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■ Supplementary Methods ■ 
1. Instrumentation and Chemicals 

NMR spectra were recorded on a JNM-ECS400, operating at 400 MHz for 1H NMR and 100.5 
MHz for 13C NMR, and JNM-ECA600, operating at 600 MHz for 1H NMR and 150.9 MHz for 13C 
NMR, and Bruker AVANCE NEO 400N spectrometer, operating at 400 MHz for 1H NMR, 100.6 
MHz for 13C NMR. Chemical shifts are reported in d ppm. DART-Mass and ESI-Mass spectra were 
measured with JMS-T100TD (JEOL Ltd.). TLC analyses were performed on commercial glass plates 
bearing 0.25-mm layer of Merck Silica gel 60F254. Silica gel (Wakosil® 60, 64~210 μm) was used for 
column chromatography. Biotage Selekt and LaboACE LC-5060 (for Gel Permeation 
Chromatography) were used for purification. IR spectra were measured with a Thermo Scientific 
iD7 ATR Accessory for the Thermo Scientific Nicolet iS5 FT-IR Spectrometer. Melting points were 
measured on a Stanford Research Systems MPA100.  

All reactions were carried out under nitrogen atmosphere. Materials were obtained from 
commercial suppliers or prepared according to standard procedures unless otherwise noted. Cs2CO3 
was purchased from FUJIFILM Wako Pure Chemical Co., stored under nitrogen, and used as received. 
DMSO was purchased from FUJIFILM Wako Pure Chemical Co., stored under nitrogen, and used as 
received. Thiazolium salt N1 and N2 were prepared by the reported procedure.1 Aldehydes 1a, 1e and 
1h were purchased from Nacalai Tesque Inc., 1b, 1d, 1p and 1q were purchased from FUJIFILM 
Wako Pure Chemical Co., 1c, 1f, 1g, 1i, 1j, 1k, 1l, and 1m were purchased from Tokyo Chemical 
Industry Co., 1n and 1o were purchased from Sigma-Aldrich Japan., stored under nitrogen, and used 
as received. Styrene 4a was purchased from Tokyo Chemical Industry Co., Styrene derivatives 4b–
4e were prepared by Wittig reaction from the corresponding aldehydes. Aryl iodides 5a and 5g were 
purchased from FUJIFILM Wako Pure Chemical Co., 5b was purchased from Sigma-Aldrich Japan., 
5c was purchased from Combi-Blocks., stored under nitrogen, and used as received. Aryl iodides 2a, 
5d–5f and 5h–5l were prepared by the reported procedure.2–7 The aryl thianthrenium salts were 
prepared according to the reported procedure.8 Amide substrates 7a, 7b, 7e, 7h, 7i and 7a-A–C were 
prepared from the corresponding secondary amines and carboxylic acids through condensation 
reactions with pivaloyl chloride.9 7c, 7d, 7f and 7g were prepared from the corresponding secondary 
amines and carboxylic acids through condensation reactions with pivaloyl chloride.10 
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2. Characterization Data for Aryl Thianthrenium Salt 
5-(4-Methoxyphenyl)-5H-thianthren-5-ium 2,2,2-trifluoroacetate (5b-S) 

Under an ambient atmosphere, a 20 ml two-necked round-bottom flask was charged sequentially 
with anisole (91.2 mg, 0.85 mmol), thianthrene-S-oxide (197 mg, 0.85 mmol), and dry MeCN (3.4 
ml, 0.25 M). After all solids had dissolved, the solution was cooled to –78 °C, and trifluoroacetic 
anhydride (0.36 ml, 0.54 g, 2.55 mmol) was added in one portion at –78 °C. The mixture was allowed 
to warm to 0 °C over a period of 2 h. After stirring overnight, the solution was diluted with DCM (8.5 
ml) and poured into a separatory funnel. The organic layer was washed with 85 ml water. The solvent 
was removed under reduced pressure, and the oily residue was purified by flash chromatography on 
silica gel (Biotage Selekt, 90:10, DCM/MeOH). The oily precipitate was dried in vacuo to afford the 
desired thianthrenium salt 5b-S (219 mg, 59 %) as highly viscous and colorless oil. 

 

Colorless oil. IR (neat) 705, 758, 796, 828, 1020, 1123, 1178, 1264 cm–1. 1H NMR (400 MHz, 
CDCl3) d 3.80 (s, 3H), 6.94 (d, J = 9.2 Hz, 2H), 7.25 (d, J = 6.8 Hz, 2H), 7.73–7.83 (m, 6H), 8.53 (d, 
J = 7.8 Hz, 2H) 13C NMR (150.9 MHz, CDCl3) d 55.7, 113.6, 116.1 (q, JC–F = 290 Hz), 116.4, 119.2, 
130.0, 130.2, 130.3, 134.2, 134.6, 136.0, 160.3 (q, JC–F = 27.2 Hz) 163.6. HRMS–ESI (m/z): [M–
CF3CO2]+ calcd for C19H15OS2, 323.0559; found, 323.0553. 
 
3. Procedure for Intramolecular Arylacylation of Alkenes 
The reaction in Table 1, entry 1 is representative. Thiazolium salt N1 (8.3 mg, 0.02 mmol) was 
placed in a schlenk tube containing a magnetic stirring bar. The vial was sealed with a Teflon®-coated 
silicon rubber septum, and then the vial was evacuated and filled with nitrogen. Degassed DMSO 
(400 µL) was added to the vial. Next, benzaldehyde 1a (30.5 µL, 0.3 mmol) and 1-(cinnamyloxy)-2-
iodobenzene 2a (67.2 mg, 0.2 mmol) were added. Then, Cs2CO3 (71.7 mg, 0.22 mmol) was added. 
After 12 h stirring at 60 ˚C, the reaction mixture was treated with saturated NH4Cl aqueous solution 
(400 µL), then extracted with diethylether (4 times) and dried over sodium sulfate. After filtration, 
the resulting solution was evaporated under reduced pressure. After volatiles were removed under 
reduced pressure, flash column chromatography on silica gel (100:0–90:10, hexane/EtOAc) gave 3aa 
(24.5 mg, 0.08 mmol) in 39 % yield. 
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4. Characterization Data for Cyclized Product 
2-(2,3-Dihydrobenzofuran-3-yl)-1,2-diphenylethan-1-one (3aa) 

 
The product 3aa was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Table 1, entry 1, 24.5 mg, 0.08 mmol, 39% isolated yield). The ratio (1:1) of 
diasteromers was determined by 1H-NMR analysis. White solid. M.p. 120–126 ℃. IR (neat) 698, 
749, 1232, 1449, 1460, 1480, 1677, 3028, 3059 cm–1. 1H NMR (400 MHz, CDCl3) d 4.20–4.38 (m, 
2H), 4.45–4.51 (m, 0.50 × 1H), 4.70 (d, J = 10.4 Hz, 0.50 × 1H), 4.78 (m, 1H), 5.86 (d, J = 7.2 Hz, 
0.50 × 1H), 6.55 (t, J = 7.2 Hz, 0.50 × 1H), 6.73–6.80 (m, 0.50 × 1H + 1H), 7.03–7.45 (m, 0.50 × 1H 
+ 9H), 7.89–7.96 (m, 2H). 13C NMR (100.6 MHz, CDCl3) d 44.7, 45.4, 58.0, 59.1, 68.0, 74.0, 109.4, 
109.7, 119.7, 120.5, 125.5, 126.0, 126.3, 126.7, 127.7, 127.8, 127.8, 128.3, 128.6, 128.6, 128.7, 128.8, 
128.9, 129.0, 129.1, 129.3, 133.1, 133.3, 136.3, 136.6, 136.7, 136.8, 160.2, 160.3, 199.0, 199.0. 
HRMS–EI (m/z): [M]+ calcd for C22H18O2, 314.1307; found, 314.1310. 
 
5. Procedure for Intermolecular Arylacylation of Styrenes 
The reaction to produce 6aag in Fig. 2 is representative. Thiazolium salt N2 (23.9 mg, 0.06 mmol) 
was placed in a Schlenk tube containing a magnetic stirring bar. The tube was sealed with a Teflon®-
coated silicon rubber septum, and then evacuated and filled with nitrogen. Degassed DMSO (400 µL) 
and H2O (3.6 µL, 0.2 mmol) were added to the tube. Next, benzaldehyde (1a) (20.3 µL, 0.2 mmol), 
styrene (4a) (229 µL, 2.0 mmol) and 2-iodothiophene (5g) (38.2 µL, 0.3 mmol) were added, followed 
by Cs2CO3 (78.2 mg, 0.24 mmol). After 4 h stirring at 80 °C, the reaction mixture was treated with 
saturated NH4Cl aqueous solution (400 µL), then extracted with diethyl ether (4 times) and dried over 
sodium sulfate. After filtration, the resulting solution was evaporated under reduced pressure. After 
the volatiles were removed under reduced pressure, flash column chromatography on silica gel 
(100:0–90:10, hexane/EtOAc) gave 6aag (40.3 mg, 0.14 mmol) in 69% yield. 
 
6. Characterization Data for Three-Component Coupling Products 
1,2,3-Triphenylpropan-1-one (6aaa) 

 

The product 6aaa was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 19.5 mg, 0.07 mmol, 34% isolated yield). White solid. The spectrum data of 
6aaa was consistent with the literature.11 
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3-(4-Methoxyphenyl)-1,2-diphenylpropan-1-one (6aab) 

 

The product 6aab was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–80:20, 
hexane/EtOAc) (Fig. 2, with aryl iodide 5b, 9.5 mg, 0.03 mmol, 15% isolated yield; with aryl 
thianthrenium salt 5b-S, 15.8 mg, 0.05 mmol, 25% isolated yield;). The spectrum data of 6aab was 
consistent with the literature.11 
 
3-(2-Bromo-4-fluorophenyl)-1,2-diphenylpropan-1-one (6aac) 

 

The product 6aac was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 52.7 mg, 0.14 mmol, 69% isolated yield). Pale yellow oil. IR (neat) 569, 694, 
754, 858, 1030, 1176, 1227, 1446, 1484, 1679 cm–1. 1H NMR (600 MHz, CDCl3) d 3.13 (dd, J = 
13.2, 7.2 Hz, 1H), 3.62 (dd, J = 13.2, 7.2 Hz, 1H), 4.98 (t, J = 7.2 Hz, 1H), 6.79 (m, 1H), 6.98 (t, J = 
7.2 Hz, 1H), 7.20 (m, 1H), 7.23–7.27 (m, 5H), 7.34 (t, J = 7.8 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.89 
(d, J = 7.8 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 39.5, 53.2, 114.2 (d, J = 20.1 Hz), 119.7 (d, JC–

F = 24.6 Hz), 124.2 (d, JC–F = 8.7 Hz), 127.3, 128.1, 128.5, 128.7, 129.0, 132.8 (d, JC–F = 7.2 Hz), 
133.0, 134.6 (d, JC–F = 2.9 Hz), 136.5, 138.7, 161.0 (d, JC–F = 248.6 Hz), 198.8. 19F NMR (376.5 
MHz, CDCl3) d –114.5. HRMS–DART (m/z): [M+ NH4]+ calcd for C21H20BrFNO, 400.0707; found, 
400.0702. 
 
3-(Naphthalen-1-yl)-1,2-diphenylpropan-1-one (6aad) 

 
The product 6aad was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 35.0 mg, 0.10 mmol, 52% isolated yield). White solid. The spectrum data of 
6aad was consistent with the literature.11 
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3-(Anthracen-9-yl)-1,2-diphenylpropan-1-one (6aae) 

 
The product 6aae was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 50.2 mg, 0.13 mmol, 65% isolated yield). Pale yellow solid. M.p. 156–162 ℃. 
IR (neat) 699, 732, 756, 1205, 1342, 1446, 1597, 1678 cm–1. 1H NMR (400 MHz, CDCl3) d 4.09 (dd, 
J = 14.4, 6.4 Hz, 1H), 4.59 (dd, J = 14.4, 6.4 Hz, 1H), 5.02 (t, J = 6.4 Hz, 1H), 7.03–7.10 (m, 5H), 
7.22–7.26 (m, 2H), 7.33–7.41 (m, 5H), 7.78 (d, J = 7.2 Hz, 2H), 7.95 (d, J = 9.2 Hz, 2H), 8.03 (d, J 
= 8.4 Hz, 2H), 8.32 (s, 1H). 13C NMR (100.5 MHz, CDCl3) d 31.5, 55.4, 124.5, 124.7, 125.4, 126.4, 
127.1, 128.2, 128.4, 128.7, 128.8, 129.0, 130.1, 131.4, 132.1, 132.8, 136.5, 139.2, 199.7. HRMS–
DART (m/z): [M+ NH4]+ calcd for C29H26NO, 404.2009; found, 404.2011. 
 
1,2-Diphenyl-3-(pyren-1-yl)propan-1-one (6aaf) 

 
The product 6aaf was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 45.1 mg, 0.11 mmol, 55% isolated yield). Pale yellow solid. M.p. 146–152 ℃. 
IR (neat) 683, 697, 720, 754, 843, 1182, 1447, 1597, 1678 cm–1. 1H NMR (600 MHz, CDCl3) d 3.78 
(dd, J = 13.8, 6.6 Hz, 1H), 4.33 (dd, J = 13.8, 6.6 Hz, 1H), 5.09 (t, J = 6.6 Hz, 1H), 7.18–7.28 (m, 
7H), 7.37 (t, J = 7.2 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 6.6 Hz, 2H), 7.94–8.00 (m, 4H), 
8.09 (d, J = 9.0 Hz, 1H), 8.15 (t, J = 7.8 Hz, 2H), 8.25 (d, J = 9.0 Hz, 1H). 13C NMR (150.9 MHz, 
CDCl3) d 37.4, 55.7, 123.1, 124.6, 124.8 125.0, 125.8, 126.7, 127.2, 127.5, 128.2, 128.4, 128.7, 128.8, 
129.0, 130.0, 130.8, 131.3, 132.8, 133.8, 136.6, 139.2, 199.3. HRMS–DART (m/z): [M+ NH4]+ calcd 
for C31H26NO, 428.2009; found, 428.2006. 
 
1,2-Diphenyl-3-(thiophen-2-yl)propan-1-one (6aag) 

 
The product 6aag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 40.3 mg, 0.14 mmol, 69% isolated yield). Pale yellow solid. The spectrum 
data of 6aag was consistent with the literature.11  
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1,2-Diphenyl-3-(thiophen-3-yl)propan-1-one (6aah) 

 

The product 6aah was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 19.9 mg, 0.07 mmol, 34% isolated yield). White solid. M.p. 114–117 ℃. IR 
(neat) 699, 758, 776, 1251, 1447, 1492, 1597, 1679 cm–1. 1H NMR (600 MHz, CDCl3) d 3.09 (dd, J 
= 14.4, 7.2 Hz, 1H), 3.59 (dd, J = 14.4, 7.2 Hz, 1H), 4.80 (t, J = 7.2 Hz, 1H), 6.81–6.83 (m, 2H), 7.16 
(dd, J = 4.8, 3.0 Hz, 1H), 7.20 (m, 1H), 7.26–7.29 (m, 4H), 7.36 (t, J = 7.8 Hz, 2H), 7.46 (t, J = 7.2 
Hz, 1H), 7.91 (d, J = 8.4 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 34.5, 55.2, 121.6, 125.1, 127.2, 
128.2, 128.5, 128.5, 128.7, 128.9, 132.9, 136.7, 139.1, 140.0, 199.2. HRMS–DART (m/z): [M+ 
NH4]+ calcd for C19H20NOS, 310.1260; found, 310.1259. 
 
3-(Benzo[b]thiophen-2-yl)-1,2-diphenylpropan-1-one (6aai) 

 
The product 6aai was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 44.5 mg, 0.13 mmol, 65% isolated yield). Pale yellow solid. M.p. 124–128 ℃. 
IR (neat) 698, 726, 747, 1176, 1244, 1435, 1447, 1597, 1678 cm–1. 1H NMR (400 MHz, CDCl3) 
d 3.34 (dd, J = 14.4, 6.8 Hz, 1H), 3.89 (dd, J = 14.4, 6.8 Hz, 1H), 4.95 (t, J = 6.8 Hz, 1H), 6.92 (s, 
1H), 7.20–7.38 (m, 9H), 7.46 (t, J = 7.2 Hz, 1H), 7.59 (d, J = 6.8 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 
7.95 (d, J = 7.6 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 35.1, 55.5, 122.0, 122.3, 122.9, 123.6, 
124.0, 127.4, 128.2, 128.5, 128.8, 129.1, 133.0, 136.4, 138.5, 139.5, 139.9, 143.2, 198.5. HRMS–
DART (m/z): [M+ NH4]+ calcd for C23H22NOS, 360.1417; found, 360.1411. 
 
3-(Benzofuran-2-yl)-1,2-diphenylpropan-1-one (6aaj) 

 
The product 6aaj was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 35.9 mg, 0.11 mmol, 55% isolated yield). Yellow solid. M.p. 64–69 ℃. IR 
(neat) 696, 751, 948, 1178, 1252, 1454, 1597, 1681 cm–1. 1H NMR (400 MHz, CDCl3) d 3.22 (dd, J 
= 15.2, 7.2 Hz, 1H), 3.73 (dd, J = 15.2, 7.2 Hz, 1H), 5.12 (t, J = 7.2 Hz, 1H), 6.27 (s, 1H), 7.11–7.20 
(m, 3H), 7.24–7.30 (m, 4H), 7.34–7.40 (m, 4H), 7.45 (t, J = 7.2 Hz, 1H), 7.96 (d, J = 6.8 Hz, 2H). 
13C NMR (100.5 MHz, CDCl3) d 32.9, 52.1, 103.7, 110.7, 120.4, 122.4, 123.3, 127.4, 128.0, 128.5, 
128.7, 128.8, 129.0, 133.0, 136.3, 138.5, 154.6, 156.4, 198.4. HRMS–DART (m/z): [M+ NH4]+ calcd 
for C23H22NO2, 344.1645; found, 344.1647. 
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1,2-Diphenyl-3-(thiazol-2-yl)propan-1-one (6aak) 

 

The product 6aak was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 29.3 mg, 0.10 mmol, 50% isolated yield). Pale yellow solid. M.p. 106–111 ℃. 
IR (neat) 698, 758, 1107, 1248, 1447, 1496, 1597, 1680 cm–1. 1H NMR (600 MHz, CDCl3) d 3.44 
(dd, J = 15.0, 7.2 Hz, 1H), 3.97 (dd, J = 15.0, 7.2 Hz, 1H), 5.28 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 3.6 
Hz, 1H), 7.21 (m, 1H), 7.26–7.31 (m, 4H), 7.36 (t, J = 7.8 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.63 (d, 
J = 3.6 Hz, 1H), 7.96 (d, J = 7.8 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 37.0, 53.5, 118.4, 127.6, 
128.1, 128.3, 128.4, 128.6, 128.8, 128.9, 129.0, 129.2, 132.9, 136.2, 138.2, 142.2, 168.0, 198.4. 
HRMS–DART (m/z): [M+ NH4]+ calcd for C18H19N2OS, 294.0947; found, 294.0945. 
 
3-(Benzo[d]thiazol-2-yl)-1,2-diphenylpropan-1-one (6aal) 

 
The product 6aal was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 48.7 mg, 0.14 mmol, 71% isolated yield). Light green solid. M.p. 91–96 ℃. 
IR (neat) 698, 729, 758, 944, 1116, 1241, 1435, 1447, 1597, 1679 cm–1. 1H NMR (400 MHz, CDCl3) 
d 3.52 (dd, J = 15.2, 7.2 Hz, 1H), 4.07 (dd, J = 15.2, 7.2 Hz, 1H), 5.39 (t, J = 7.2 Hz, 1H), 7.18–7.47 
(m, 10H), 7.76 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.97–7.99 (m, 2H). 13C NMR (100.5 
MHz, CDCl3) d 38.1, 53.2, 121.4, 122.5, 124.7, 125.7, 127.5, 128.2, 128.5, 128.9, 129.2, 133.0, 135.3, 
136.2, 138.1, 153.0, 169.2, 198.2. HRMS–DART (m/z): [M+H]+ calcd for C22H18NOS, 344.1104; 
found, 344.1106. 
 
3-(4-Chlorophenyl)-1,2-diphenylpropan-1-one (6aam) 

 

The product 6aam was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–
90:10, hexane/EtOAc) (Fig. 2, 21.8 mg, 0.07 mmol, 34% isolated yield). The spectrum data of 6aam 
was consistent with the literature.11 
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2-Phenyl-3-(thiophen-2-yl)-1-(p-tolyl)propan-1-one (6bag) 

 
The product 6bag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 34.3 mg, 0.11 mmol, 56% isolated yield). Yellow solid. M.p. 67–71 ℃. IR 
(neat) 698, 820, 1174, 1235, 1260, 1604, 1674 cm–1. 1H NMR (400 MHz, CDCl3) d 2.33 (s, 3H), 3.27 
(dd, J = 14.4, 6.4 Hz, 1H), 3.78 (dd, J = 14.8, 6.4 Hz, 1H), 4.83 (t, J = 6.4 Hz, 1H), 6.68 (d, J = 2.8 
Hz, 1H), 6.80–6.83 (m, 1H), 7.04–7.05 (m, 1H), 7.15 (d, J = 8.4 Hz, 2H), 7.20 (m, 1H), 7.27–7.29 
(m, 4H), 7.84 (d, J = 8.4 Hz, 2H). 13C NMR (100.5 MHz, CDCl3) d 21.6, 34.1, 55.9, 123.5, 125.6, 
126.6, 127.2, 128.2, 128.8, 128.9, 129.2, 134.0, 138.9, 142.2, 143.8, 198.4. HRMS–DART (m/z): 
[M+H]+ calcd for C20H19OS, 307.1151; found, 307.1154. 
1-[4-(Tert-butyl)phenyl]-2-phenyl-3-(thiophen-2-yl)propan-1-one (6cag) 

 
The product 6cag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 46.0 mg, 0.13 mmol, 66% isolated yield). Pale yellow solid. M.p. 86–91 ℃. 
IR (neat) 698, 1108, 1237, 1268, 1604, 1677, 2963 cm–1. 1H NMR (400 MHz, CDCl3) d 1.27 (s, 9H), 
3.26 (dd, J = 14.8, 7.2 Hz, 1H), 3.78 (dd, J = 14.4, 7.2 Hz, 1H), 4.85 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 
2.4 Hz, 1H), 6.82 (m, 1H), 7.05 (m, 1H), 7.21 (m, 1H), 7.25–7.31 (m, 4H), 7.38 (d, J = 8.8 Hz, 2H), 
7.89 (d, J = 8.8 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 31.0, 34.2, 35.0, 55.9, 123.6, 125.5, 125.6, 
126.6, 127.3, 128.2, 128.7, 128.9, 133.9, 138.9, 142.2, 156.7, 198.3. HRMS–DART (m/z): [M+H]+ 
calcd for C23H25OS, 349.1621; found, 349.1624. 

 
1-(4-Fluorophenyl)-2-phenyl-3-(thiophen-2-yl)propan-1-one (6dag) 

 
The product 6dag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 22.3 mg, 0.07 mmol, 36% isolated yield). Yellow oil. IR (neat) 569, 695, 838, 
1154, 1203, 1228, 1595, 1678 cm–1. 1H NMR (400 MHz, CDCl3) d 3.27 (dd, J = 14.8, 7.2 Hz, 1H), 
3.78 (dd, J = 14.8, 7.2 Hz, 1H), 4.79 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 6.83 (m, 1H), 7.01–
7.07 (m, 3H), 7.20–7.31 (m, 5H), 7.94–7.97 (m, 2H). 13C NMR (100.5 MHz, CDCl3) d 34.1, 56.1, 
123.7, 125.7, 126.7, 127.5, 128.1, 129.1, 131.4 (d, JC–F = 9.6 Hz), 132.9 (d, JC–F = 2.9 Hz), 138.5, 
141.9, 165.5 (d, JC–F = 255 Hz), 197.2. 19F NMR (376.5 MHz, CDCl3) d –105.1. HRMS–DART 
(m/z): [M+NH4]+ calcd for C19H19FNOS, 328.1166; found, 328.1165. 
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1-(4-Bromophenyl)-2-phenyl-3-(thiophen-2-yl)propan-1-one (6eag) 

 
The product 6eag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 40.0 mg, 0.11 mmol, 54% isolated yield). Pale yellow solid. M.p. 89–93 ℃. 
IR (neat) 699, 1010, 1071, 1397, 1583, 1680 cm–1. 1H NMR (400 MHz, CDCl3) d 3.26 (dd, J = 14.8, 
7.2 Hz, 1H), 3.78 (dd, J = 14.8, 7.2 Hz, 1H), 4.77 (t, J = 7.2 Hz, 1H), 6.68 (m, 1H), 6.83 (m, 1H), 
7.06 (m, 1H), 7.20–7.31 (m, 5H), 7.48–7.50 (m, 2H), 7.78 (d, J = 8.8 Hz, 2H). 13C NMR (100.5 MHz, 
CDCl3) d 34.0, 56.2, 123.7, 125.7, 126.7, 127.5, 128.1, 128.2, 129.1, 130.2, 131.8, 135.2, 138.3, 141.8, 
197.8. HRMS–DART (m/z): [M+H]+ calcd for C19H16BrOS, 371.0100; found, 371.0102. 
 
2-Phenyl-3-(thiophen-2-yl)-1-[4-(trifluoromethoxy)phenyl]propan-1-one (6fag) 

 
The product 6fag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–80:20, 

hexane/EtOAc) (Fig. 2, 47.4 mg, 0.13 mmol, 63% isolated yield). Pale yellow oil. IR (neat) 693, 
1014, 1065, 1111, 1124, 1320, 1685 cm–1. 1H NMR (400 MHz, CDCl3) d 3.28 (dd, J = 15.2, 7.2 Hz, 
1H), 3.80 (dd, J = 15.2, 7.2 Hz, 1H), 4.82 (t, J = 7.2 Hz, 1H), 6.69 (d, J = 2.4 Hz,1H), 6.84 (m, 1H), 
7.07 (m, 1H), 7.21–7.32 (m, 5H), 7.62 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 7.6 Hz, 2H). 13C NMR (100.5 
MHz, CDCl3) d 34.0, 56.6, 123.0 (q, JC–F = 271.4 Hz), 123.8, 125.6 (q, JC–F = 3.9 Hz), 125.8, 126.7, 
127.7, 128.2, 129.0, 129.2, 134.1 (q, JC–F = 32.6 Hz) 137.9, 139.2, 141.6, 197.9. 19F NMR (376.5 
MHz, CDCl3) d –63.2. HRMS–DART (m/z): [M+NH4]+ calcd for C20H19F3NO2S, 394.1083; found, 
394.1080. 
 
2-Phenyl-3-(thiophen-2-yl)-1-[4-(trifluoromethyl)phenyl]propan-1-one (6gag) 

 
The product 6gag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 28.0 mg, 0.08 mmol, 39% isolated yield). Yellow oil. IR (neat) 694, 1065, 
1111, 1124, 1166, 1320, 1685 cm–1. 1H NMR (400 MHz, CDCl3) d 3.28 (dd, J = 14.4, 7.2 Hz, 1H), 
3.80 (dd, J = 14.4, 7.2 Hz, 1H), 4.82 (t, J = 7.2 Hz, 1H), 6.69 (d, J = 2.4 Hz, 1H), 6.84 (m, 1H), 7.07 
(m, 1H), 7.21–7.32 (m, 5H), 7.62 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H). 13C NMR (100.5 MHz, 
CDCl3) d 34.0, 56.6, 123.5 (q, JC–F = 258.2 Hz), 123.8, 125.6 (q, JC–F = 3.8 Hz), 125.8, 126.7, 127.7, 
128.2, 129.0, 129.2, 134.1 (q, JC–F = 32.2 Hz), 137.9, 139.2, 141.6, 197.9. 19F NMR (376.5 MHz, 
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CDCl3) d –63.2. HRMS–DART (m/z): [M+NH4]+ calcd for C20H19F3NOS, 378.1134; found, 
378.1134. 
 
1-(4-Methoxyphenyl)-2-phenyl-3-(thiophen-2-yl)propan-1-one (6hag) 

 

The product 6hag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–80:20, 
hexane/EtOAc) (Fig. 2, 18.7 mg, 0.06 mmol, 29% isolated yield). Yellow oil. IR (neat) 697, 1027, 
1165, 1236, 1256, 1596, 1668 cm–1. 1H NMR (600 MHz, CDCl3) d 3.26 (dd, J = 15.0, 7.2 Hz, 1H), 
3.76–3.80 (m, 4H), 4.80 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 3.0 Hz, 1H), 6.81–6.85 (m, 3H), 7.05 (d, J = 
5.4 Hz, 1H), 7.19–7.21 (m, 1H), 7.25–7.29 (m, 4H), 7.93 (d, J = 8.4 Hz, 2H). 13C NMR (150.9 MHz, 
CDCl3) d 34.1, 55.4, 55.6, 113.7, 123.5, 125.6, 126.6, 127.2, 128.1, 128.9, 129.5, 131.0, 139.1, 142.3, 
163.3, 197.2. HRMS–DART (m/z): [M+H]+ calcd for C20H19O2S, 323.1100; found, 323.1104. 
 
1-[4-(Methylthio)phenyl]-2-phenyl-3-(thiophen-2-yl)propan-1-one (6iag) 

 
The product 6iag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 35.8 mg, 0.11 mmol, 53% isolated yield). Pale yellow solid. M.p. 81–86 ℃. 
IR (neat) 699, 819, 1093, 1238, 1401, 1587, 1672 cm–1. 1H NMR (400 MHz, CDCl3) d 2.45 (s, 
3H), 3.26 (dd, J = 14.8, 6.8 Hz, 1H), 3.78 (dd, J = 14.8, 6.8 Hz, 1H), 4.80 (t, J = 6.8 Hz, 1H), 6.68 (d, 
J = 2.4 Hz,1H), 6.82 (m, 1H), 7.05 (m, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.21 (m, 1H), 7.25–7.28 (m, 
4H), 7.85 (d, J = 8.0 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 14.6, 34.1, 55.8, 123.6, 124.9, 125.6, 
126.6, 127.3, 128.2, 129.0, 129.1, 132.8, 138.8, 142.1, 145.9, 197.7. HRMS–DART (m/z): [M+H]+ 
calcd for C20H19OS2, 339.0872; found, 339.0873. 
 
2-Phenyl-1,3-di(thiophen-2-yl)propan-1-one (6jag) 

 
The product 6jag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 31.6 mg, 0.11 mmol, 53% isolated yield). Pale yellow solid. M.p. 77–80 ℃. 
IR (neat) 697, 1167, 1234, 1410, 1493, 1509, 1668 cm–1. 1H NMR (400 MHz, CDCl3) d 3.25 (dd, J 
= 14.8, 7.2 Hz, 1H), 3.77 (dd, J = 14.8, 7.2 Hz, 1H), 4.63 (t, J = 7.2 Hz, 1H), 6.68 (m, 1H), 6.82 (m, 
1H), 7.05 (m, 1H), 7.18–7.25 (m, 2H), 7.28 (t, J = 4.4 Hz, 4H), 7.50 (m, 1H), 8.00 (m, 1H). 13C NMR 
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(100.5 MHz, CDCl3) d 33.8, 57.8, 123.6, 125.7, 126.1, 126.6, 127.4, 127.4, 128.1, 129.0, 132.8, 138.7, 
141.6, 141.9, 193.0. HRMS–DART (m/z): [M+H]+ calcd for C17H15OS2, 299.0559; found, 299.0557. 
 
1-(Furan-2-yl)-2-phenyl-3-(thiophen-2-yl)propan-1-one (6kag) 

 

The product 6kag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 36.1 mg, 0.13 mmol, 64% isolated yield). Orange solid. M.p. 75–79 ℃. IR 
(neat) 698, 762, 881, 1271, 1464, 1566, 1670 cm–1. 1H NMR (600 MHz, CDCl3) d 3.28 (dd, J = 14.4, 
7.2 Hz, 1H), 3.78 (dd, J = 14.4, 7.2 Hz, 1H), 4.67 (t, J = 7.2 Hz, 1H), 6.44 (dd, J = 3.6, 1.8 Hz, 1H), 
6.71 (d, J = 3.6 Hz, 1H), 6.83 (m, 1H), 7.06 (d, J = 5.4 Hz, 1H), 7.15 (d, J = 3.6 Hz, 1H), 7.24 (m, 
1H), 7.29 (t, J = 7.2 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 0.6 Hz, 1H), 13C NMR (150.9 
MHz, CDCl3) d 33.1, 56.0, 112.3, 118.1, 123.6, 125.7, 126.7, 127.4, 128.3, 128.8, 138.2, 141.8, 146.6, 
152.3, 187.8. HRMS–DART (m/z): [M+H]+ calcd for C17H15O2S, 283.0787; found, 283.0791. 
 
1-(Benzofuran-2-yl)-2-phenyl-3-(thiophen-2-yl)propan-1-one (6lag) 

 
The product 6lag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 

hexane/EtOAc) (Fig. 2, 39.9 mg, 0.12 mmol, 60% isolated yield). Yellow solid. M.p. 82–88 ℃. IR 
(neat) 698, 752, 1139, 1158, 1282, 1552, 1675 cm–1. 1H NMR (400 MHz, CDCl3) d 3.32 (dd, J = 
14.8, 7.2 Hz, 1H), 3.84 (dd, J = 14.8, 7.2 Hz, 1H), 4.81 (t, J = 7.2 Hz, 1H), 6.74 (d, J = 3.2 Hz, 1H), 
6.83 (dd, J = 5.2, 3.2 Hz, 1H), 7.05 (d, J = 5.2 Hz, 1H), 7.21–7.26 (m, 2H), 7.30 (t, J = 7.6 Hz, 2H), 
7.38–7.44 (m, 3H), 7.47 (s, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H). 13C NMR (150.9 
MHz, CDCl3) d 33.1, 56.5, 112.4, 113.9, 113.9, 123.2, 123.7, 123.7, 123.8, 125.8, 126.7, 126.9, 127.6, 
128.3, 128.3, 128.9, 138.0, 141.6, 152.0, 155.6, 189.6. HRMS–DART (m/z): [M+H]+ calcd for 
C21H17O2S, 330.0944; found, 330.0943. 
 
2-Phenyl-1-(pyridin-2-yl)-3-(thiophen-2-yl)propan-1-one (6mag) 

 

The product 6mag was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–
90:10, hexane/EtOAc) (Fig. 2, 27.0 mg, 0.09 mmol, 46% isolated yield). Colorless oil. IR (neat) 618, 
698, 754, 767, 995, 1333, 1434, 1693 cm–1. 1H NMR (600 MHz, CDCl3) d 3.35 (dd, J = 15.0, 7.2 Hz, 
1H), 3.79 (dd, J = 15.0, 7.2 Hz, 1H), 5.75 (t, J = 7.2 Hz, 1H), 6.74 (d, J = 3.6 Hz, 1H), 6.81 (dd, J = 
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5.4, 3.6 Hz, 1H), 7.03 (d, J = 5.4 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.24–7.26 (m, 2H), 7.37 (m, 1H), 
7.41 (d, J = 7.8 Hz, 2H), 7.74 (m, 1H), 7.79 (d, J = 7.8 Hz, 1H), 8.04 (d, J = 4.8 Hz, 1H). 13C NMR 
(150.9 MHz, CDCl3) d 33.0, 52.7, 122.7, 123.4, 125.4, 126.5, 127.0, 127.0, 128.5, 128.9, 136.7, 138.3, 
142.3, 148.9, 152.7, 200.2. HRMS–DART (m/z): [M+H]+ calcd for C18H16NOS, 294.0947; found, 
294.0942. 
 
2-(4-Methoxyphenyl)-1-phenyl-3-(thiophen-2-yl)propan-1-one (6abg) 

 

The product 6abg was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–80:20, 
hexane/EtOAc) (Fig. 2, 0.1 mmol scale, 8.7 mg, 0.03 mmol, 27% isolated yield). Pale yellow oil. IR 
(neat) 690, 1033, 1178, 1251, 1447, 1510, 1608, 1678 cm–1. 1H NMR (400 MHz, CDCl3) d 3.25 (dd, 
J = 14.4, 7.2 Hz, 1H), 3.72–3.78 (m, 4H), 4.80 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 3.6 Hz, 1H), 6.79–
6.84 (m, 3H), 7.06 (m, 1H), 7.18–7.21 (m, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.47 (m, 1H), 7.92 (d, J = 
6.8 Hz, 2H). 13C NMR (100.5 MHz, CDCl3) d 34.1, 55.2 (×2C), 114.4, 123.6, 125.6, 126.6, 128.5, 
128.7, 129.3, 131.4, 132.9, 136.6, 142.2, 158.8, 199.0. HRMS–DART (m/z): [M+ NH4]+ calcd for 
C20H22NO2S, 340.1366; found, 340.1369. 
 
2-[4-(Benzyloxy)phenyl]-1-phenyl-3-(thiophen-2-yl)propan-1-one (6acg) 

 

The product 6acg was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 0.1 mmol scale, 18.3 mg, 0.05 mmol, 46% isolated yield). Pale yellow solid. 
M.p. 77–83 ℃. IR (neat) 692, 738, 828, 1025, 1176, 1243, 1508, 1677 cm–1. 1H NMR (600 MHz, 
CDCl3) d 3.25 (dd, J = 15.0, 7.2 Hz, 1H), 3.75 (dd, J = 15.0, 7.2 Hz, 1H), 4.80 (t, J = 7.2 Hz, 1H), 
4.99 (s, 2H), 6.68 (s, 1H), 6.82 (t, J = 4.2 Hz, 1H), 6.89 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 4.8 Hz, 1H), 
7.20 (d, J = 8.0 Hz, 2H), 7.28 (m, 1H), 7.35–7.40 (m, 6H), 7.46 (t, J = 7.6 Hz, 1H), 7.92 (d, J = 7.8 
Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 34.1, 55.1, 70.0, 115.3, 123.6, 125.6, 126.6, 127.5, 128.0, 
128.5, 128.6, 128.7, 129.3, 130.9, 132.9, 136.6, 136.8, 142.2, 158.1, 199.0. HRMS–DART (m/z): 
[M+ NH4]+ calcd for C26H26NO2S, 416.1679; found, 416.1672. 
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2-(4-Chlorophenyl)-1-phenyl-3-(thiophen-2-yl)propan-1-one (6agd) 

 

The product 6adg was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–90:10, 
hexane/EtOAc) (Fig. 2, 0.1 mmol scale, 14.7 mg, 0.05 mmol, 45% isolated yield). Pale yellow solid. 
M.p. 79–83 ℃. IR (neat) 689, 719, 816, 1014, 1092, 1447, 1489, 1679 cm–1. 1H NMR (600 MHz, 
CDCl3) d 3.27 (dd, J = 15.0, 7.2 Hz, 1H), 3.74 (dd, J = 15.0, 7.2 Hz, 1H), 4.82 (t, J = 7.2 Hz, 1H), 
6.67 (d, J = 3.6 Hz, 1H), 6.83 (dd, J = 5.4, 3.6 Hz, 1H), 7.07 (dd, J = 5.4, 1.2 Hz, 1H), 7.20–7.26 (m, 
4H), 7.38 (t, J = 7.8 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.90 (d, J = 7.2 Hz, 2H). 13C NMR (150.9 
MHz, CDCl3) d 34.0, 55.3, 123.8, 125.8, 126.7, 128.6, 128.7, 129.1, 129.6, 133.2, 133.3, 136.3, 137.0, 
141.5, 198.5. HRMS–DART (m/z): [M+ H]+ calcd for C19H16ClOS, 327.0605; found, 327.0602. 
 
2-(6-Methoxynaphthalen-2-yl)-1-phenyl-3-(thiophen-2-yl)propan-1-one (6aeg) 

 
The product 6aeg was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–80:20, 

hexane/EtOAc) (Fig. 2, 0.1 mmol scale, 14.9 mg, 0.04 mmol, 40% isolated yield). Yellow oil. IR 
(neat) 687, 751, 850, 1030, 1204, 1222, 1264, 1603, 1676 cm–1. 1H NMR (600 MHz, CDCl3) d 3.36 
(dd, J = 15.0, 7.2 Hz, 1H), 3.84–3.89 (m, 4H), 4.98 (t, J = 7.2 Hz, 1H), 6.70 (s, 1H), 6.81–6.82 (m, 
1H), 7.05–7.07 (m, 2H), 7.11 (m, 1H), 7.33–7.39 (m, 3H), 7.44 (m, 1H), 7.65–7.68 (m, 3H), 7.96 (d, 
J = 6.6 Hz, 2H). 13C NMR (150.9 MHz, CDCl3) d 34.2, 55.3, 56.0, 105.5, 119.1, 123.6, 125.7, 126.6, 
126.7, 127.0, 127.6, 128.5, 128.7, 129.0, 129.3, 132.9, 133.7, 133.8, 136.6, 142.1, 157.8, 198.9. 
HRMS–DART (m/z): [M+ H]+ calcd for C24H21O2S, 373.1257; found, 373.1259. 
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7. Characterization Data for Amide Substrates 
(2-Iodothiophen-3-yl)(pyrrolidin-1-yl)methanone (7a) 

 

Pale Yellow Solid. M.p. 81–82 °C. IR (neat) 711, 838, 1436, 1522, 1613, 2874, 2948, 2968, 3070, 
3478 cm–1. 1H NMR (400 MHz, CDCl3) d 1.88–2.01 (m, 4H), 3.30 (t, J = 6.4 Hz, 2H), 3.65 (t, J = 
6.8 Hz, 2H), 6.90 (d, J = 5.6 Hz, 1H), 7.43 (d, J = 5.6 Hz, 1H). 13C NMR (100.6 MHz, CDCl3) d 24.5, 
26.0, 45.8, 48.4, 73.5, 126.9, 132.1, 144.3, 165.2. HRMS–DART (m/z): [M+H]+ calcd for 
C9H11INOS; 307.9601, found 307.9601. 
 
(2-Iodothiophen-3-yl)(piperidin-1-yl)methanone (7b) 

 
Pale Yellow Solid. M.p. 47–50 °C. IR (neat) 720, 852, 1266, 1465, 1522, 1616, 2853, 2934, 2992, 

3070 cm–1. 1H NMR (400 MHz,CDCl3) d 1.57 (m, 2H), 1.68 (m, 4H), 3.24–3.27 (m, 2H), 3.73 (m, 
2H), 6.84 (d, J = 5.6 Hz, 1H), 7.43 (d, J = 5.6 Hz, 1H). 13C NMR (100.6 MHz,CDCl3) d 24.5, 25.6, 
26.7, 42.9, 48.2, 73.3, 127.1, 132.1, 143.3, 165.4. HRMS–DART (m/z): [M+H]+ calcd for 
C10H13INOS; 321.9757, found 321.9751. 
 
Azepan-1-yl(2-iodothiophen-3-yl)methanone (7c) 

 
Pale Yellow Solid. M.p. 66–69 °C. IR (neat) 722, 1152, 1276, 1300, 1428, 1523, 1617, 2852, 2924, 

3069 cm–1. 1H NMR (400 MHz, CDCl3) d 1.58–1.68 (m, 6H), 1.82–1.88 (m, 2H), 3.29–3.32 (m, 2H), 
3.69 (t, J = 6.0 Hz, 2H), 6.84 (d, J = 5.6 Hz, 1H), 7.43 (d, J = 5.6 Hz, 1H). 13C NMR (100.6 MHz, 
CDCl3) d 26.6, 27.3, 27.8, 29.2, 45.8, 49.2, 73.2, 126.9, 132.1, 143.9, 166.9. HRMS–DART (m/z): 
[M+H]+ calcd for C11H15INOS; 335.9914, found 339.9911. 
 
tert-Butyl 4-(2-Iodothiophene-3-carbonyl)piperazine-1-carboxylate (7d) 
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Yellow Solid. M.p. 153–157 °C. IR (neat) 752, 1164, 1259, 1418, 1630, 1688, 2861, 2927, 2975, 
3097 cm–1. 1H NMR (400 MHz, CDCl3) d 1.47 (s, 9H), 3.20 (m, 2H), 3.45 (m, 2H), 3.54 (m, 2H), 
3.76 (m, 2H), 6.86 (d, J = 5.6 Hz, 1H), 7.47 (d, J = 5.6 Hz, 1H). 13C NMR (100.6 MHz, CDCl3) d 
28.3, 41.8, 43.7, 46.9, 73.9, 80.4, 127.1, 132.6, 142.3, 154.4, 165.7. HRMS–DART (m/z): [M+H]+ 
calcd for C14H20IN2O3S; 423.0234, found 423.0230. 
 
Methyl (2-Iodothiophene-3-carbonyl)prolinate (7e) 

 

Pale Yellow Oil. IR (neat) 719, 1171, 1201, 1428, 1623, 1738, 2878, 2950, 3101, 3471 cm–1. Peaks 
for two rotamers (74:26) were given: 1H NMR (400 MHz, CDCl3) d 1.88–2.14 (m, 3H), 2.32 (m, 
1H), 3.38–3.57 (m, 0.74 × 2H), 3.58 (s, 0.26 × 3H), 3.77–3.82 (m, 0.74 × 1H + 2H), 4.29 (m, 0.26 × 
1H), 4.68 (m, 0.74 × 1H), 6.81(d, J = 5.6 Hz, 0.26 × 1H), 6.95 (d, J = 5.6 Hz, 0.74 × 1H), 7.40 (d, J 
= 5.6 Hz, 0.26 × 1H), 7.44 (d, J = 5.6 Hz, 0.74 × 1H). Peaks for the minor rotamer were enclosed in 
parenthesis: 13C NMR (100.6 MHz, CDCl3) d (22.9), 24.9, 29.4, (31.3), (46.3), 48.7, 52.2, (52.4), 
58.7, (60.7), (73.9), 74.1, 127.0, (127.2), 132.1, (132.1), 142.9, (143.5), 165.1, (165.6), (172.2), 172.2. 
HRMS–DART (m/z): [M+H]+ calcd for C11H13INO3S; 365.9655, found 365.9656. 
 
N,N-Diethyl-2-iodothiophene-3-carboxamide (7f) 

 

Yellow Solid. M.p. 70–73 °C. IR (neat) 843, 1278, 1433, 1456, 1472, 1620, 2871, 2932, 2972, 
3070 cm–1. 1H NMR (400 MHz, CDCl3) d 1.09 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H), 3.21 (q, 
J = 7.2 Hz, 2H), 3.57 (q, J = 7.2 Hz, 2H), 6.85 (d, J = 5.2 Hz, 1H), 7.44 (d, J = 5.2 Hz, 1H). 13C NMR 
(100.6 MHz, CDCl3) d 12.8, 14.3, 39.2, 43.0, 73.2, 126.8, 132.1, 143.5, 166.4. HRMS–DART (m/z): 
[M+H]+ calcd for C9H13INOS; 309.9757, found 309.9759. 
 
N-Benzyl-N-ethyl-2-iodothiophene-3-carboxamide (7g) 

 
Pale Yellow Solid. M.p. 76–78 °C. IR (neat) 702, 727, 1113, 1429, 1451, 1626, 2933, 2973, 3028, 

3065 cm–1. Peaks for two rotamers. (51:49) were given: 1H NMR (400 MHz, CDCl3) d 1.05 (t, J = 
7.2 Hz, 0.51 × 3H), 1.24 (t, J = 7.2 Hz, 0.49 × 3H), 3.14 (q, J = 7.2 Hz, 0.51 × 2H), 3.52 (q, J = 7.2 
Hz, 0.49 × 2H), 4.33 (s, 0.49 × 2H), 4.79 (s, 0.51 × 2H), 6.86 (d, J = 5.6 Hz, 0.49 × 1H), 6.90 (d, J = 
5.6 Hz, 0.51 × 1H), 7.15 (d, J = 7.2 Hz, 1H), 7.28–7.46 (m, 5H). Peaks for the minor rotamer were 
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enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d (12.3), 13.7, 39.4, (42.3), 46.8, (51.7), 73.4, 
(74.0), (126.9), 127.0, (127.1), 127.4, (127.6), 128.3, 128.5, (128.7), 132.3 (132.3), (136.5), 136.9, 
(142.8), 143.1, (166.9), 167.1. HRMS–DART (m/z): [M+H]+ calcd for C14H15INOS; 371.9914, 
found 371.9914. 
 
{4-(2-Chlorodibenzo[b,f][1,4]oxazepin-11-yl)piperazin-1-yl}(2-iodothiophen-3-yl)methanone 
(7h) 

 
White Solid. M.p. 138–140 °C. IR (neat) 750, 1013, 1239, 1469, 1587, 1629, 2854, 2915, 3001, 

3969 cm–1. 1H NMR (400 MHz, CDCl3) d 3.47–3.92 (m, 8H), 6.88 (d, J = 5.6 Hz, 1H), 7.02 (m, 1H), 
7.08–7.15 (m, 3H), 7.20 (d, J = 8.8 Hz, 1H), 7.33 (m, 1H), 7.41 (dd, J = 8.8, 2.4 Hz, 1H), 7.47 (d, J 
= 5.6 Hz, 1H). 13C NMR (100.6 MHz, CDCl3) d 41.6, 46.7, 47.4, 48.0, 74.0, 120.1, 122.8, 124.7, 
125.0, 125.8, 127.1, 127.2, 128.7, 130.4, 132.6, 132.8, 139.6, 142.3, 151.6, 158.6, 159.3, 165.7. 
HRMS–DART (m/z): [M+H]+ calcd for C22H18ClIN3O2S; 549.9847, found 549.9849. 
 
{(3S,4R)-3-[(Benzo[d][1,3]dioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidin-1-yl}(2-iodothio 
phen-3-yl)methanone (7i) 

 

White Solid. M.p. 162–163 °C. IR (neat) 746, 1037, 1180, 1442, 1486, 1502, 1569, 1623, 2917, 
3004 cm–1. Peaks for two rotamers were given: 1H NMR (400 MHz, CDCl3) d 1.81–1.98 (m, 2H), 
2.15 (m, 1H), 2.75–3.00 (m, 2H), 3.16 (m, 1H), 3.40 (m, 0.50 × 1H), 3.53 (m, 1H), 3.70 (m, 1H), 3.82 
(d, J = 12.8 Hz, 0.50 × 1H), 4.90 (d, J = 12.8 Hz, 0.50 × 1H), 5.04 (d, J = 12.8 Hz, 0.50 × 1H), 5.89 
(s, 2H), 6.00 (d, J = 8.4 Hz, 0.50 × 1H), 6.18 (m, 1H), 6.39 (s, 0.50 × 1H), 6.62 (dd, J = 16.0, 8.4 Hz, 
1H), 6.90 (m, 1H), 6.99 (m, 2H), 7.13–7.17 (m, 2H), 7.48 (d, J = 5.2 Hz, 1H). Peaks for two rotamers  
were given: 13C NMR (100.6 MHz, CDCl3) d 33.5, 34.6, 41.9, 42.5, 42.8, 43.6, 44.0, 45.1, 47.6, 50.4, 
68.1, 68.4, 73.7, 73.8, 97.8, 97.9, 101.0, 105.3, 105.5, 107.8, 115.5 (d, JC–F = 21.0 Hz), 115.6 (d, JC–

F = 21.1 Hz), 126.9, 127.0, 128.6 (d, JC–F = 8.3 Hz), 128.7 (d, JC–F = 9.6 Hz), 132.3, 132.3, 138.4, 
141.7, 142.7, 142.8, 148.1, 153.5, 154.1, 161.6 (d, JC–F = 245.3 Hz), 165.5 (only observed peaks). 19F 
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NMR (376.5 MHz, CDCl3) d –115.8, –115.6. HRMS–DART (m/z): [M+H]+ calcd for 
C24H22FINO4S; 566.0293, found 566.0292. 
 
(3-Iodothiophen-2-yl)(pyrrolidin-1-yl)methanone (7a-A) 

 
Pale Yellow Oil. IR (neat) 737, 862, 1392, 1440, 1613, 2873, 2948, 2968, 3071, 3488 cm–1. 1H 

NMR (400 MHz, CDCl3) d 1.92–2.00 (m, 4H), 3.38–3.42 (m, 2H), 3.64–3.68 (m, 2H), 7.05 (m, 1H), 
7.72 (m, 1H). 13C NMR (100.6 MHz, CDCl3) d 24.5, 26.0, 46.2, 48.9, 78.6, 127.6, 135.3, 137.7, 
162.6. HRMS–DART (m/z): [M+H]+ calcd for C9H11INOS; 307.9601, found 307.9600. 

 
(2-Iodofuran-3-yl)(pyrrolidin-1-yl)methanone (7a-B) 

 
Pale Yellow Oil. IR (neat) 736, 888, 1143, 1416, 1479, 1606, 2875, 2970, 3109, 3470 cm–1. 1H 

NMR (400 MHz, CDCl3) d 1.91–1.97 (m, 4H), 3.47 (t, J = 6.0 Hz, 2H), 3.61 (t, J = 6.0 Hz, 2H), 6.50 
(m, 1H), 7.56 (m, 1H). 13C NMR (100.6 MHz, CDCl3) d 24.2, 26.1, 45.9, 48.5, 91.3, 111.5, 128.6, 
147.6, 162.6. HRMS–DART (m/z): [M+H]+ calcd for C9H11INO2; 291.9829, found 291.9823. 
 
(2-Iodophenyl)(pyrrolidin-1-yl)methanone (7a-C) 

 
The spectrum data of 7a-C was consistent with the literature.9 

 
8. Procedure for C(sp3)–H Acylation of Secondary Amides 
The reaction to produce 8ma in Fig. 4 is representative. Thiazolium salt N1 (8.3 mg, 0.02 mmol) 
and amide 7a (61.4 mg, 0.2 mmol) were placed in a Schlenk tube containing a magnetic stirring bar. 
The tube was sealed with a Teflon®-coated silicon rubber septum, and then evacuated and filled with 
nitrogen. Cs2CO3 (71.7 mg, 0.22 mmol), degassed DMSO (400 µL) and 2-pyridinecarboxaldehyde 
(1m) (42.8 mg, 0.4 mmol) were added to the vial. After 6 h stirring at 80 °C, the reaction mixture was 
treated with saturated NH4Cl aqueous solution (400 µL), then extracted with diethyl ether (4 times) 
and dried over sodium sulfate. After filtration through a short plug of aluminum oxide (1 g) with 
diethyl ether as an eluent, the resulting solution was evaporated under reduced pressure. After the 
volatiles were removed under reduced pressure, flash column chromatography on silica gel (100:0–
50:50, hexane/EtOAc) gave 8ma (53.0 mg, 0.19 mmol) in 93% yield. 
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9. Characterization Data for a-Aminoketones 
2-[(Thiophene-3-carbonyl)prolyl]pyridine (8ma) 

 
The product 8ma was purified by flash chromatography on silica gel (100:0–50:50, 

hexane/EtOAc) (Fig. 4, 53.0 mg, 0.19 mmol, 93% isolated yield). Pale Yellow Oil. IR (neat) 740, 
995, 1359, 1434, 1606, 1704, 2874, 2972, 3085, 3474 cm–1. Peaks for two rotamers (83:17) were 
given: 1H NMR (400 MHz, CDCl3) d 1.97–2.13 (m, 3H), 2.53 (m, 1H), 3.82–3.95 (m, 2H), 6.09 (m, 
1H), 7.09–7.15 (m, 0.17 × 2H), 7.30 (m, 0.83 × 1H), 7.36 (m, 0.17 × 1H), 7.42–7.49 (m, 0.83 × 1H 
+ 1H), 7.77–7.86 (m, 0.83 × 1H + 1H), 7.94 (m, 0.17 × 1H), 8.10 (d, J = 8.0 Hz, 0.83 × 1H), 8.60 (m, 
0.17 × 1H), 8.69 (d, J = 4.4 Hz, 0.83 × 1H). Peaks for the minor rotamer were enclosed in parenthesis: 
13C NMR (100.6 MHz, CDCl3) d (22.4), 25.7, 29.3, (31.4), (47.4), 49.9, 61.4, (63.1), (122.5), 122.6, 
125.1, (125.5), (125.8), (127.1), 127.2, (127.5), 127.9, 128.0, 136.8, (137.0), 137.1, (137.8), 148.7, 
(148.9), (151.3), 152.3, 163.5, (165.5), 198.3, (198.8). HRMS–DART (m/z): [M+H]+ calcd for 
C15H15N2O2S; 287.0849, found 287.0849. 
 
2-(Benzoylprolyl)pyridine (8ma-C) 

 
The product 8ma-C was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–

50:50, hexane/EtOAc) (Fig. 4, 42.1 mg, 0.15 mmol, 75% isolated yield). Yellow oil. IR (neat) 658, 
701, 719, 744, 996, 1413, 1576, 1671, 1705, 2978 cm–1. Peaks for two rotamers (82:18) were given: 
1H NMR (400 MHz, CDCl3) d 1.95–2.05 (m, 3H), 2.42–2.59 (m, 1H), 3.62–3.93 (m, 2H), 5.86 (d, J 
= 7.6 Hz, 0.18 × 1H), 6.08 (t, J = 6.0 Hz, 0.82 × 1H), 7.15 (s, 0.18 × 3H), 7.31 (s, 0.18 × 2H), 7.39–
7.41 (m, 0.82 × 3H), 7.47–7.50 (m, 0.82 × 1H), 7.61 (d, J = 7.2 Hz, 0.82 × 2H), 7.76 (t, J = 7.6 Hz, 
0.18 × 1H), 7.83–7.89 (m, 1H), 8.11 (d, J = 8.0 Hz, 0.82 × 1H), 8.51 (d, J = 4.4 Hz, 0.18 × 1H), 8.71 
(d, J = 4.4 Hz, 0.82 × 1H). Peaks for the minor rotamer were enclosed in parenthesis: 13C NMR 
(100.6 MHz, CDCl3) d (22.5), 25.6, 29.6, (31.3), (47.1), 50.3, 61.1, (63.3), (122.3), 122.6, (126.5), 
127.2, 127.3, (127.4), (128.0), 128.1, (129.2), 129.9, 136.4, (136.8), 137.3, (148.7), 148.7, (151.2), 
152.3, 168.9, (170.4), 198.2, (198.9) (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for 
C17H17N2O2; 281.1285, found 281.1285. 
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(2-Picolinoylpiperidin-1-yl)(thiophen-3-yl)methanone (8mb) 

 
The product 8mb was purified by flash chromatography on silica gel (100:0–60:40, 

hexane/EtOAc) (Fig. 4, 53.0 mg, 0.18 mmol, 88% isolated yield). Pale Yellow solid. M.p. 114–115 °C. 
IR (neat) 741, 981, 1219, 1423, 1617, 1700, 2858, 2938, 3100, 3477 cm–1. Peaks for two rotamers 
(74:26) were given: 1H NMR (400 MHz, CDCl3) d 1.43–1.78 (m, 4H), 1.89 (m, 0.26 × 1H), 2.06 (m, 
0.74 × 1H), 2.28 (m, 0.26 × 1H), 2.41 (m, 0.74 × 1H), 3.39 (m, 0.26 × 1H), 3.71–3.88 (m, 0.74 × 2H), 
4.74 (m, 0.26 × 1H), 6.00 (m, 0.26 × 1H), 6.47 (m, 0.74 × 1H), 7.07 (m, 0.26 × 1H), 7.21 (m, 1H), 
7.32 (m, 1H), 7.47 (m, 1H), 7.55 (m, 0.74 × 1H), 7.85 (dt, J = 7.6, 1.6 Hz, 1H), 8.04 (m, 1H), 8.53 
(m, 0.26 × 1H), 8.70 (m, 0.74 × 1H). Peaks for the minor rotamer were enclosed in parenthesis: 13C 
NMR (100.6 MHz, CDCl3) d 20.7, (24.9), 25.5, 26.6, (27.7), (40.0), 46.0, 55.3, (59.9), 122.4, (125.0), 
125.5, (125.9), 126.4, 127.1 (× 2C), (127.3), 136.7, 136.8, (137.1), 148.8, (151.7), 152.3, 167.2, 199.7, 
(200.0) (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C16H17N2O2S; 301.1005, 
found 301.1007. 
 
(2-Picolinoylazepan-1-yl)(thiophen-3-yl)methanone (8mc) 

 
The product 8mc was purified by flash chromatography on silica gel (100:0–50:50, 

hexane/EtOAc) (Fig. 4, 53.9 mg, 0.17 mmol, 86% isolated yield). Pale Yellow Solid. M.p. 103–
105 °C. IR (neat) 742, 1218, 1275, 1425, 1523, 1614, 1702, 2854, 2927, 3105 cm–1. Peaks for two 
rotamers (76:24) were given: 1H NMR (400 MHz, CDCl3) d 1.32–2.06 (m, 7H), 2.63 (m, 1H), 3.15 
(m, 0.24 × 1H), 3.57 (m, 0.76 × 1H), 3.98 (m, 0.76 × 1H), 4.56 (m, 0.24 × 1H), 5.79 (m, 0.24 × 1H), 
6.07 (m, 0.76 × 1H), 6.98 (m, 0.24 × 1H), 7.16 (m, 0.24 × 2H), 7.22 (m, 0.76 × 1H), 7.29 (m, 0.76 × 
1H), 7.46 (m, 1H), 7.54 (m, 0.76 × 1H), 7.84 (m, 1H), 8.04 (m, 1H), 8.52 (m, 0.24 × 1H), 8.70 (m, 
0.76 × 1H). Peaks for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) 
d (25.8), 26.8, (28.5), 28.9, 29.3, (29.8), 31.5, (31.8), (44.0), 47.3, 61.1, (63.0), 122.4, (122.6), (124.6), 
125.4, (125.9), 126.2, (126.5), 127.0, 127.2, (127.4), 136.8, 136.8, (137.0), (137.1), 148.7, (148.9), 
(151.5), 152.4, 167.2, (167.6), 199.9, (200.4). HRMS–DART (m/z): [M+H]+ calcd for C17H19N2O2S; 
315.1162, found 315.1168. 
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tert-Butyl 3-Picolinoyl-4-(thiophene-3-carbonyl)piperazine-1-carboxylate (8md) 

 
The product 8md was purified by flash chromatography on silica gel (100:0–50:50, 

hexane/EtOAc) (Fig. 4, 71.8 mg, 0.18 mmol, 89% isolated yield). White Solid. M.p. 54–59 °C. IR 
(neat) 747, 996, 1129, 1166, 1419, 1627, 1694, 2932, 2976, 3101 cm–1. Peaks for two rotamers (70:30) 
were given: 1H NMR (400 MHz, CDCl3) d 1.06 (s, 0.70 × 9H), 1.25-1.47 (m, 0.30 × 9H), 2.94-4.95 
(m, 6H), 5.91 (m, 0.30 × 1H), 6.44 (m, 0.70 × 1H), 7.04 (m, 0.30 × 1H), 7.19–7.27 (m, 1H), 7.34 (m, 
1H), 7.51 (m, 1H), 7.61 (m, 0.70 × 1H), 7.88 (m, 1H), 8.06 (m, 1H), 8.56 (m, 0.30 × 1H), 8.72 (m, 
0.70 × 1H). Peaks for two rotamers were given: 13C NMR (100.6 MHz, CDCl3) d 27.6, 28.0, 28.3, 
39.4, 42.7, 43.2, 44.0, 45.0, 45.8, 46.4, 55.9, 60.6, 79.9, 80.2, 122.3, 122.5, 125.8, 125.9, 126.1, 126.3, 
126.4, 126.6, 126.9, 127.0, 127.4, 127.6, 135.9, 136.9, 137.2, 148.8, 151.4, 151.8, 153.7, 154.4, 167.1, 
196.8, 197.2 (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C20H24N3O4S; 402.1482, 
found 402.1484. 
 
Methyl 5-Picolinoyl-1-(thiophene-3-carbonyl)pyrrolidine-2-carboxylate (8me) 

 
The product 8me was purified by flash chromatography on silica gel (100:0–50:50, 

hexane/EtOAc) (Fig. 4, 23.4 mg, 0.068 mmol, 34% isolated yield). The diasteromeric ratio (>20:1) 
was determined by 1H-NMR analysis. Pale Yellow Oil. IR (neat) 743, 1200, 1349, 1428, 1523, 1627, 
1705, 1741, 2953, 3105 cm–1. Peaks for two rotamers (54:46) were given: 1H NMR (400 MHz, 
CDCl3) d 2.03–2.28 (m, 0.46 × 1H + 2H), 2.49 (m, 1H), 2.67 (m, 0.54 × 1H), 3.65 (s, 0.46 × 3H), 
3.80 (s, 0.54 × 3H), 4.80 (d, J = 7.6 Hz, 0.46 × 1H), 4.97 (d, J = 8.4 Hz, 0.54 × 1H), 6.31 (d, J = 8.4 
Hz, 1H), 7.09 (m, 0.54 × 1H), 7.15 (m, 0.54 × 1H), 7.25 (m, 0.46 × 1H), 7.30 (m, 0.46 × 1H ), 7.48-
7.51 (m, 0.54 × 1H + 1H), 7.56 (m, 0.46 × 1H), 7.79–7.93 (m, 0.54 × 1H + 1H), 8.11 (d, J = 8.0 Hz, 
0.46 × 1H), 8.63 (d, J = 4.4 Hz, 0.54 × 1H), 8.71 (d J = 4.8 Hz, 0.46 × 1H). Peaks for two rotamers 
were given: 13C NMR (100.6 MHz, CDCl3) d 26.9, 27.1, 30.0, 30.3, 52.3, 52.5, 60.5, 61.6, 61.8, 63.1, 
122.6, 122.7, 125.5, 125.8, 126.5, 126.6, 127.2, 127.3, 127.4, 127.7, 136.7, 136.9, 136.9, 137.1, 148.9, 
149.0, 151.1, 152.0, 164.9, 165.2, 172.6, 172.8, 197.5, 198.3. HRMS–DART (m/z): [M+H]+ calcd 
for C17H17N2O4S; 345.0904, found 345.0905. 
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N-Ethyl-N-[1-oxo-1-(pyridin-2-yl)propan-2-yl]thiophene-3-carboxamide (8mf) 

 
The product 8mf was purified by flash chromatography on silica gel (100:0–50:50, hexane/EtOAc) 

(Fig. 4, 53.5 mg, 0.19 mmol, 93% isolated yield). Pale Yellow Solid. M.p. 54–57 °C. IR (neat) 741, 
995, 1222, 1279, 1436, 1613, 1703, 2937, 2979, 3100 cm–1. Peaks for two rotamers (7:3) were given: 
1H NMR (400 MHz, CDCl3) d 1.10–1.31 (m, 3H), 1.65–1.71 (m, 3H), 3.22–3.72 (m, 2H), 5.14 (m, 
0.70 × 1H), 5.97 (m, 0.30 × 1H), 6.97–7.51 (m, 4H), 7.81 (m, 0.70 × 1H), 7.95 (m, 1H), 8.22 (d, J = 
7.6 Hz, 0.30 × 1H), 8.59 (m, 1H). Peaks for the minor rotamer were enclosed in parenthesis: 13C 
NMR (100.6 MHz, CDCl3) d 14.2 15.4, (38.5), 44.2, 57.7, 122.3, 122.6, 125.3, 125.6, (126.3), (126.6), 
127.8, (136.4), 136.9, 137.1, (147.7), (148.6), 149.4, 151.6, (154.0), 166.3, 196.9, (198.7) (only 
observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C15H17N2O2S; 289.1005, found 289.1004. 
 
N-Benzyl-N-[1-oxo-1-(pyridin-2-yl)propan-2-yl]thiophene-3-carboxamide (8mg-major) 
N-Ethyl-N-[2-oxo-1-phenyl-2-(pyridin-2-yl)ethyl]thiophene-3-carboxamide (8mg-minor) 

 
The product 8mg was purified by flash chromatography on silica gel (100:0–50:50, 

hexane/EtOAc) and Gel Permeation Chromatography (Fig. 4, major: 28.1 mg, 0.080 mmol, 40% 
isolated yield; minor: 10.6 mg, 0.030 mmol, 15% isolated yield).  

8mg-major: Pale Yellow Oil. IR (neat) 697, 743, 974, 1421, 1435, 1621, 1704, 2940, 2989, 3061 
cm–1. Peaks for two rotamers (7:3) were given: 1H NMR (400 MHz, CDCl3) d 1.45 (d, J = 7.2 Hz, 
3H), 4.61–5.01 (m, 2H), 5.56 (m, 0.70 × 1H), 6.09 (m, 0.30 × 1H), 7.06–7.26 (m, 3H), 7.26–7.44 (m, 
6H), 7.69–7.83 (m, 0.30 × 1H + 1H), 8.02 (m, 0.70 × 1H), 8.62 (m, 1H). Peaks for the minor rotamer 
were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d 14.5, 53.1, 57.7, (122.4), 122.8, 125.7, 
126.4, 126.8, 127.0, 127.2, 127.5, (127.9), (128.2), 128.7, 128.8, (136.0), 137.0, (137.2), 138.2, 148.2, 
(149.5), 153.3, 167.4, 199.1 (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for 
C20H19N2O2S; 351.1162, found 351.1161. 

8mg-minor: Pale Yellow Oil. IR (neat) 613, 743, 995, 1281, 1437, 1584, 1620, 1769, 2976, 3056 
cm–1. 1H NMR (400 MHz, CDCl3) d 0.91 (t, J = 7.2 Hz, 3H), 3.37–3.68 (m, 2H), 6.98 (m, 1H), 7.18 
(dd, J = 1.2, 5.2 Hz, 1H), 7.28–7.50 (m, 8H), 7.80 (t, J = 7.6 Hz, 1H), 8.07 (d, J = 8.0 Hz 1H), 8.56 
(m, 1H). 13C NMR (100.6 MHz, CDCl3) d 15.2, 43.2, 64.2, 122.6, 125.8, 125.9, 126.8, 126.9, 128.3, 
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128.9, 130.3, 134.5, 136.9, 137.0, 148.5, 153.2, 167.8, 196.0. HRMS–DART (m/z): [M+H]+ calcd 
for C20H19N2O2S; 351.1162, found 351.1163. 
 
{4-(2-Chlorodibenzo[b,f][1,4]oxazepin-11-yl)-1-(thiophene-3-carbonyl)piperazin-2-yl}(pyridin-
2-yl)methanone (8mh) 

 

The product 8mh was purified by flash chromatography on silica gel (100:0–50:50, 
hexane/EtOAc) (Fig. 4, 47.1 mg, 0.089 mmol, 45% isolated yield). 8mh was purified by flash 
chromatography on silica gel (0–50% EtOAc/hexane). Pale Yellow solid. M.p. 174–180 °C. IR (neat) 
737, 1240, 1347, 1425, 1470, 1560, 1587, 1604, 1704, 3059 cm–1. Peaks for two rotamers (1:1) were 
given: 1H NMR (400 MHz, CDCl3) d 3.26–4.13 (m, 0.50 × 1H + 5H), 4.69–4.72 (m, 0.50 × 1H), 
5.01 (bs, 1H), 5.97 (bs, 0.50 × 1H), 6.53–7.91 (m, 0.50 × 1H + 12H), 8.51–8.63 (m, 0.50 × 1H). Peaks 
for two rotamers were given: 13C NMR (100.6 MHz, CDCl3) d 29.7, 40.0, 40.1, 45.4, 45.7, 49.0, 56.0, 
60.6, 70.6, 120.1, 120.4, 122.7, 124.5, 124.9, 125.4, 126.0, 126.3, 126.6, 127.0, 127.1, 128.5, 130.2, 
132.6, 136.0, 136.9, 148.5, 151.6, 159.1, 167.2, 196.3 (only observed peaks). HRMS–ESI (m/z): 
[M+H]+ calcd for C28H22ClN4O3S; 529.1096, found 529.1092. 
 
{(4R,5S)-5-[(Benzo[d][1,3]dioxol-5-yloxy)methyl]-4-(4-fluorophenyl)-1-(thiophene-3-
carbonyl)piperidin-2-yl}(pyridin-2-yl)methanone (8mi) 

 
The product 8mi was purified by flash chromatography on silica gel (100:0–50:50, hexane/EtOAc) 

(Fig. 4, 49.3 mg, 0.091 mmol, 45% isolated yield). White Solid. M.p. 75–80 °C. IR (neat) 727, 833, 
908, 1180, 1486, 1509, 1622, 2244, 2884, 3054 cm–1. Peaks for two rotamers and two diastereomers 
were given (the ratios were not determined): 1H NMR (400 MHz, CDCl3) d 1.61–2.19 (m, 3H), 2.30–
3.05 (m, 3H), 3.36–4.39 (m, 5H), 5.64–6.38 (m, 0.50 × 1H + 5H), 6.59–6.65 (m, 1H), 6.77 (d, J = 5.2 
Hz, 0.50 × 1H), 6.95–7.64 (m, 4H), 7.77–8.10 (m, 2H), 8.49 (d, J = 4.0 Hz, 0.50 × 1H), 8.65 (s, 0.50 
× 1H). Peaks for two rotamers and two diastereomers were given: 13C NMR (100.6 MHz, CDCl3) d 
33.5, 33.7, 34.5, 35.4, 38.3, 40.0, 40.5, 41.6, 41.7, 42.2, 42.5, 43.0, 44.0, 44.4, 45.0, 45.7, 47.4, 47.6, 
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48.8, 50.4, 52.2, 54.7, 57.5, 59.7, 65.5, 68.2, 68.4, 68.7, 73.7, 97.8, 97.9, 100.8, 100.9, 101.1, 101.1, 
104.5, 105.4, 105.4, 105.5, 107.2, 107.5, 107.7, 107.8, 115.4 (d, JC–F = 20.9 Hz), 115.4 (d, JC–F = 21.0 
Hz), 115.6 (d, JC–F = 21.1 Hz), 121.8, 122.5, 122.5, 125.7, 125.7, 125.9, 126.1, 126.5, 127.1, 127.2, 
127.4, 128.6 (d, JC–F = 7.8 Hz), 128.8 (d, JC–F = 7.6 Hz), 128.8 (d, JC–F = 7.7 Hz), 129.0 (d, JC–F = 7.7 
Hz), 132.3, 135.6, 136.0, 136.2, 136.5, 136.8, 136.9, 137.0, 137.2, 138.0 (d, JC–F = 3.0 Hz), 138.5 (d, 
JC–F = 3.0 Hz), 138.9, 141.3, 141.5, 141.7, 141.8, 147.4, 147.8, 148.1, 148.1, 148.4, 148.5, 148.8, 
149.0, 151.4, 151.8, 152.6, 153.0, 153.6, 153.7, 154.1, 161.5 (ddd, JC–F = 244.8 Hz), 161.5 (ddd, JC–

F = 245.0 Hz), 161.6 (ddd, JC–F = 245.4 Hz), 161.7 (ddd, JC–F = 246.1 Hz), 165.6, 167.0, 167.3, 167.9, 
197.0, 199.7, 200.3 (only observed peaks). 19F NMR (376.5 MHz, CDCl3) d –116.0, –115.8, –115.6, 
–115.5. HRMS–DART (m/z): [M+H]+ calcd for C30H26FN2O5S; 545.1541, found 545.1546. 
 
[2-(4-Methylbenzoyl)pyrrolidin-1-yl](thiophen-3-yl)methanone (8ba) 

 
The product 8ba was purified by flash chromatography on silica gel (100:0–70:30, hexane/EtOAc) 

and Gel Permeation Chromatography (Fig. 4, 35.4 mg, 0.12 mmol, 59% isolated yield). Pale Yellow 
Solid. M.p. 112–113 °C. IR (neat) 739, 1180, 1228, 1359, 1435, 1605, 1688, 2874, 2973, 3096 cm–

1. Peaks for two rotamers (83:17) were given: 1H NMR (400 MHz, CDCl3) d 1.93–2.16 (m, 3H), 
2.32–2.42 (m, 4H), 3.80–3.94 (m, 2H), 5.38 (m, 0.17 × 1H), 5.68 (m, 0.83 × 1H), 7.12–7.15 (m, 0.17 
× 2H), 7.22–7.31 (m, 3H), 7.43 (d, J = 5.2 Hz, 0.83 × 1H), 7.66–7.68 (m, 0.17 × 2H), 7.78 (m, 0.83 
× 1H), 7.96 (d, J = 8.0 Hz, 0.83 × 2H). Peaks for the minor rotamer were enclosed in parenthesis: 13C 
NMR (100.6 MHz, CDCl3) d 21.6, (22.2), 25.4, 29.2, (31.3), (46.9), 49.7, 61.6, (63.9), 125.2, (125.7), 
(125.8), (126.9), 127.9, 128.1, (128.3), 128.6, 129.3, (129.5), 132.8, 137.1, 144.1, (144.6), 163.7, 
(165.6), 197.3, (197.6) (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C17H18NO2S; 
300.1053, found 300.1053. 
 
{2-[4-(tert-Butyl)benzoyl]pyrrolidin-1-yl}(thiophen-3-yl)methanone (8ca) 

 
The product 8ca was purified by flash chromatography on silica gel (100:0–50:50, hexane/EtOAc) 

(Fig. 4, 36.9 mg, 0.11 mmol, 54% isolated yield). Pale Yellow Solid. M.p. 153–157 °C. IR (neat) 739, 
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1228, 1361, 1435, 1606, 1688, 2871, 2963, 3089, 3450 cm–1. Peaks for two rotamers (83:17) were 
given: 1H NMR (400 MHz, CDCl3) d 1.35 (s, 9H), 1.95–2.17 (m, 3H), 2.37 (m, 1H), 3.81–3.95 (m, 
2H), 5.39 (m, 0.17 × 1H), 5.70 (m, 0.83 × 1H), 7.14–7.17 (m, 0.17 × 2H), 7.30 (m, 1H), 7.44–7.49 
(m, 0.17 × 1H + 1H), 7.49–7.51 (d, J = 8.0 Hz, 0.83 × 2H), 7.71–7.73 (m, 0.17 × 2H), 7.78 (m, 0.83 
× 1H), 7.99-8.01 (d, J = 8.0 Hz, 0.83 × 2H). Peaks for the minor rotamer were enclosed in parenthesis: 
13C NMR (100.6 MHz, CDCl3) d (22.2), 25.5, (27.5), 29.2, 31.0, (31.2), (31.3), 35.1, (46.9), 49.7, 
61.5, (64.1), 125.2, 125.6, (125.8), (127.0), 127.9, 128.1, (128.2), (128.3), 128.5, (130.5), 132.7, 
137.1, 157.0, 163.7, 197.4 (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for 
C20H24NO2S; 342.1522, found 342.1520 
 
Thiophen-3-yl{2-[4-(trifluoromethoxy)benzoyl]pyrrolidin-1-yl}methanone (8fa) 

 
The product 8fa was purified by flash chromatography on silica gel (100:0–50:50, hexane/EtOAc) 

(Fig. 4, 51.2 mg, 0.14 mmol, 69% isolated yield). Pale Yellow Solid. M.p. 84–86 °C. IR (neat) 1165, 
1208, 1256, 1434, 1602, 1695, 2877, 2976, 3106, 3503 cm–1. Peaks for two rotamers (91:9) were 
given: 1H NMR (400 MHz, CDCl3) d 1.94–2.09 (m, 2H), 2.15 (m, 1H), 2.37 (m, 1H), 3.83–3.96 (m, 
2H), 5.36 (m, 0.09 × 1H), 5.64 (m, 0.91 × 1H), 7.10 (m, 0.09 × 1H), 7.18 (m, 0.09 × 1H), 7.31–7.33 
(m, 0.91 × 1H + 2H), 7.43 (d, J = 5.2 Hz, 0.91 × 1H), 7.80 (m, 1H), 8.12 (d, J = 8.4 Hz, 2H). Peaks 
for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d 22.3, 25.6, 29.0, 
(31.2), 46.9, (49.7), 61.5, (63.9), 120.2 (q, JC–F = 258.8 Hz), 120.5, 125.4, (125.6), (126.1), (126.7), 
127.8, 128.4, 130.2, 130.5 133.8, 136.7, 152.7 (d, JC–F = 1.2 Hz), 163.7, 196.7 (only observed peaks).  
19F NMR (376.5 MHz, CDCl3) d –57.6. HRMS–DART (m/z): [M+H]+ calcd for C17H15F3NO3S; 
370.0719, found 370.0719. 
 
Thiophen-3-yl{2-[4-(trifluoromethyl)benzoyl]pyrrolidin-1-yl}methanone (8ga) 

 
The product 8ga was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 

and Gel Permeation Chromatography (Fig. 4, 46.6 mg, 0.13 mmol, 66% isolated yield). Pale Yellow 
Solid. M.p. 116–118 °C. IR (neat) 1066, 1130, 1227, 1324, 1435, 1609, 1697, 2877, 2976, 3106 cm–
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1. Peaks for two rotamers (92:8) were given: 1H NMR (400 MHz, CDCl3) d 1.94–2.22 (m, 3H), 2.38 
(m, 1H), 3.84–3.97 (m, 2H), 5.39 (m, 0.08 × 1H), 5.64 (m, 0.92 × 1H), 7.09 (m, 0.08 × 1H), 7.18 (m, 
0.08 × 1H), 7.33 (m, 1H), 7.43 (d, J = 4.8 Hz, 0.92 × 1H), 7.69–7.85 (m, 0.08 × 1H + 3H), 8.16 (d, J 
= 8.0Hz, 0.92 × 2H). Peaks for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 
MHz, CDCl3) d (22.3), 25.6, 28.9, (31.1), (46.9), 49.7, 61.8, (64.0), 123.5 (q, JC–F = 272.7 Hz), 125.4, 
125.7 (q, JC–F = 3.6 Hz), (126.2), (126.7), 127.8, 128.4, 128.8, 134.4 (q, JC–F = 32.7 Hz), 136.6, 138.4, 
163.7, 197.4 (only observed peaks). 19F NMR (376.5 MHz, CDCl3) d –63.1. HRMS–DART (m/z): 
[M+H]+ calcd for C17H15F3NO2S; 354.0770, found 354.0770. 
 
[2-(4-Methoxybenzoyl)pyrrolidin-1-yl](thiophen-3-yl)methanone (8ha) 

 

The product 8ha was purified by flash chromatography on silica gel (100:0–50:50, hexane/EtOAc) 
and Gel Permeation Chromatography (Fig. 4, 25.7 mg, 0.086 mmol, 43% isolated yield). Pale Yellow 
Solid. M.p. 119–122 °C. IR (neat) 738, 1169, 1230, 1261, 1434, 1597, 1681, 2875, 2970, 3104 cm–1. 
Peaks for two rotamers (83:17) were given: 1H NMR (400 MHz, CDCl3) d 1.93–2.17 (m, 3H), 2.35 
(m, 1H), 3.80–3.94 (m, 5H), 5.36 (m, 0.17 × 1H), 5.68 (m, 0.83 × 1H), 6.91 (d, J = 8.4 Hz, 0.17 × 
2H), 6.94 (d, J = 8.0 Hz, 0.83 × 2H), 7.12–7.15 (m, 0.17 × 2H), 7.30 (m, 1H), 7.59 (d, J = 5.2 Hz, 
0.83 × 1H), 7.77–7.78 (m, 0.17 × 1H + 1H), 8.05 (d, J = 8.4 Hz, 0.83 × 2H). Peaks for the minor 
rotamer were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d (22.3), 25.4, 29.3, (31.5), 
(47.0), 49.7, 55.5, 61.3, (63.7), 113.8, (114.0), 125.2, (125.7), (125.8), (126.8), (127.0), 127.9, 128.1, 
128.2, (130.5), 130.8, 137.2, (137.8), 163.6, 163.7, (163.9), 196.2, (196.4) (only observed peaks). 
HRMS–DART (m/z): [M+H]+ calcd for C17H18NO3S; 316.1002, found 316.1003. 
 
{2-[4-(Methylthio)benzoyl]pyrrolidin-1-yl}(thiophen-3-yl)methanone (8ia) 

 

The product 8ia was purified by flash chromatography on silica gel (100:0–50:50, hexane/EtOAc) 
and Gel Permeation Chromatography (Fig. 4, 21.2 mg, 0.064 mmol, 32% isolated yield). White Solid. 
M.p. 117–119 °C. IR (neat) 741, 1093, 1227, 1435, 1587, 1611, 1683, 2873, 2975, 3100 cm–1. Peaks 
for two rotamers (85:15) were given: 1H NMR (400 MHz, CDCl3) d 1.91–2.17 (m, 3H), 2.36 (m, 
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1H), 2.53 (s, 3H), 3.81–3.94 (m, 2H), 5.35 (m, 0.15 × 1H), 5.66 (m, 0.85 × 1H), 7.10 (m, 0.15 × 1H), 
7.11 (m, 0.15 × 1H), 7.16–7.32 (m, 3H), 7.43 (m, 0.85 × 1H), 7.68–7.70 (m, 0.15 × 2H), 7.78 (m, 
0.85 × 1H), 7.96–7.98 (m, 0.85 × 2H). Peaks for the minor rotamer were enclosed in parenthesis: 13C 
NMR (100.6 MHz, CDCl3) d (14.6), 14.8, (22.3), 25.5, 29.2, (31.4), (47.0), 49.7, 61.4, 125.1, 125.3, 
(125.7), (125.9), 127.9, 128.2, (128.5), 128.9, 131.5, 137.1, 146.2, 163.7, 196.8 (only observed peaks). 
HRMS–DART (m/z): [M+H]+ calcd for C17H18NO2S2; 332.0774, found 332.0774. 
 
[2-(4-Bromobenzoyl)pyrrolidin-1-yl](thiophen-3-yl)methanone (8ea) 

 

The product 8ea was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 
and Gel Permeation Chromatography (Fig. 4, 37.2 mg, 0.10 mmol, 51% isolated yield). Pale Yellow 
Solid. M.p. 127–129 °C. IR (neat) 740, 1006, 1221, 1436, 1584, 1610, 1692, 2874, 2974, 3091 cm–

1. Peaks for two rotamers (89:11) were given: 1H NMR (400 MHz, CDCl3) d 1.92–2.19 (m, 3H), 2.35 
(m, 1H), 3.82–3.95 (m, 2H), 5.34 (m, 0.11 × 1H), 5.61 (m, 0.89 × 1H), 7.08 (m, 0.11 × 1H), 7.17 (m, 
0.11 × 1H), 7.32 (m, 1H), 7.43 (d, J = 4.8 Hz, 0.89 × 1H), 7.57–7.64 (m, 0.11 × 2H + 2H), 7.78 (m, 
0.89 × 1H), 7.92 (d, J = 8.0 Hz, 0.89 × 2H). Peaks for the minor rotamer were enclosed in parenthesis: 
13C NMR (100.6 MHz, CDCl3) d (22.3), 25.5, 29.0, (31.2), (46.9), 49.7, 61.5, (63.8), 125.4, (125.6), 
(126.1), (126.7), 127.9, 128.3, 128.4, (129.6), 130.0, 132.0, (132.2), 134.2, 136.8, 163.7, 197.1 (only 
observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C16H15BrNO2S; 364.0001, found 364.0001. 
 
Thiophen-2-yl[1-(thiophene-3-carbonyl)pyrrolidin-2-yl]methanone (8ja) 

 
The product 8ja was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 

and Gel Permeation Chromatography (Fig. 4, 26.9 mg, 0.092 mmol, 46% isolated yield). Pale Yellow 
Solid. M.p. 110–112 °C. IR (neat) 738, 1234, 1357, 1414, 1519, 1608, 1666, 2874, 2974, 3088 cm–

1. Peaks for two rotamers (86:14) were given: 1H NMR (400 MHz, CDCl3) d 1.97–2.22 (m, 3H), 2.37 
(m, 1H), 3.81–3.95 (m, 2H), 5.17 (m, 0.14 × 1H), 5.49 (m, 0.86 × 1H), 7.12 (m, 0.14 × 2H), 7.17 (t, 
J = 4.2 Hz, 1H), 7.31 (m, 0.86 × 1H), 7.34 (m, 0.14 × 1H), 7.43 (d, J = 4.8 Hz, 0.86 × 1H), 7.55 (m, 
0.14 × 1H), 7.67 (d, J = 5.2 Hz, 1H), 7.78 (m, 0.86 × 1H), 7.90 (d, J = 4.0 Hz, 0.86 × 1H). Peaks for 
the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d (22.5), 25.5, 29.5, 
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(32.0), (47.1), 49.7, 62.7, (64.8), 125.3, (125.9), (126.9), 127.9, 128.1, 128.3, (132.2), 132.4, 133.8, 
(134.5), 136.9, (137.5), 140.4, (141.6), 163.8, (165.7), 190.7, (191.2) (only observed peaks). HRMS–
DART (m/z): [M+H]+ calcd for C14H14NO2S2; 292.0461, found 292.0468. 
 
Pyrrolidine-1,2-diylbis(thiophen-3-ylmethanone) (8na) 

 
The product 8na was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 

and Gel Permeation Chromatography (Fig. 4, 32.4 mg, 0.11 mmol, 56% isolated yield). Pale Yellow 
Oil. IR (neat) 740, 1232, 1435, 1521, 1609, 1681, 2875, 2973, 3088, 3505 cm–1. Peaks for two 
rotamers (86:14) were given: 1H NMR (400 MHz, CDCl3) d 1.98–2.17 (m, 3H), 2.34 (m, 1H), 3.80–
3.93 (m, 2H), 5.17 (m, 0.14 × 1H), 5.50 (m, 0.86 × 1H), 7.12 (m, 0.14 × 1H), 7.18 (m, 0.14 × 1H), 
7.30–7.35 (m, 2H), 7.43 (d, J = 4.8 Hz, 1H), 7.63 (d, J = 4.8 Hz, 0.86 × 1H), 7.78 (m, 0.86 × 1H), 
7.91 (m, 0.14 × 1H), 8.23 (m, 0.86 × 1H). Peaks for the minor rotamer were enclosed in parenthesis: 
13C NMR (100.6 MHz, CDCl3) d (22.3), 25.4, 29.1, (31.4), (47.0), 49.7, 62.8, (65.0), 125.3, (125.8), 
(125.8), 126.3, (126.8), (126.9), 127.2, 127.9, 128.2, (132.5), 132.6, (136.9), 137.7, (138.6), 140.0, 
163.7, (165.6), 192.0, (192.4) (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for 
C14H14NO2S2; 292.0461, found 292.0460. 
 
[2-(Furan-3-carbonyl)pyrrolidin-1-yl](thiophen-3-yl)methanone (8oa) 

 
The product 8oa was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 

and Gel Permeation Chromatography (Fig. 4, 29.3 mg, 0.11 mmol, 53% isolated yield). Pale Yellow 
Solid. M.p. 124–126 °C. IR (neat) 741, 1154, 1434, 1512, 1608, 1684, 2876, 2974, 3123, 3486 cm–

1. Peaks for two rotamers (87:13) were given: 1H NMR (400 MHz, CDCl3) d 1.95–2.05 (m, 2H), 2.13 
(m, 1H), 2.30 (m, 1H), 3.79–3.92 (m, 2H), 4.92 (m, 0.13 × 1H), 5.24 (m, 0.87 × 1H), 6.69 (m, 0.13 × 
1H), 6.84 (m, 0.87 × 1H), 7.12 (m, 0.13 × 1H), 7.20 (m, 0.13 × 1H), 7.32 (m, 1H), 7.44 (m, 0.87 × 
1H + 1H), 7.77 (m, 0.87 × 1H), 7.86 (m, 0.13 × 1H), 8.21 (m, 0.87 × 1H). Peaks for the minor rotamer 
were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d (22.4), 25.5, 29.1, (31.6), (47.1), 49.7, 
63.3, (65.6), (108.6), 108.9, 125.3, 125.5, (125.9), (126.9), 127.8, 128.3, 136.8, 144.1, (144.3), 
(147.0), 147.5, 163.8, 192.7, (193.3) (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for 
C14H14NO3S; 276.0689, found 276.0684. 
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2-Methyl-6-[(thiophene-3-carbonyl)prolyl]pyridine (8pa) 

 
The product 8pa was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 

(Fig. 4, 57.8 mg, 0.19 mmol, 96% isolated yield). Yellow Oil. IR (neat) 734, 811, 1357, 1430, 1605, 
1703, 2874, 2973, 3103, 3469 cm–1. Peaks for two rotamers (82:18) were given: 1H NMR (400 MHz, 
CDCl3) d 1.95–2.12 (m, 3H), 2.45–2.61 (m, 4H), 3.83–3.95 (m, 2H), 6.05 (m, 0.18 × 1H), 6.12 (m, 
0.82 × 1H), 7.10–7.16 (m, 0.18 × 2H), 7.29–7.33 (m, 0.82 × 1H + 1H), 7.37 (m, 0.18 × 1H), 7.43 (d, 
J = 4.8 Hz, 0.82 × 1H), 7.69–7.72 (m, 0.18 × 1H + 1H), 7.77 (m, 0.82 × 1H), 7.90 (d, J = 8.0 Hz, 0.82 
× 1H). Peaks for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d 
(22.4), 24.4, 25.6, 29.3, (31.5), (47.4), 49.9, 61.5, (63.0), 119.6, 125.1, (125.3), (125.8), 126.8, (127.2), 
(127.2), 127.9 (×2C), 136.8, (136.9), 137.2, (137.8), (150.7), 151.6, 157.7, (157.9), 163.4, (165.3), 
198.5, (199.2) (only observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C16H17N2O2S; 
301.1005, found 301.1007. 
 
2-[(Thiophene-3-carbonyl)prolyl]quinoline (8qa) 

 
The product 8qa was purified by flash chromatography on silica gel (100:0–60:40, hexane/EtOAc) 

(Fig. 4, 56.0 mg, 0.17 mmol, 83% isolated yield). Yellow solid. M.p. 117–119 °C. IR (neat) 740, 839, 
1359, 1430, 1604, 1702, 2875, 2976, 3105, 3460 cm–1. Peaks for two rotamers (84:16) were given: 
1H NMR (400 MHz, CDCl3) d 1.94–2.16 (m, 3H), 2.63 (m, 1H), 3.87–4.01 (m, 2H), 6.31 (m, 1H), 
7.05 (m, 0.16 × 1H), 7.18 (m, 0.16 × 1H), 7.30 (m, 0.84 × 1H), 7.43 (m, 1H), 7.66 (m, 1H), 7.76–
7.80 (m, 0.84 × 1H + 1H), 7.87 (m, 1H), 8.00 (m, 0.16 × 1H), 8.12 (m, 0.16 × 1H), 8.16–8.21 (m, 
0.84 × 2H), 8.27 (m, 1H). Peaks for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 
MHz, CDCl3) d (22.5), 25.8, 29.5, (31.8), (47.5), 50.0, 61.5, (63.0), (118.4), 118.7, 125.1, (125.4), 
(125.9), (127.2), 127.6, (127.6), 127.9, 128.0, 128.5, (128.9), 129.6, 129.8, (130.1), (130.5), 130.6, 
136.8, (137.1), 137.1, (137.8), (146.9), 147.0, (150.8), 151.8, 163.5, (165.4), 198.6, (199.1) (only 
observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C19H17N2O2S; 337.1005, found 337.1007. 
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(2-Benzoylpyrrolidin-1-yl)(thiophen-3-yl)methanone (8aa) 

 
The yield (Table 2, 74%) of 8aa in the crude was determined by 1H-NMR analysis using 1,1,2,2-

tetrachloroethane as an internal standard. The product 8aa was purified by flash chromatography on 
silica gel (100:0–80:20, hexane/EtOAc) (34.1 mg, 0.12 mmol, 60% isolated yield). Pale Yellow Oil. 
IR (neat) 739, 1223, 1359, 1434, 1610, 1690, 2874, 2973, 3103, 3467 cm–1. Peaks for two rotamers 
(86:14) were given: 1H NMR (400 MHz, CDCl3) d 1.95–2.18 (m, 3H), 2.38 (m, 1H), 3.82–3.96 (m, 
2H), 5.39 (m, 0.14 × 1H), 5.70 (m, 0.86 × 1H), 7.11–7.16 (m, 0.14 × 2H), 7.31 (m, 1H), 7.43–7.51 
(m, 0.86 × 1H + 2H), 7.59 (m, 1H), 7.76–7.80 (m, 0.14 × 1H + 1H), 8.05–8.07 (m, 0.86 × 2H). Peaks 
for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d (22.3), 25.4, 
29.1, (31.2), (46.9), 49.7, 61.7, (64.0), 125.3, (125.7), (125.9), (126.8), 127.9, 128.1, 128.5, 128.6, 
(128.8), 133.2, (133.6), 135.4, (137.0), 137.8, 163.7, 197.8 (only observed peaks). HRMS–DART 
(m/z): [M+H]+ calcd for C16H16NO2S; 286.0896, found 286.0895. 
 
(2-Benzoylpyrrolidin-1-yl)(thiophen-2-yl)methanone (8aa-A) 

 
The yield (Table 2, 24%) of 8aa-A in the crude was determined by 1H-NMR analysis using 1,1,2,2-

tetrachloroethane as an internal standard. The product 8aa-A was purified by flash chromatography 
on silica gel (100:0–55:45, hexane/EtOAc) (11.4 mg, 0.040 mmol, 20% isolated yield). Pale Yellow 
Oil. IR (neat) 735, 1224, 1403, 1433, 1522, 1597, 1691, 2875, 2974, 3072 cm–1. Peaks for two 
rotamers (89:11) were given: 1H NMR (400 MHz, CDCl3) d 2.00 (m, 1H), 2.11 (m, 1H), 2.22 (m, 
1H), 2.35 (m, 1H), 3.92–4.13 (m, 2H), 5.73 (dd, J = 8.6, 4.4 Hz, 1H), 6.85 (m, 0.11 × 1H), 7.10 (m, 
0.89 ×1H), 7.21 (m, 0.11 × 1H), 7.29 (m, 0.11 × 1H), 7.46–7.51 (m, 0.89 × 1H + 2H), 7.58 (m, 1H), 
7.63 (d, J = 3.6 Hz, 0.89 × 1H), 7.93 (m, 0.11 × 2H), 8.05 (d, J = 7.6 Hz, 0.89 × 2H). 13C NMR (100.6 
MHz, CDCl3) d 25.5, 28.8, 49.4, 62.4, 127.2, 128.5, 128.6, 130.2, 130.3, 133.3, 135.3, 138.6, 161.4, 
197.8. HRMS–DART (m/z): [M+H]+ calcd for C16H16NO2S; 286.0896, found 286.0893. 
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(2-Benzoylpyrrolidin-1-yl)(furan-3-yl)methanone (8aa-B) 

 
The yield (Table 2, 27%) of 8aa-B in the crude was determined by 1H-NMR analysis using 1,1,2,2-

tetrachloroethane as an internal standard. The product 8aa-B was purified by flash chromatography 
on silica gel (100:0–55:45, hexane/EtOAc) (13.0 mg, 0.048 mmol, 24% isolated yield). Pale Yellow 
Solid. M.p. 102–104 °C. IR (neat) 751, 904, 1224, 1431, 1564, 1616, 1691, 2877, 2975, 3142 cm–1. 
Peaks for two rotamers (89:11) were given: 1H NMR (400 MHz, CDCl3) d 1.95–2.23 (m, 3H), 2,34 
(m, 1H), 3.82–3.99 (m, 2H), 5.35 (m, 0.11 × 1H), 5.68 (dd, J = 8.8, 4.4 Hz, 0.89 ×1H), 6.46 (m, 0.11 
× 1H), 6.78 (m, 0.89 × 1H), 7.25–7.26 (m, 0.11 × 2H), 7.43 (m, 0.89 × 1H), 7.47–7.52 (m, 0.11 × 1H 
+ 2H), 7.60 (m, 1H), 7.90 (m, 1H), 8.04–8.06 (m, 0.89 × 2H). Peaks for the minor rotamer were 
enclosed in parenthesis: 13C NMR (100.6 MHz, CDCl3) d (22.0), 25.2, 28.9, (31.4), (47.1), 48.7, 61.8, 
(63.7), 110.7, 122.0, (128.3), 128.5, 128.6, (129.0), 133.3, 135.3, 142.8, 144.7, 162.0, 197.8 (only 
observed peaks). HRMS–DART (m/z): [M+H]+ calcd for C16H16NO3; 270.1125, found 270.1125. 
 
Pyrrolidine-1,2-diylbis(phenylmethanone) (8aa-C) 

 
The yield (Table 2, 42%) of 8aa-C in the crude was determined by 1H-NMR analysis using 1,1,2,2-

tetrachloroethane as an internal standard. The product 8aa-C was purified by flash chromatography 
on silica gel (100:0–50:50, hexane/EtOAc) (22.1 mg, 0.079 mmol, 40% isolated yield). White Solid. 
M.p. 100–101 °C. IR (neat)701, 1224, 1416, 1447, 1600, 1626, 1692, 2876, 2975, 3059 cm–1. Peaks 
for two rotamers (83:17) were given: 1H NMR (400 MHz, CDCl3) d 1.91–2.10 (m, 3H), 2.38 (m, 
1H), 3.62 (m, 0.83 × 1H), 3.74 (m, 0.83 × 1H), 3.88–3.92 (m, 0.17 × 2H), 5.27 (m, 0.17 × 1H), 5.71 
(dd, J = 8.8, 4.4 Hz, 0.83 × 1H), 7.20–7.23 (m, 0.17 × 3H), 7.30–7.63 (m, 0.83 × 1H + 7H), 8.05–
8.07 (m, 0.83 × 2H). Peaks for the minor rotamer were enclosed in parenthesis: 13C NMR (100.6 
MHz, CDCl3) d (22.4), 25.4, 29.4, (31.1), (46.7), 50.1, 61.3, (64.0), (126.5), 127.3, (128.0), 128.2, 
(128.3), 128.5, 128.6, (129.4), (129.8), 130.0, 133.3, (133.4), (134.2), 135.3, 136.3, (137.3), 169.2, 
(170.4), 197.7, (198.3). HRMS–DART (m/z): [M+H]+ calcd for C18H18NO2; 280.1332, found 
280.1333. 
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10. Effects of Reaction Components on Intermolecular Arylacylation of Styrenes  

 
Supplementary Fig. 1 | Effects of Reaction Components. a isolated yield.  
 
11. Effects of Reaction Components on C–H Acylation 

 
Supplementary Fig. 2 | Effects of NHC Catalysts. 
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12. Cyclic Voltammetry (CV) Experiments 
CV measurements were carried out under nitrogen atmosphere in DMSO solutions with 0.1 M of 

tetrabutylammonium tetrafluoroborate (Bu4NBF4) as a supporting electrolyte. Measurements were 
made with a glassy carbon electrode (area = 0.07 cm2), an Ag/AgCl reference electrode, and a Pt wire 
counter electrode. The concentration of the sample solution was fixed at 10 mM and the sweep rates 
were set to 100 mV/s.  

 

Supplementary Fig. 3 | Cyclic voltammogram of 7a. The compound is unstable under the 
measurement conditions. 
 

  
Supplementary Fig. 4 | Cyclic voltammogram of 7a-A. The compound is unstable under the 
measurement conditions. 
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Supplementary Fig. 5 | Cyclic voltammogram of 7a-B. The compound is unstable under the 
measurement conditions.  

 

 
Supplementary Fig. 6 | Cyclic voltammogram of 7a-C. The compound is unstable under the 
measurement conditions. 
 
13. Computational Studies 
All calculations were carried out with Gaussian 09, Revision D.01.12 
13.1. Calculation of Bond Dissociaton Energy (BDE) 

The BDE values of C–I bonds in amide substrates 7a and 7a-A–C were calucated according to the 
following equation. 

BDE (C–I) = DH Ar radical + DH I radical −D H Ar–I 

The density functional theory (DFT) functional UB3LYP13 was used with the 6-31+G* basis set 
(I: LANL2DZ14) for geometry optimizations. We carried out vibrational frequency calculations with 
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6-311+G* to obtain thermal corrections to enthalpies (H) at 298.15 K (25 °C). 
 

 

amide substrate 
    

DH Ar radical (Hartree) –877.009160 –877.014250 –554.017869 –556.217618 

DH I radical (Hartree) –11.360259 –11.360259 –11.360259 –11.360259 

DH Ar–I (Hartree) –888.468662 –888.470684 –565.480514 –567.671583 

BDE (C–I) (kcal/mol) 62.3 60.4 64.2 58.8 

Supplementary Fig. 7 | BDEs of C–I bonds 
 
Optimization structure of I radical 
 
I                 -0.25990099   -0.24752475    0.00000000 

 
Optimization structure of 7a Ar radical 
 
 C                  3.37835900    0.52139100   -0.02334000 

 C                  2.21890000    1.23956400   -0.05559400 

 C                  1.02379000    0.42330400   -0.01305200 

 C                  1.38888100   -0.88758200    0.05105000 

 S                  3.07210200   -1.20716200    0.06335600 

 H                  4.39834200    0.88421200   -0.04455800 

 H                  2.15983500    2.32108200   -0.10665500 

 C                 -0.33137100    1.05477100   -0.02747100 

 O                 -0.43467600    2.28701600   -0.05265700 

 C                 -1.48664500   -1.21646700   -0.01375700 

 C                 -2.77230700    0.86416500    0.01777600 

 C                 -2.96556100   -1.51624900   -0.31393300 

 H                 -1.18821500   -1.62270500    0.96328700 

 H                 -0.81452100   -1.63290900   -0.77224600 

 C                 -3.70303000   -0.32048100    0.31201100 

 H                 -2.98780600    1.32850400   -0.95412800 

 H                 -2.80960300    1.65524900    0.77169300 

 H                 -3.12832000   -1.53551600   -1.39878400 

 H                 -3.27993200   -2.48350800    0.09061300 

 H                 -4.70682400   -0.17266500   -0.09840300 

 H                 -3.80163700   -0.46308000    1.39566300 

 N                 -1.43194900    0.25218800   -0.00586500 
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Optimization structure of 7a 
 
 C                 -1.86078700    2.84512500    0.41996600 

 C                 -0.60802000    2.70798200   -0.10891500 

 C                 -0.22142800    1.33978300   -0.31293700 

 C                 -1.21996500    0.47324700    0.05903600 

 S                 -2.62413500    1.30601100    0.66264200 

 H                 -2.38424000    3.75748500    0.67597400 

 H                  0.03754100    3.54175700   -0.36316700 

 C                  1.09042600    0.98848900   -0.96453000 

 O                  1.29849500    1.29663500   -2.14118000 

 C                  1.97369300    0.11885300    1.25245300 

 C                  3.33115200    0.01184500   -0.78357600 

 C                  3.45478900   -0.04554800    1.62725500 

 H                  1.40960700   -0.79705400    1.47211900 

 H                  1.48708400    0.94979700    1.77034600 

 C                  4.06318900   -0.69170900    0.36963700 

 H                  3.84591900    0.92618200   -1.10677200 

 H                  3.19578600   -0.61604100   -1.66932000 

 H                  3.90874000    0.93760800    1.80526800 

 H                  3.58801300   -0.64710900    2.53210100 

 H                  5.14905200   -0.57055800    0.30561900 

 H                  3.84536100   -1.76710800    0.35667000 

 N                  2.02270500    0.36114900   -0.20151200 

 I                 -1.25777200   -1.62265400   -0.13568700 

 
Optimization structure of 7a-A Ar radical 
 

 C                 -3.49808100    0.59544100    0.02914200 

 C                 -1.06490600   -0.02828300    0.00358700 

 C                 -1.33798200    1.30029800    0.07173900 

 H                 -4.58160600    0.57108800    0.02443800 

 C                  0.16834900   -0.85403200   -0.02273900 

 O                  0.08298600   -2.08870900   -0.05191800 

 C                  1.63336400    1.22851500   -0.01309400 

 C                  2.61130600   -1.01552300    0.00989600 

 C                  3.14017100    1.31548600   -0.30966600 

 H                  1.39154800    1.67007000    0.96411400 

 H                  1.02596400    1.73516500   -0.77025800 

 C                  3.70001400    0.02390500    0.31050000 

 H                  2.75835300   -1.49845400   -0.96573400 
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 H                  2.53607500   -1.80902500    0.75838000 

 H                  3.30655700    1.31704200   -1.39416600 

 H                  3.58878700    2.22585000    0.10034000 

 H                  4.67308300   -0.26288600   -0.10031500 

 H                  3.81643600    0.14526800    1.39494700 

 N                  1.37207300   -0.21852500   -0.00736700 

 S                 -2.60726900   -0.88948600   -0.04355500 

 C                 -2.68958300    1.70846400    0.08910700 

 H                 -3.04320100    2.73138900    0.14121700 

 
Optimization structure of 7a-A 
 
C                  2.23936800    2.49976500   -0.72723800 

 C                  0.28851200    1.24664700    0.21338100 

 C                  1.33577700    0.44220000   -0.15937700 

 H                  2.90535100    3.27261200   -1.08949400 

 C                 -1.00420500    0.92543800    0.91112000 

 O                 -1.20134700    1.30748100    2.06753800 

 C                 -1.90364200   -0.09842300   -1.23327900 

 C                 -3.21181500   -0.13072200    0.83790900 

 C                 -3.38656800   -0.33129500   -1.56190000 

 H                 -1.31385400   -1.00637700   -1.41317900 

 H                 -1.45653200    0.71752900   -1.80766100 

 C                 -3.94497800   -0.92305900   -0.25525100 

 H                 -3.74834800    0.78477900    1.11947500 

 H                 -3.03585600   -0.70086200    1.75500200 

 H                 -3.87691600    0.62474100   -1.78500300 

 H                 -3.51927800   -0.98839800   -2.42727600 

 H                 -5.03251800   -0.83290600   -0.17203200 

 H                 -3.69110100   -1.98828300   -0.18597500 

 N                 -1.92857800    0.22533300    0.20550900 

 I                  1.40123800   -1.66048100    0.12052200 

 S                  0.68986400    2.92111700   -0.08030300 

 C                  2.45589600    1.14921000   -0.69846100 

 H                  3.36633700    0.66906800   -1.03698700 

 
Optimization structure of 7a-B Ar radical 
 

 C                  3.58450500   -0.14233500    0.02015900 

 C                  2.65096800    0.84038300   -0.02901300 

 C                  1.34594600    0.20522400   -0.00775500 
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 C                  1.65226400   -1.12557900    0.05391100 

 H                  4.66265800   -0.17423200    0.02648500 

 H                  2.81170500    1.90854500   -0.07500800 

 C                  0.06497800    0.95311600   -0.03676100 

 O                  0.07970700    2.18993400   -0.07318800 

 C                 -1.28110900   -1.20527600   -0.00079500 

 C                 -2.38706300    0.97720100   -0.00515300 

 C                 -2.78136800   -1.38554900   -0.28848900 

 H                 -1.00996700   -1.62002900    0.98093400 

 H                 -0.65083000   -1.68755300   -0.75639500 

 C                 -3.41283000   -0.11908900    0.31490700 

 H                 -2.56593700    1.43703400   -0.98667800 

 H                 -2.35573800    1.78422100    0.73189300 

 H                 -2.95149700   -1.41339900   -1.37201000 

 H                 -3.17432800   -2.31416200    0.13730400 

 H                 -4.40241400    0.10406000   -0.09595900 

 H                 -3.51852600   -0.23105400    1.40147800 

 N                 -1.10411600    0.25349700   -0.01633400 

 O                  2.95353500   -1.38449500    0.07271700 

 
Optimization structure of 7a-B 
 

 C                  1.76401900    2.76202800   -0.77612700 

 C                  0.49467700    2.83063100   -0.29771700 

 C                  0.12101300    1.49146700    0.08436400 

 C                  1.22060700    0.72230000   -0.18552000 

 H                  2.45684600    3.48231600   -1.18324200 

 H                 -0.12591900    3.71129700   -0.20635800 

 C                 -1.16414600    1.14139300    0.76775100 

 O                 -1.48066100    1.71820800    1.81281100 

 C                 -1.84994200   -0.36036800   -1.16700700 

 C                 -3.24322800   -0.14695100    0.83389000 

 C                 -3.29506500   -0.76400300   -1.49818300 

 H                 -1.19050300   -1.23774700   -1.17057400 

 H                 -1.43686000    0.37754700   -1.86000700 

 C                 -3.86322200   -1.17225000   -0.12745600 

 H                 -3.86020200    0.75550800    0.93380300 

 H                 -3.06981000   -0.53541700    1.84200100 

 H                 -3.84526400    0.09880000   -1.89465800 

 H                 -3.34032400   -1.56463200   -2.24346200 

 H                 -4.95712900   -1.16163900   -0.09370300 
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 H                 -3.53050600   -2.18554300    0.13100200 

 N                 -1.96148600    0.20109200    0.19271700 

 I                  1.68949700   -1.27759000    0.18366600 

 O                  2.22796900    1.47412600   -0.70557100 

 
Optimization structure of 7a-C Ar radical 
 

 C                  2.25201000    1.12162400   -0.16420800 

 C                  1.10967200    0.30989900    0.01355600 

 H                  2.09557300    2.18845700   -0.29694800 

 C                 -0.23567700    0.99144100    0.02442800 

 O                 -0.29933100    2.22661300    0.03729000 

 C                 -1.51720400   -1.22349900   -0.09303200 

 C                 -2.67461500    0.92292700    0.09165900 

 C                 -3.00678500   -1.40365200   -0.43255100 

 H                 -1.26406000   -1.72165900    0.85291400 

 H                 -0.85913900   -1.62271700   -0.87024200 

 C                 -3.67821900   -0.22135900    0.28466100 

 H                 -2.84911400    1.47339100   -0.84267200 

 H                 -2.67494100    1.65527300    0.90371000 

 H                 -3.15436700   -1.32147200   -1.51680600 

 H                 -3.38565000   -2.38028600   -0.11460700 

 H                 -4.66682300    0.02114900   -0.11764900 

 H                 -3.79661100   -0.44520900    1.35256800 

 N                 -1.37041300    0.23683100    0.03112100 

 C                  1.36203400   -1.03590400    0.19739500 

 C                  2.59831200   -1.64472800    0.21614900 

 C                  3.53043300    0.56513500   -0.16086800 

 C                  3.71302600   -0.81092800    0.02841400 

 H                  2.71649600   -2.71438000    0.37044600 

 H                  4.71371800   -1.23754100    0.03321900 

 H                  4.39452900    1.20853900   -0.30371400 

 
Optimization structure of 7a-C 
 

 C                 -0.65380300    2.65263700   -0.33605500 

 C                 -0.40333200    1.27142300   -0.38956300 

 H                  0.09313400    3.33341000   -0.73646000 

 C                  0.88007000    0.81319000   -1.04931700 

 O                  0.98051200    0.81152600   -2.27850800 

 C                  1.92069100    0.48736100    1.24147300 
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 C                  3.17887400   -0.01239300   -0.80100100 

 C                  3.41794700    0.38737700    1.57133500 

 H                  1.36894800   -0.37027300    1.65001700 

 H                  1.45727500    1.40231200    1.62075500 

 C                  3.97070200   -0.48413100    0.42901700 

 H                  3.67706500    0.81399200   -1.32487400 

 H                  2.99393200   -0.80128700   -1.53612400 

 H                  3.87554900    1.38445300    1.54335300 

 H                  3.59494200   -0.03673500    2.56485600 

 H                  5.05140600   -0.37824200    0.29190300 

 H                  3.76109000   -1.54228500    0.62934500 

 N                  1.90368000    0.45842200   -0.23196000 

 C                 -1.38555400    0.40023100    0.09446900 

 C                 -2.58098700    0.88620500    0.63201200 

 C                 -1.83895500    3.15015500    0.20397300 

 C                 -2.80305900    2.26397600    0.69174500 

 H                 -3.33565700    0.19684800    0.99612100 

 H                 -3.73348600    2.63795600    1.11090100 

 H                 -2.01189000    4.22236700    0.23703200 

 I                 -1.13542900   -1.72565800   -0.01742600 

 
13.2. Calculation of Gibbs Energy Barrier on a-Amino C(sp3)–H Abstraction Step (ΔG‡C–H) 

The density functional theory (DFT) functional UB3LYP was used with the 6-31+G* basis set for 
geometry optimizations. We carried out vibrational frequency calculations to obtain thermal 
corrections to enthalpies (H) at 298.15 K (25 °C). The solvation effect (DMSO) was evaluated with 
a conductor-like polarizable continuum model (CPCM). 
 

 

Gibbs Free Energy 
    

Int (Hartree) –877.068852 –877.074474 –554.076419 –556.277384 

TS (Hartree) –877.062170 –877.062470 –554.066718 –556.265990 

Product (Hartree) –877.109496 –877.110386 –554.120687 –556.310006 

ΔG‡C–H (kcal/mol) 4.2 7.5 6.1 7.2 

Supplementary Fig. 8. | Gibbs Energy Barrier on a-Amino C(sp3)–H Abstraction Step 
 
Optimization structure of Int-7a 
 

 C                  3.37835900    0.52139100   -0.02334000 

 C                  2.21890000    1.23956400   -0.05559400 
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 C                  1.02379000    0.42330400   -0.01305200 

 C                  1.38888100   -0.88758200    0.05105000 

 S                  3.07210200   -1.20716200    0.06335600 

 H                  4.39834200    0.88421200   -0.04455800 

 H                  2.15983500    2.32108200   -0.10665500 

 C                 -0.33137100    1.05477100   -0.02747100 

 O                 -0.43467600    2.28701600   -0.05265700 

 C                 -1.48664500   -1.21646700   -0.01375700 

 C                 -2.77230700    0.86416500    0.01777600 

 C                 -2.96556100   -1.51624900   -0.31393300 

 H                 -1.18821500   -1.62270500    0.96328700 

 H                 -0.81452100   -1.63290900   -0.77224600 

 C                 -3.70303000   -0.32048100    0.31201100 

 H                 -2.98780600    1.32850400   -0.95412800 

 H                 -2.80960300    1.65524900    0.77169300 

 H                 -3.12832000   -1.53551600   -1.39878400 

 H                 -3.27993200   -2.48350800    0.09061300 

 H                 -4.70682400   -0.17266500   -0.09840300 

 H                 -3.80163700   -0.46308000    1.39566300 

 N                 -1.43194900    0.25218800   -0.00586500 

 
Optimization structure of TS-7a 
 

 C                  3.31467100    0.40436000   -0.06239500 

 C                  2.24770900    1.25368400    0.02152100 

 C                  0.99300400    0.55404800    0.07797700 

 C                  1.15397100   -0.80585000   -0.00386600 

 S                  2.80846500   -1.27529100   -0.09390800 

 H                  4.36655800    0.65339100   -0.13106900 

 H                  2.32105600    2.33530100    0.04034900 

 C                 -0.33880800    1.21321200    0.10807700 

 O                 -0.49162300    2.42048400   -0.07732700 

 C                 -1.32678800   -1.05438200    0.48887300 

 C                 -2.76060200    0.77762800   -0.18447300 

 C                 -2.52370400   -1.64701700   -0.24234800 

 H                 -1.24339600   -1.32687800    1.54969300 

 H                 -0.18716200   -1.37589900    0.07858100 

 C                 -3.58027000   -0.52544000   -0.11017100 

 H                 -2.69156200    1.17637900   -1.20430600 

 H                 -3.15470000    1.57385700    0.45392500 

 H                 -2.27432500   -1.81201400   -1.29874000 
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 H                 -2.84919500   -2.60134500    0.18198200 

 H                 -4.34834500   -0.57258900   -0.88828100 

 H                 -4.08381300   -0.60143800    0.86098800 

 N                 -1.41895300    0.36722200    0.27412200 

 
Optimization structure of Product-7a 
 

 C                  3.31113300    0.51709800    0.44635600 

 C                  2.11821700    1.17953300    0.47825200 

 C                  1.02063900    0.38579000   -0.00324200 

 C                  1.43215300   -0.86744500   -0.40359300 

 S                  3.13509600   -1.08780700   -0.19755200 

 H                  4.28407000    0.87268900    0.75963200 

 H                  1.99183800    2.20017500    0.81913700 

 H                  0.84308500   -1.65519800   -0.85216900 

 C                 -0.33365500    0.99484000   -0.12742100 

 O                 -0.45380500    2.21762600   -0.28418900 

 C                 -1.58348500   -1.15769500    0.23194900 

 C                 -2.78433100    0.79404400   -0.34142700 

 C                 -3.02471400   -1.56620700    0.19080600 

 C                 -3.77014800   -0.21174100    0.27166400 

 H                 -2.91032200    0.89816400   -1.42670200 

 H                 -2.82488800    1.79151700    0.09744500 

 H                 -3.27236900   -2.08833300   -0.74905200 

 H                 -3.29149000   -2.24919800    1.00618100 

 H                 -4.73157700   -0.21641100   -0.25062100 

 H                 -3.95688300    0.04594500    1.32064600 

 N                 -1.45725100    0.19090200   -0.06774000 

 H                 -0.77665600   -1.68106500    0.72395900 

 
Optimization structure of Int-7a-A 
 

 C                 -3.49808100    0.59544100    0.02914200 

 C                 -1.06490600   -0.02828300    0.00358700 

 C                 -1.33798200    1.30029800    0.07173900 

 H                 -4.58160600    0.57108800    0.02443800 

 C                  0.16834900   -0.85403200   -0.02273900 

 O                  0.08298600   -2.08870900   -0.05191800 

 C                  1.63336400    1.22851500   -0.01309400 

 C                  2.61130600   -1.01552300    0.00989600 

 C                  3.14017100    1.31548600   -0.30966600 
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 H                  1.39154800    1.67007000    0.96411400 

 H                  1.02596400    1.73516500   -0.77025800 

 C                  3.70001400    0.02390500    0.31050000 

 H                  2.75835300   -1.49845400   -0.96573400 

 H                  2.53607500   -1.80902500    0.75838000 

 H                  3.30655700    1.31704200   -1.39416600 

 H                  3.58878700    2.22585000    0.10034000 

 H                  4.67308300   -0.26288600   -0.10031500 

 H                  3.81643600    0.14526800    1.39494700 

 N                  1.37207300   -0.21852500   -0.00736700 

 S                 -2.60726900   -0.88948600   -0.04355500 

 C                 -2.68958300    1.70846400    0.08910700 

 H                 -3.04320100    2.73138900    0.14121700 

 
Optimization structure of TS-7a-A 
 

 C                  3.30234100   -0.78991500   -0.12731600 

 C                  1.03069000    0.18062000    0.08642900 

 C                  1.04143700   -1.18413800    0.00956900 

 H                  4.37378500   -0.92939600   -0.21305000 

 C                 -0.16812600    1.04294000    0.12233900 

 O                 -0.13437800    2.26177400   -0.05211500 

 C                 -1.47150500   -1.06655100    0.48274200 

 C                 -2.62496400    0.96469100   -0.16623900 

 C                 -2.72906300   -1.46950600   -0.27230300 

 H                 -1.44589400   -1.35811700    1.54139300 

 H                 -0.34984500   -1.53735500    0.08594200 

 C                 -3.61959900   -0.21269400   -0.12780800 

 H                 -2.49395600    1.37518900   -1.17515900 

 H                 -2.90957700    1.79175600    0.49105900 

 H                 -2.49292000   -1.64776600   -1.32986000 

 H                 -3.19240900   -2.37587800    0.12867400 

 H                 -4.37653100   -0.13565800   -0.91458600 

 H                 -4.14159500   -0.23638900    0.83622800 

 N                 -1.35623300    0.35908900    0.28526000 

 S                  2.65661300    0.81741500   -0.01948000 

 C                  2.33098600   -1.76620200   -0.09943900 

 H                  2.53860000   -2.82830600   -0.16669500 

 
Optimization structure of Product-7a-A 
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 C                  3.50216100    0.50372900   -0.12748500 

 C                  1.07543700   -0.01692000    0.08346500 

 C                  1.37942200    1.29579600    0.39247100 

 H                  4.56914000    0.45412000   -0.30511900 

 C                 -0.17260200   -0.80563100    0.15108300 

 O                 -0.13315600   -2.03987500    0.27041400 

 C                 -1.69531900    1.16108800   -0.22004600 

 C                 -2.62985200   -0.93578300    0.33089000 

 C                 -3.17704500    1.37767400   -0.18201500 

 H                 -0.96029500    1.79482400   -0.69328900 

 H                  0.64633000    2.01613500    0.73465900 

 C                 -3.73731800   -0.06232300   -0.27746700 

 H                 -2.74723000   -1.07155600    1.41349700 

 H                 -2.53217400   -1.92271100   -0.12224800 

 H                 -3.49335800    1.85489800    0.76115200 

 H                 -3.52765000    2.02697600   -0.99302500 

 H                 -4.69210600   -0.18882400    0.24156900 

 H                 -3.88613900   -0.33263800   -1.32923700 

 N                 -1.39287200   -0.15553400    0.07785400 

 S                  2.52344400   -0.90304800   -0.33989600 

 C                  2.76645900    1.59205500    0.27301600 

 H                  3.19567900    2.56716400    0.47861300 

 
Optimization structure of Int-7a-B 
 

 C                  3.58450500   -0.14233500    0.02015900 

 C                  2.65096800    0.84038300   -0.02901300 

 C                  1.34594600    0.20522400   -0.00775500 

 C                  1.65226400   -1.12557900    0.05391100 

 H                  4.66265800   -0.17423200    0.02648500 

 H                  2.81170500    1.90854500   -0.07500800 

 C                  0.06497800    0.95311600   -0.03676100 

 O                  0.07970700    2.18993400   -0.07318800 

 C                 -1.28110900   -1.20527600   -0.00079500 

 C                 -2.38706300    0.97720100   -0.00515300 

 C                 -2.78136800   -1.38554900   -0.28848900 

 H                 -1.00996700   -1.62002900    0.98093400 

 H                 -0.65083000   -1.68755300   -0.75639500 

 C                 -3.41283000   -0.11908900    0.31490700 

 H                 -2.56593700    1.43703400   -0.98667800 

 H                 -2.35573800    1.78422100    0.73189300 
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 H                 -2.95149700   -1.41339900   -1.37201000 

 H                 -3.17432800   -2.31416200    0.13730400 

 H                 -4.40241400    0.10406000   -0.09595900 

 H                 -3.51852600   -0.23105400    1.40147800 

 N                 -1.10411600    0.25349700   -0.01633400 

 O                  2.95353500   -1.38449500    0.07271700 

 
Optimization structure of TS-7a-B 
 

 C                  3.43404500   -0.33453100   -0.11286800 

 C                  2.68325600    0.79201500    0.01085100 

 C                  1.31419000    0.34894200    0.08308100 

 C                  1.35511600   -1.01512300   -0.03952500 

 H                  4.49178000   -0.52721100   -0.21060100 

 H                  3.03492600    1.81380100    0.04550800 

 C                  0.06683200    1.13231800    0.12158500 

 O                  0.01766800    2.35117200   -0.03881100 

 C                 -1.12056200   -1.04816700    0.47713000 

 C                 -2.38227400    0.90060400   -0.21281000 

 C                 -2.38412100   -1.53383500   -0.21908200 

 H                 -1.02301100   -1.32827200    1.53456700 

 H                 -0.01223200   -1.48995600    0.03565300 

 C                 -3.32447500   -0.31216800   -0.09882900 

 H                 -2.27842800    1.25888600   -1.24517700 

 H                 -2.69238900    1.75100500    0.40099900 

 H                 -2.17200800   -1.74676500   -1.27518200 

 H                 -2.79296500   -2.44241100    0.23255300 

 H                 -4.10485400   -0.30088500   -0.86592800 

 H                 -3.81789000   -0.31694900    0.88045600 

 N                 -1.08725300    0.37382500    0.25979700 

 O                  2.62305600   -1.45971400   -0.13726700 

 
Optimization structure of Product-7a-B 
 

 C                 -3.55794200   -0.07563100   -0.22272300 

 C                 -2.57410900    0.84987300   -0.34876100 

 C                 -1.34090600    0.18852200    0.00271600 

 C                 -1.69381000   -1.09832400    0.32549500 

 H                 -4.62574600   -0.06327500   -0.37886700 

 H                 -2.67061300    1.88465200   -0.64374400 

 C                 -0.04997100    0.91213700    0.07175900 
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 O                 -0.03118000    2.14789800    0.15273600 

 C                  1.36308500   -1.15246000   -0.14448800 

 C                  2.41139300    0.92454700    0.27010500 

 C                  2.83137800   -1.44630600   -0.07239500 

 H                  0.60886700   -1.76383900   -0.61921000 

 H                 -1.15144700   -1.95359100    0.69526100 

 C                  3.47314700   -0.04993600   -0.26189500 

 H                  2.52437700    1.12557900    1.34307100 

 H                  2.37801300    1.88354200   -0.24817000 

 H                  3.11117100   -1.87072800    0.90653000 

 H                  3.15340600   -2.17029900   -0.83018500 

 H                  4.42957200    0.05927900    0.25812500 

 H                  3.64527100    0.13664000   -1.32829600 

 N                  1.13637400    0.20126300    0.04768500 

 O                 -3.03520600   -1.27181500    0.19636500 

 
Optimization structure of Int-7a-C 
 

 C                  2.25201000    1.12162400   -0.16420800 

 C                  1.10967200    0.30989900    0.01355600 

 H                  2.09557300    2.18845700   -0.29694800 

 C                 -0.23567700    0.99144100    0.02442800 

 O                 -0.29933100    2.22661300    0.03729000 

 C                 -1.51720400   -1.22349900   -0.09303200 

 C                 -2.67461500    0.92292700    0.09165900 

 C                 -3.00678500   -1.40365200   -0.43255100 

 H                 -1.26406000   -1.72165900    0.85291400 

 H                 -0.85913900   -1.62271700   -0.87024200 

 C                 -3.67821900   -0.22135900    0.28466100 

 H                 -2.84911400    1.47339100   -0.84267200 

 H                 -2.67494100    1.65527300    0.90371000 

 H                 -3.15436700   -1.32147200   -1.51680600 

 H                 -3.38565000   -2.38028600   -0.11460700 

 H                 -4.66682300    0.02114900   -0.11764900 

 H                 -3.79661100   -0.44520900    1.35256800 

 N                 -1.37041300    0.23683100    0.03112100 

 C                  1.36203400   -1.03590400    0.19739500 

 C                  2.59831200   -1.64472800    0.21614900 

 C                  3.53043300    0.56513500   -0.16086800 

 C                  3.71302600   -0.81092800    0.02841400 

 H                  2.71649600   -2.71438000    0.37044600 
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 H                  4.71371800   -1.23754100    0.03321900 

 H                  4.39452900    1.20853900   -0.30371400 

 
Optimization structure of TS-7a-C 
 

 C                  2.26558200    1.14669400    0.02460000 

 C                  1.06707700    0.41475400    0.06761100 

 H                  2.21741800    2.23160600    0.05190100 

 C                 -0.25147000    1.13590000    0.09368200 

 O                 -0.33739200    2.34971600   -0.10310300 

 C                 -1.37584100   -1.07195600    0.48469900 

 C                 -2.69832000    0.86563300   -0.12257100 

 C                 -2.58839200   -1.56985000   -0.28587800 

 H                 -1.35564700   -1.35166100    1.54699800 

 H                 -0.20714800   -1.42900500    0.10171000 

 C                 -3.58568000   -0.39736600   -0.12153500 

 H                 -2.62338000    1.33276700   -1.11167300 

 H                 -3.04373500    1.63350100    0.57687900 

 H                 -2.33318100   -1.70643200   -1.34527900 

 H                 -2.97408900   -2.51998800    0.09586200 

 H                 -4.34054000   -0.36749200   -0.91366000 

 H                 -4.11218700   -0.49075800    0.83576200 

 N                 -1.36938100    0.35937100    0.27564800 

 C                  1.13535300   -0.97221900    0.00228300 

 C                  2.32992100   -1.67130700   -0.07798500 

 C                  3.48346100    0.47025100   -0.05393000 

 C                  3.52078400   -0.93003100   -0.10601900 

 H                  2.35381300   -2.75751700   -0.12550300 

 H                  4.47650700   -1.44591400   -0.17021600 

 H                  4.41212300    1.03455000   -0.07724200 

 
Optimization structure of Product-7a-C 
 

 C                  2.09305400    1.03723200    0.57767200 

 C                  1.09319900    0.30989100   -0.08767000 

 H                  1.84468300    2.00987100    0.99143500 

 C                 -0.25204400    0.95696100   -0.23630800 

 O                 -0.34986300    2.16694400   -0.47933900 

 C                 -1.53047500   -1.12776300    0.34205200 

 C                 -2.71350000    0.78780200   -0.36579300 

 C                 -2.97452100   -1.51883200    0.36277500 
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 H                 -0.69351300   -1.66400200    0.76217200 

 H                  0.66842300   -1.48430300   -1.21834700 

 C                 -3.69679900   -0.14953200    0.35252200 

 H                 -2.87333700    0.81234200   -1.45122600 

 H                 -2.72323300    1.81633200   -0.00296900 

 H                 -3.25322100   -2.11009100   -0.52720500 

 H                 -3.23340600   -2.13036400    1.23560800 

 H                 -4.67206600   -0.17987300   -0.14259900 

 H                 -3.85123100    0.19442400    1.38176200 

 N                 -1.38778600    0.18263000   -0.09117900 

 C                  1.42055400   -0.92498400   -0.66931200 

 C                  2.72034900   -1.42811800   -0.57375600 

 C                  3.38434000    0.52261900    0.69231900 

 C                  3.70209500   -0.71206300    0.11667600 

 H                  2.96593600   -2.37778700   -1.04248800 

 H                  4.71085000   -1.10902800    0.19784800 

 H                  4.14601700    1.08923600    1.22191600 
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14. Deprotection of Directing Group 
 

 
Supplementary Fig. 9 | Deprotection of Directing Group 
 
Deprotection of 8ma. The deprotection is conducted by the reported procedure.15 Cp2Zr(H)Cl (61.9 
mg, 0.24 mmol) was suspended in dioxane (830 µL) under nitrogen at room temperature in a flame-
dried round bottom flask. To this suspension was added 8ma (28.6 mg, 0.1 mmol) in dioxane (500 
µL) also at room temperature. After stirring at 60 ℃ for 30 min, ethanol was added to the reaction 
mixture, stirring for 5 min. After filtration with Celite, the filtrate solution was concentrated. The 
volaties were dissolved in DCM and acidified to pH 1–2 with 10% HCl aqueous solution. The water 
layer was washed with DCM (twice) and then basified to pH 9–10 with NaOH aqueous solution. The 
water layer was extracted with DCM (3 times) and the combined organic layer was dried over sodium 
sulfate. After filtration, the resulting solution was evaporated under reduced pressure. After the 
volatiles were treated with HCl in dioxane, the product 9ma (13.7 mg, 0.055 mmol, 55% isolated 
yield) was purified by recrystallization from AcEt/EtOH.  
 
 
Deprotection of 8ma-C. The deprotection is conducted by the reported procedure.15 Cp2Zr(H)Cl 
(61.9 mg, 0.24 mmol) was suspended in THF (830 µL) under nitrogen at room temperature in a flame-
dried round bottom flask. To this suspension was added 8ma-C (28.0 mg, 0.1 mmol) in THF (500 
µL) also at room temperature. After stirring for 30 min, ethanol was added to the reaction mixture, 
stirring for 5 min. After filtration with Celite, the filtrate solution was concentrated. The volaties were 
dissolved in DCM and acidified to pH 1–2 with 10% HCl aqueous solution. The water layer was 
washed with DCM (twice) and then basified to pH 9–10 with NaOH aqueous solution. The water 
layer was extracted with DCM (3 times) and the combined organic layer was dried over sodium 
sulfate. After filtration, the resulting solution was evaporated under reduced pressure. After the 
volatiles were treated with HCl in dioxane, the product 9ma (15.0 mg, 0.060 mmol, 60%) was purified 
by recrystallization from AcEt/EtOH. 
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Off-white solid. M.p. 194–197 ℃. IR (neat) 772, 972, 1087, 1120, 1457, 1612, 2070, 2216, 2476, 
3356 cm–1. 1H NMR (400 MHz, CD3OD) d 1.72–2.14 (m, 4H), 3.40–3.41 (m, 2H), 4.17 (m, 1H), 
5.68 (m, 1H), 8.09 (m, 1H), 8.24 (m, 1H), 8.67 (m, 1H), 8.86 (m, 1H). 13C NMR (100.6 MHz, 
CD3OD) d 24.1, 24.8, 47.6, 63.8, 68.5, 126.4, 128.1, 143.3, 148.4, 155.8. HRMS–ESI (m/z): [M+H–
2HCl]+ calcd for C10H15N2O, 179.1179; found, 179.1183.  
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15. UV-Vis Absorption Measurement 
Procedure for Supplementary Fig. 10.  
Preparation of 0.8 mM DMSO solution of 10a (solution A). 
Under nitrogen atmosphere, thiazolium salt 10a (3.8 mg, 8 μmol) was dissolved in degassed DMSO 
(1 mL). Then, 200 µL of the solution added to the the quartz cuvette sealed with a silicon-based 
septum and diluted with degassed DMSO (1.8 mL) to make 0.8 mM solution of 10a. 
Preparation of 0.32 M DMSO solution of DBU (solution B). 
Under nitrogen atmosphere, DBU (4.8 µL, 32 μmol) was dissolved in degassed DMSO (100 µL). 
Preparation of 0.16 M DMSO solution of iodobenzene (solution C). 
Under nitrogen atmosphere, iodobenzene (3.6 µL, 32 μmol) was dissolved in degassed DMSO (200 
µL). 
 
First, the solution A including thiazolium salt 10a16 was measured (Supplementary Fig. 10, yellow 
line). Then, TBAF (1.6 µL, 1.6 μmol, 1.0 M THF solution) was added to the solution A, and the 
resuting solution was measured (Supplementary Fig. 10, green line). Subsequently, 10 µl of solution 
B including DBU was added: the UV-Vis spectrum showed an absorption at λmax = 380 nm, consistent 
with the formation of the enolate form of Breslow intermediate 10a-B (Supplementary Fig. 10, red 
line)17,18 Finally, 10 µl of solution C including iodobenzene was added: the significant shift of the 
absorption was not observed (Supplementary Fig. 10, blue line). 

 

 
Supplementary Fig. 10 | UV-Vis spectrum of 10a 
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Supplementary Fig. 11 | 1H NMR spectrum of 5b-S 
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Supplementary Fig. 12 | 13C NMR spectrum of 5b-S 
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Supplementary Fig. 13 | 1H NMR spectrum of 3aa 
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Supplementary Fig. 14 | 13C NMR spectrum of 3aa 
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Supplementary Fig. 15 | 1H NMR spectrum of 6aaa 
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Supplementary Fig. 16 | 13C NMR spectrum of 6aaa 
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Supplementary Fig. 17 | 1H NMR spectrum of 6aab 
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Supplementary Fig. 18 | 13C NMR spectrum of 6aab 
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Supplementary Fig. 19 | 1H NMR spectrum of 6aac 
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Supplementary Fig. 20 | 13C NMR spectrum of 6aac 
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Supplementary Fig. 21 | 19F NMR spectrum of 6aac 
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Supplementary Fig. 22 | 1H NMR spectrum of 6aad 
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Supplementary Fig. 23 | 13C NMR spectrum of 6aad 
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Supplementary Fig. 24 | 1H NMR spectrum of 6aae 
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Supplementary Fig. 25 | 13C NMR spectrum of 6aae 
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Supplementary Fig. 26 | 1H NMR spectrum of 6aaf 
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Supplementary Fig. 27 | 13C NMR spectrum of 6aaf 
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Supplementary Fig. 28 | 1H NMR spectrum of 6aag 
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Supplementary Fig. 29 | 13C NMR spectrum of 6aag 
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Supplementary Fig. 30 | 1H NMR spectrum of 6aah 
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Supplementary Fig. 31 | 13C NMR spectrum of 6aah 
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Supplementary Fig. 32 | 1H NMR spectrum of 6aai 
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Supplementary Fig. 33 | 13C NMR spectrum of 6aai 
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Supplementary Fig. 34 | 1H NMR spectrum of 6aaj 
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Supplementary Fig. 35 | 13C NMR spectrum of 6aaj 
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Supplementary Fig. 36 | 1H NMR spectrum of 6aak 
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Supplementary Fig. 37 | 13C NMR spectrum of 6aak 
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Supplementary Fig. 38 | 1H NMR spectrum of 6aal 
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Supplementary Fig. 39 | 13C NMR spectrum of 6aal 
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Supplementary Fig. 40 | 1H NMR spectrum of 6aam 
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Supplementary Fig. 41 | 13C NMR spectrum of 6aam 
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Supplementary Fig. 42 | 1H NMR spectrum of 6bag 
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Supplementary Fig. 43 | 13C NMR spectrum of 6bag 
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Supplementary Fig. 44 | 1H NMR spectrum of 6cag 
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Supplementary Fig. 45 | 13C NMR spectrum of 6cag 
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Supplementary Fig. 46 | 1H NMR spectrum of 6dag 
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Supplementary Fig. 47 | 13C NMR spectrum of 6dag 
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Supplementary Fig. 48 | 19F NMR spectrum of 6dag 
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Supplementary Fig. 49 | 1H NMR spectrum of 6eag 

Br

O

Ph

S



  S91 

 
 

Supplementary Fig. 50 | 13C NMR spectrum of 6eag 
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Supplementary Fig. 51 | 1H NMR spectrum of 6fag 
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Supplementary Fig. 52 | 13C NMR spectrum of 6fag 
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Supplementary Fig. 53 | 19F NMR spectrum of 6fag 
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Supplementary Fig. 54 | 1H NMR spectrum of 6gag 
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Supplementary Fig. 55 | 13C NMR spectrum of 6gag 
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Supplementary Fig. 56 | 19F NMR spectrum of 6gag 
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Supplementary Fig. 57 | 1H NMR spectrum of 6hag 
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Supplementary Fig. 58 | 13C NMR spectrum of 6hag 
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Supplementary Fig. 59 | 1H NMR spectrum of 6iag 
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Supplementary Fig. 60 | 13C NMR spectrum of 6iag 
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Supplementary Fig. 61 | 1H NMR spectrum of 6jag 
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Supplementary Fig. 62 | 13C NMR spectrum of 6jag 
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Supplementary Fig. 63 | 1H NMR spectrum of 6kag 
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Supplementary Fig. 64 | 13C NMR spectrum of 6kag 
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Supplementary Fig. 65 | 1H NMR spectrum of 6lag 
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Supplementary Fig. 66 | 13C NMR spectrum of 6lag 
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Supplementary Fig. 67 | 1H NMR spectrum of 6mag 
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Supplementary Fig. 68 | 13C NMR spectrum of 6mag 
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Supplementary Fig. 69 | 1H NMR spectrum of 6abg 
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Supplementary Fig. 70 | 13C NMR spectrum of 6abg 
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Supplementary Fig. 71 | 1H NMR spectrum of 6acg 
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Supplementary Fig. 72 | 13C NMR spectrum of 6acg 
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Supplementary Fig. 73 | 1H NMR spectrum of 6adg 
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Supplementary Fig. 74 | 13C NMR spectrum of 6adg 
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Supplementary Fig. 75 | 1H NMR spectrum of 6aeg 
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Supplementary Fig. 76 | 13C NMR spectrum of 6aeg 
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Supplementary Fig. 77 | 1H NMR spectrum of 7a 
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Supplementary Fig. 78 | 13C NMR spectrum of 7a 
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Supplementary Fig. 79 | 1H NMR spectrum of 7b 
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Supplementary Fig. 80 | 13C NMR spectrum of 7b 
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Supplementary Fig. 81 | 1H NMR spectrum of 7c 
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Supplementary Fig. 82 | 13C NMR spectrum of 7c 
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Supplementary Fig. 83 | 1H NMR spectrum of 7d 
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Supplementary Fig. 84 | 13C NMR spectrum of 7d 
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Supplementary Fig. 85 | 1H NMR spectrum of 7e 
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Supplementary Fig. 86 | 13C NMR spectrum of 7e 
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Supplementary Fig. 87 | 1H NMR spectrum of 7f 
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Supplementary Fig. 88 | 13C NMR spectrum of 7f 
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Supplementary Fig. 89 | 1H NMR spectrum of 7g 
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Supplementary Fig. 90 | 13C NMR spectrum of 7g 
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Supplementary Fig. 91 | 1H NMR spectrum of 7h 
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Supplementary Fig. 92 | 13C NMR spectrum of 7h 
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Supplementary Fig. 93 | 1H NMR spectrum of 7i 

N

O
S

I O

O

O

F



  S135 

 
 

Supplementary Fig. 94 | 13C NMR spectrum of 7i 

N

O
S

I O

O

O

F



  S136 

 
 

Supplementary Fig. 95 | 19F NMR spectrum of 7i 
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Supplementary Fig. 96 | 1H NMR spectrum of 7a-A 
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Supplementary Fig. 97 | 13C NMR spectrum of 7a-A 
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Supplementary Fig. 98 | 1H NMR spectrum of 7a-B 
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Supplementary Fig. 99 | 13C NMR spectrum of 7a-B 
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Supplementary Fig. 100 | 1H NMR spectrum of 7a-C 
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Supplementary Fig. 101 | 13C NMR spectrum of 7a-C 
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Supplementary Fig. 102 | 1H NMR spectrum of 8ma 
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Supplementary Fig. 103 | 13C NMR spectrum of 8ma 
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Supplementary Fig. 104 | 1H NMR spectrum of 8ma-C 
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Supplementary Fig. 105 | 13C NMR spectrum of 8ma-C 
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Supplementary Fig. 106 | 1H NMR spectrum of 8mb 
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Supplementary Fig. 107 | 13C NMR spectrum of 8mb 
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Supplementary Fig. 108 | 1H NMR spectrum of 8mc 
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Supplementary Fig. 109 | 13C NMR spectrum of 8mc 
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Supplementary Fig. 110 | 1H NMR spectrum of 8md 
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Supplementary Fig. 111 | 13C NMR spectrum of 8md 
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Supplementary Fig. 112 | 1H NMR spectrum of 8me 
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Supplementary Fig. 113 | 13C NMR spectrum of 8me 
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Supplementary Fig. 114 | 1H NMR spectrum of 8mf 
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Supplementary Fig. 115 | 13C NMR spectrum of 8mf 

N
O

O

N

S



  S157 

 
 

Supplementary Fig. 116 | 1H NMR spectrum of 8mg-major 
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Supplementary Fig. 117 | 13C NMR spectrum of 8mg-major 
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Supplementary Fig. 118 | 1H NMR spectrum of 8mg-minor 
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Supplementary Fig. 119 | 13C NMR spectrum of 8mg-minor 
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Supplementary Fig. 120 | 1H NMR spectrum of 8mh 
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Supplementary Fig. 121 | 13C NMR spectrum of 8mh 
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Supplementary Fig. 122 | 1H NMR spectrum of 8mi 
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Supplementary Fig. 123 | 13C NMR spectrum of 8mi (whole) 
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Supplementary Fig. 124 | 13C NMR spectrum of 8mi 
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Supplementary Fig. 125 | 13C NMR spectrum of 8mi 
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Supplementary Fig. 126 | 19F NMR spectrum of 8mi 
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Supplementary Fig. 127 | 1H NMR spectrum of 8ba 
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Supplementary Fig. 128 | 13C NMR spectrum of 8ba 
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Supplementary Fig. 129 | 1H NMR spectrum of 8ca 
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Supplementary Fig. 130 | 13C NMR spectrum of 8ca 
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Supplementary Fig. 131 | 1H NMR spectrum of 8fa 
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Supplementary Fig. 132 | 13C NMR spectrum of 8fa 
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Supplementary Fig. 133 | 19F NMR spectrum of 8fa 
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Supplementary Fig. 134 | 1H NMR spectrum of 8ga 
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Supplementary Fig. 135 | 13C NMR spectrum of 8ga 
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Supplementary Fig. 136 | 19F NMR spectrum of 8ga 
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Supplementary Fig. 137 | 1H NMR spectrum of 8ha 
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Supplementary Fig. 138 | 13C NMR spectrum of 8ha 
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Supplementary Fig. 139 | 1H NMR spectrum of 8ia 
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Supplementary Fig. 140 | 13C NMR spectrum of 8ia 
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Supplementary Fig. 141 | 1H NMR spectrum of 8ea 
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Supplementary Fig. 142 | 13C NMR spectrum of 8ea 
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Supplementary Fig. 143 | 1H NMR spectrum of 8ja 
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Supplementary Fig. 144 | 13C NMR spectrum of 8ja 
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Supplementary Fig. 145 | 1H NMR spectrum of 8na 
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Supplementary Fig. 146 | 13C NMR spectrum of 8na 
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Supplementary Fig. 147 | 1H NMR spectrum of 8oa 
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Supplementary Fig. 148 | 13C NMR spectrum of 8oa 
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Supplementary Fig. 149 | 1H NMR spectrum of 8pa 
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Supplementary Fig. 150 | 13C NMR spectrum of 8pa 
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Supplementary Fig. 151 | 1H NMR spectrum of 8qa 
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Supplementary Fig. 152 | 13C NMR spectrum of 8qa 
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Supplementary Fig. 153 | 1H NMR spectrum of 8aa 
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Supplementary Fig. 154 | 13C NMR spectrum of 8aa 
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Supplementary Fig. 155 | 1H NMR spectrum of 8aa-A 
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Supplementary Fig. 156 | 13C NMR spectrum of 8aa-A 
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Supplementary Fig. 157 | 1H NMR spectrum of 8aa-B 
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Supplementary Fig. 158 | 13C NMR spectrum of 8aa-B 
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Supplementary Fig. 159 | 1H NMR spectrum of 8aa-C 
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Supplementary Fig. 160 | 13C NMR spectrum of 8aa-C 
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Supplementary Fig. 161 | 1H NMR spectrum of 9ma 
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Supplementary Fig. 162 | 13C NMR spectrum of 9ma 
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