S4 Association between willingness rate and cumulative/daily increased cases^a | Context | Variables | Lagged 0 day | | Lagged 1 day | | Lagged 2 days | | Lagged 5 days | | |---------|--|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------| | | variables | r | р | r | р | r | р | r | р | | Global | Number of
cumulative
infections
daily increased
infections | -0.037
-0.077 | 0.842
0.674 | -0.027
0.013 | 0.883
0.943 | -0.032
0.021 | 0.861 | -0.032
0.108 | 0.861
0556 | | Country | Number of
cumulative
infections
daily increased
infections | -0.062
-0.092 | 0.668
0.523 | -0.044
-0.035 | 0.762
0.814 | -0.041
-0.073 | 0.781
0.621 | -0.055
-0.075 | 0.709
0.610 | ^a the association between willingness rate and cumulative/daily increased in different lagged values (0 day, 1 day, 2 days, and 5 days). Table S5 Description of different predictors using HBM framework^a | HBM framework | Pr | edictors | Reference | |---|--|---|---| | Perceived susceptibility and severity of COVID-19 | Perceived
susceptibility and
severity of COVID-19 | Likelihood of being infected with COVID-19 | 2,6,10,16,17,29,34 | | • | , | Concern about outbreak | 23,29 | | Perceived benefits
and risks of | Perceived benefits of acceptance | Protecting self or others | 17,26 | | acceptance | Perceived risks of acceptance | Concerns about side effects and safety | 6, 18,24,26 | | Modifying Factors | Socio-demographics | Gender | 1,2,5,6,7,10,11,12,14,16,17,18,27,29
,30,34,35 | | | | Age | 1,2,5,6,7,11,12,14,16,18,22,26,27,29 ,34,35 | | | | Education level | 1,2,6,7,10,11,12,14,18,22,23, 29,34 | | | | Income | 1,2,6,12,14,18,22,23,26,34 | | | | Race/Ethnicity | 1,6,11,22,26,29,34 | | | | Employment Status | 6,11,18,22,26,37 | | | | Urbanicity | 1,2,6,30,34 | | | | Geographic location | 1,6,23,29 | | | | Having child(children) | 10,22,30 | | | | Marital status | 1,2,6 | | | | Occupation | 2,34 | | | Knowledge, attitude,
beliefs, and prior
experience | Having chronic conditions | 16,17,34 | | | | Self-rated overall health | 6,29 | | | | Influenza vaccination in the past season | 6,7,16,29 | | | Trust | Trust in government | 14,29 | | Cues to Action | Interpersonal relationships | Family member/friend ever diagnosed with COVID-19 | 1,14,34 | | | Community | Media exposure | 10,29 | | 21 IDM. I III | | Political leaning | 1,15,22 | ^a HBM: health belief model Table S6 Factors associated with vaccine willingness during influenza pandemic in four systematic reviews | Variables | Nguyen et al ³⁹ | Bish et al ⁴⁰ | Prematunge et al ⁴¹ | Brien et al ⁴² | Our study | |------------------------|--|---|--|--|---| | Included studies | 10 | 37 | 20 | 27 | 38 | | Using model/
theory | NA | Protection Motivation Theory | Health Belief Model | NA | Health Belief Model | | Populations | General populations | General population, health
care professionals, pregnant
women, clinical risk groups or
parents | Healthcare workers | All populations | All populations | | Factors | Personal risk perception Proximity/severity of public health issue a Severity of personal consequences from illness a Risk of infection a Harm/adverse events from vaccine b | Perceptions of personal risk (high vs low) a Perceptions of the severity of the pandemic (severe vs mild) a Anxiety (high vs low) a | Perceived barriers to pandemic H1N1 (pH1N1) vaccination Pandemic vaccine safety and vaccine related adverse effect b Rapidity of pandemic vaccine development b Pandemic vaccine will NOT be effective or efficacious b | demographic factors Sex ° Age ° Ethnicity ° Occupation ° | and Perceived susceptibility and severity of COVID-19 · Likelihood of being infected with COVID-19 ° · Concern about outbreak ° | | Variables | Nguyen et al ³⁹ | Bish et al ⁴⁰ | Prematunge et al 41 | Brien et al 42 | Our study | |-----------|--|---|--|---|--| | Valiables | Vaccination attitude · Acceptance of previous vaccination a · Belief of vaccine (in)effectiveness or (not) necessary c · Anti-vaccination attitude c | Coping appraisal Perceived efficacy of vaccine in protecting against H1N1 influenza (yes vs no) a Perceived barriers to having the vaccine (more concerns about safety and fear of side effects) b Social influences (trust in health professionals or the health care system) a (uptake of family and friends) a (healthcare workers and colleague recommend) a colleague recommend) a Sources of information about vaccination (get information from official departments) a Previous vaccination against seasonal | | Regional and household characteristics | Perceived benefits of acceptance • Protecting self or others ^a | | | Communications/ information sources Recommendations from health care professionals Public health messages c Knowledge of disease/vaccine c Influence of family and friends c | influenza a Demographic factors Age c Gender (men vs women) Ethnicity (ethnic minorities vs ethnic majorities) a Professional role c Socio-economic factorsc Actual risk (actual highrisk vs actual low-risk) a | Perceived susceptibility Risk of pH1N1 influenza infection a Immunity from pandemic influenza infection due to previous exposure b | Health status and behaviors · Seasonal influenza vaccination receipt a · Priority group (high-risk) a | Perceived risks of acceptance Concerns about side effects and safety b | | Variables | Nguyen et al ³⁹ | Bish et al 40 | Prematunge et al 41 | Brien et al ⁴² | Our study | |-----------|---|--------------------------|---|--|---| | Variables | Nguyen et al ³⁹ Access Priority group ^c Convenience/inconvenie nce ^c Financial costs/insurance ^c Vaccine delivery ^c | Bish et al ⁴⁰ | Prematunge et al 41 Perceived severity Severity or seriousness of pH1N1 influenza infection (severe vs mild) a | Brien et al 42 Belief and perceptions Believing that the vaccine is safe or without risk of side effects a Believing in the efficacy/effectiveness of the vaccine and its benefits a Perception of susceptibility to infection a Perception that pandemic influenza infection is severe a | Modifying Factors · Socio-demographics (Gender, man vs women) a (Age) c (Education level, college degree or higher vs high school or below) a (Income) c (Race/Ethnicity) c (Employment Status) c (Urbanicity) c (Geographic location) c (Having child) c (Marital status) c (Occupation) c · Knowledge, attitude, beliefs, and prior experience (Having chronic conditions) c (Self-rated overall health) c | | | | | | | (Self-rated overall health) ^c (Having influenza vaccination in the past season) ^a Trust Trust in government ^a | | Variables Nguyen et al ³⁹ | Bish et al 40 | Prematunge et al 41 | Brien et al ⁴² | Our study | |---|---------------|------------------------------------|-----------------------------------|--| | Demographic | | Cues to action | Information, knowledge and | Cues to Action | | · Age c | | · Mass media ^b | advice | · Family member/friend | | · Sex c | | · Access of scientific | · Having the correct | ever diagnosed with | | · Ethnicity (non-Caucasian | | literature and information | knowledge ^a | COVID-19 c | | VS Caucasian) ^a | | sources ^a | · Obtaining information | More Media exposure ^a | | · Education [◦] | | · Trust in public health | from official sources a | · Political leaning ^c | | · Community/household- | | authority | · Receiving a | | | related factors ^c | | communications ^a | recommendation or | | | · Personal health ^c | | · Person based cues to | advice from a health | | | · Occupation/social | | action (i.e. physician, | professional, an | | | grade/work status ^c | | family members, | employer/co-worker, or a | | | · Marital status ^c | | supervisor, co-workers, | spouse/family/friend ^a | | | | | or political figures) ^a | | | | Others | | Other factors | | | | · Societal | | (take seasonal influenza | | | | role/responsibility ^a | | vaccination vs no) ^a | | | | · Self-protection ^c | | | | | | Alternative methods of | | | | | | protection ^a | | | | | | Government | | | | | | preparedness/ Trust in | | | | | | government ^c | | | | | | • Employment c a increase the willingness to be vaccinated breduce the wil | | | | | ^a increase the willingness to be vaccinated, ^b reduce the willingness to be vaccinated, ^c no clear/no significant result #### References - 1. Reiter PL, Pennell ML, Katz ML. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? *Vaccine*. 2020; 38(42): 6500-7. - Harapan H, Wagner AL, Yufika A, et al. Acceptance of a COVID-19 Vaccine in Southeast Asia: A Cross-Sectional Study in Indonesia. Front Public Health. 2020; 8: 381. - 3. Wang J, Jing R, Lai X, et al. Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. *Vaccines*. 2020; 8(3). - 4. Biasio LR, Bonaccorsi G, Lorini C, Pecorelli S. Assessing COVID-19 vaccine literacy: a preliminary online survey. *Hum Vaccin Immunother*. 2020: 1-9. - Papagiannis D, Malli F, Raptis DG, et al. Assessment of Knowledge, Attitudes, and Practices towards New Coronavirus (SARS-CoV-2) of Health Care Professionals in Greece before the Outbreak Period. Int J Environ Res Public Health. 2020; 17(14). - Fisher KA, Bloomstone SJ, Walder J, Crawford S, Fouayzi H, Mazor KM. Attitudes Toward a Potential SARS-CoV-2 Vaccine: A Survey of U.S. Adults. *Ann Intern Med.* 2020;173(12):964-973. doi:10.7326/M20-3569 - 7. Goldman RD, Yan TD, Seiler M, et al. Caregiver willingness to vaccinate their children against COVID-19: Cross sectional survey. *Vaccine*. 2020; 38(48): 7668-73. - 8. Goldman RD, Marneni SR, Seiler M, et al. Caregivers' Willingness to Accept Expedited Vaccine Research During the COVID-19 Pandemic: A Cross-sectional Survey. *Clin Ther*. 2020;42(11):2124-2133. doi:10.1016/j.clinthera.2020.09.012 - 9. Earnshaw VA, Eaton LA, Kalichman SC, Brousseau NM, Hill EC, Fox AB. COVID-19 conspiracy beliefs, health behaviors, and policy support. *Transl Behav Med.* 2020; 10(4): 850-6. - 10. Salali GD, Uysal MS. COVID-19 vaccine hesitancy is associated with beliefs on the origin of the novel coronavirus in the UK and Turkey. *Psychol Med.* 2020: 1-3. - 11. Malik AA, McFadden SM, Elharake J, Omer SB. Determinants of COVID-19 vaccine acceptance in the US. *EClinicalMedicine*. 2020; 26: 100495. - 12. Ward JK, Alleaume C, Peretti-Watel P. The French public's attitudes to a future COVID-19 vaccine: The politicization of a public health issue. *Social science & medicine* (1982). 2020; 265: 113414. - 13. COCONEL Group. A future vaccination campaign against COVID-19 at risk of vaccine hesitancy and politicisation. *Lancet Infect Dis.* 2020;20(7):769-770. doi:10.1016/S1473-3099(20)30426-6 - 14. Lazarus JV, Ratzan SC, Palayew A, et al. A global survey of potential acceptance of a COVID-19 vaccine. *Nat Med.* 2020: 1-4. doi:10.1038/s41591-020-1124-9 - 15. Pogue K, Jensen JL, Stancil CK, et al. Influences on Attitudes Regarding Potential COVID-19 Vaccination in the United States. *Vaccines*. 2020; 8(4). doi:10.3390/vaccines8040582 - 16. Wang K, Wong ELY, Ho KF, et al. Intention of nurses to accept coronavirus disease 2019 vaccination and change of intention to accept seasonal influenza vaccination during the coronavirus disease 2019 pandemic: A cross-sectional survey. *Vaccine*. 2020; 38(45): 7049-56. - 17. Detoc M, Bruel S, Frappe P, Tardy B, Botelho-Nevers E, Gagneux-Brunon A. Intention to participate in a COVID-19 vaccine clinical trial and to get vaccinated against COVID-19 in France during the pandemic. *Vaccine*. 2020; 38(45): 7002-6. doi:10.1016/j.vaccine.2020.09.021 - 18. Rhodes A, Hoq M, Measey MA, Danchin M. Intention to vaccinate against COVID-19 in Australia. *Lancet Infect Dis.* 2020;S1473-3099(20)30724-6. doi:10.1016/S1473-3099(20)30724-6 - 19. Hogan C, Atta M, Anderson P, et al. Knowledge and attitudes of us adults regarding COVID-19. *Int J Emerg Med*. 2020;13(1):53. doi:10.1186/s12245-020-00309-6. - 20. Reuben RC, Danladi MMA, Saleh DA, Ejembi PE. Knowledge, Attitudes and Practices Towards COVID-19: An Epidemiological Survey in North-Central Nigeria. *J Community Health* 2020: 1-14. doi:10.1007/s10900-020-00881-1 - 21. Abdelhafiz AS, Mohammed Z, Ibrahim ME, et al. Knowledge, Perceptions, and Attitude of Egyptians Towards the Novel Coronavirus Disease (COVID-19). *J Community Health* 2020; 45(5): 881-90. doi:10.1007/s10900-020-00827-7 - 22. Head KJ, Kasting ML, Sturm LA, Hartsock JA, Zimet GD. A National Survey Assessing SARS-CoV-2 Vaccination Intentions: Implications for Future Public Health Communication Efforts. *Science Communication* 2020; 42(5): 698-723. doi:10.1177/1075547020960463 - 23. Pierantoni L, Lenzi J, Lanari M, et al. Nationwide COVID-19 survey of Italian parents reveals useful information on attitudes to school attendance, medical support, vaccines and drug trials. *Acta paediatrica* 2020. doi:10.1111/apa.15614 - 24. Neumann-Bohme S, Varghese NE, Sabat I, et al. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. *European Journal of Health Economics* 2020; 21(7): 977-82. doi:10.1007/s10198-020-01208-6 - 25. Jazieh AR, Coutinho AK, Bensalem A, et al. Oncologists knowledge, attitude and practice in - COVID-19 pandemic and its negative impact on them: An international study. *Annals of Oncology* 2020; 31: S998. doi:10.1016/j.annonc.2020.08.1751 - 26. Bell S, Clarke R, Mounier-Jack S, Walker JL, Paterson P. Parents' and guardians' views on the acceptability of a future COVID-19 vaccine: A multi-methods study in England. *Vaccine*. 2020;38(49):7789-7798. doi:10.1016/j.vaccine.2020.10.027 - 27. Ali KF, Whitebridge S, Jamal MH, Alsafy M, Atkin SL. Perceptions, Knowledge, and Behaviors Related to COVID-19 Among Social Media Users: Cross-Sectional Study. *J Med Internet Res* 2020; 22(9): e19913. doi:10.2196/19913 - 28. Ehoche EE, Adejoh J, Idoko J, Madu C. Preliminary survey on knowledge, attitudes, and practices about the COVID-19 Pandemic among Residents in North Central Nigeria. *Borneo Journal of Pharmacy* 2020; 3: 121-9. doi:10.33084/bjop.v3iSpecial-1.1413 - 29. Faasse K, Newby JM. Public Perceptions of COVID-19 in Australia: Perceived Risk, Knowledge, Health-Protective Behaviors, and Vaccine Intentions. *Frontiers in psychology* 2020; 11. doi:10.3389/fpsyg.2020.551004 - 30. Dong D, Xu RH, Wong EL, et al. Public preference for COVID-19 vaccines in China: A discrete choice experiment. *Health Expect*. 2020;23(6):1543-1578. doi:10.1111/hex.13140 - 31. Graffigna G, Palamenghi L, Boccia S, Barello S. Relationship between Citizens' Health Engagement and Intention to Take the COVID-19 Vaccine in Italy: A Mediation Analysis. *Vaccines*. 2020; 8(4). doi:10.3390/vaccines8040576 - 32. Muqattash R, Niankara I, Traoret RI. Survey data for COVID-19 vaccine preference analysis in the United Arab Emirates. *Data Brief* 2020; 33: 106446. doi:10.1016/j.dib.2020.106446 - 33. Williams L, Gallant AJ, Rasmussen S, et al. Towards intervention development to increase the uptake of COVID-19 vaccination among those at high risk: Outlining evidence-based and theoretically informed future intervention content. *Br J Health Psychol* 2020; 25(4): 1039-54. doi:10.1111/bjhp.12468 - 34. Wong LP, Alias H, Wong P-F, Lee HY, AbuBakar S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. *Human Vaccines Immunother* 2020; 16(9): 2204-14. doi:10.1080/21645515.2020.1790279 - 35. Grech V, Gauci C, Agius S. Vaccine hesitancy among Maltese healthcare workers toward influenza and novel COVID-19 vaccination. *Early Hum Dev* 2020: 105213. doi:10.1016/j.earlhumdev.2020.105213 - 36. Barello S, Nania T, Dellafiore F, Graffigna G, Caruso R. 'Vaccine hesitancy' among university students in Italy during the COVID-19 pandemic. Eur J Epidemiol 2020; 35(8): 781-3. doi:10.1007/s10654-020-00670-z - 37. Dror AA, Eisenbach N, Taiber S, et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. Eur J Epidemiol 2020; 35(8): 775-9. doi:10.1007/s10654-020-00671-y. - 38. Dodd RH, Cvejic E, Bonner C, Pickles K, McCaffery KJ. Willingness to vaccinate against COVID-19 in Australia. The Lancet Infectious diseases 2020. doi:10.1016/s1473-3099(20)30559-4 - 39. Nguyen T, Henningsen KH, Brehaut JC, Hoe E, Wilson K. Acceptance of a pandemic influenza vaccine: a systematic review of surveys of the general public. *Infect Drug Resist*. 2011;4:197-207. doi:10.2147/IDR.S23174 - 40. Bish A, Yardley L, Nicoll A, Michie S. Factors associated with uptake of vaccination against pandemic influenza: a systematic review. *Vaccine*. 2011;29(38):6472-6484. doi:10.1016/j.vaccine.2011.06.107 - 41. Prematunge C, Corace K, McCarthy A, Nair RC, Pugsley R, Garber G. Factors influencing pandemic influenza vaccination of healthcare workers--a systematic review. *Vaccine*. 2012;30(32):4733-4743. doi:10.1016/j.vaccine.2012.05.018 - 42. Brien S, Kwong JC, Buckeridge DL. The determinants of 2009 pandemic A/H1N1 influenza vaccination: a systematic review. *Vaccine*. 2012;30(7):1255-1264. doi:10.1016/j.vaccine.2011.12.089