Biomedical Optics EXPRESS

Choosing a model for laser speckle contrast imaging: supplement

CHANG LIU, 1,2 KIVILCIM KILIÇ, ³ SEFIK EVREN ERDENER, 3,4 DAVID A. BOAS, 1,3 AND DMITRY D. POSTNOV3,5,[∗]

¹Department of Biomedical Engineering, Boston University, Massachusetts 02215, USA

²Department of Bioengineering, Northeastern University, Massachusetts 02115, USA

³Neurophotonics Center, Boston University, Massachusetts 02215, USA

4 Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey

⁵Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark

∗ *dpostnov@sund.ku.dk*

This supplement published with The Optical Society on 21 May 2021 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.14609976

Parent Article DOI: https://doi.org/10.1364/BOE.426521

Choosing a model for laser speckle contrast imaging: supplemental document

Fig. S1. Relative error caused by a typical combination of wrong assumptions when measuring blood flow in the parenchyma. Ground truth model was set to $M U_{n=0.5}$ with $\tau_c = 1$ ms, T = $5ms$, $\beta = 0.5$, $\rho = 0.8$, while the conventionally used $MO/SU_{n=1,simp}$ was tested.

Fig. S2. Relative error caused by using $MU_{n=0.5}$ model in medium-sized vessels. Ground truth model was set to $MO/SU_{n=1}$, with $T = 5ms$, $\tau_c = 0.2ms$, $\beta = 1$, $\rho = 1$.

Derivation of Eq. 12

Field autocorrelation function for multiple scattering unordered motion regime is given by:

$$
g_1(\tau) = exp(-\sqrt{\tau/\tau_c})
$$
 (S1)

With Eq. 10 , g_2 becomes:

$$
g_2 = 1 + \beta \left[\rho^2 \exp(-\sqrt{\tau/\tau_c}) + 2\rho(1-\rho) \left| \exp(-\sqrt{\tau/\tau_c}) \right| + (1-\rho^2) \right]
$$
 (S2)

Substitute the new g_2 into Eq. 3 to compute the autocovariance $C_t(\tau)$:

$$
C_t(\tau) = \beta \Big[\rho^2 \exp(-\sqrt{\tau/\tau_c})^2 + 2\rho (1-\rho) \exp(-\sqrt{\tau/\tau_c}) + (1-\rho)^2 \Big] < I >^2_t \tag{S3}
$$

From Eq. 1 the contrast is derived as:

$$
K_s^2 = \frac{2\beta}{T} \int_0^T (1 - \frac{\tau}{T}) \left\{ \rho^2 \exp\left(-\sqrt{\tau/\tau_c}\right)^2 + 2\rho (1 - \rho) \exp\left(-\sqrt{\tau/\tau_c}\right) + (1 - \rho)^2 \right\} d\tau \tag{S4}
$$

Compute the definite integral to obtain Eq.12.

Derivation of Eq. 13

For single scattering and ordered motion regime, the proper model of autocorrelation function is

$$
g_1(\tau) = exp\bigg(-(\tau/\tau_c)^2\bigg) \tag{S5}
$$

Substitute Eq. $S5$ in Eq. 10, g_2 becomes:

$$
g_2 = 1 + \beta \left\{ \rho^2 exp\left(-(\tau/\tau_c)^2\right)^2 + 2\rho (1-\rho) exp\left(-(\tau/\tau_c)^2\right) + (1-\rho)^2 \right\}
$$
 (S6)

The autocovariance function $C_t(\tau)$ in this case becomes:

$$
C_t(\tau) = \beta \left\{ \rho^2 \exp\left(-(\tau/\tau_c)^2\right)^2 + 2\rho(1-\rho)\exp\left(-(\tau/\tau_c)^2\right) + (1-\rho)^2 \right\} < I_t >^2 \tag{S7}
$$

Substitute Eq. S7 into Eq. 1, the contrast equation is:

$$
K_s^2 = \frac{2\beta}{T} \int_0^T (1 - \frac{\tau}{T}) \left\{ \rho^2 \exp\left(-(\tau/\tau_c)^2\right)^2 + 2\rho(1-\rho)\exp\left(-(\tau/\tau_c)^2\right) + (1-\rho)^2 \right\} d\tau \quad (S8)
$$

Compute the definite integral to obtain Eq.13.