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Background (S/B) analysis was performed with Fiji (http://fiji.sc/Fiji) to assess the best 
contrast: mean intensity of 10 square of 25px were analyzed for each condition, media and 
standard deviation were then calculated using OriginPro 9.0 (OriginLab Corporation). The 
protocol with the highest signal amplification corresponds to 4°C of incubation temperature 
and 24 hours of incubation time of the primary antibody.  

 
Fig. S2.  Representative two-photon images of tissue stained with anti-NeuN antibody (in red) 

and DAPI (in green) at different temperatures and incubation times. Scale bar = 50 µm. 

Image contrast variability. Biological specimens present heterogeneity in the staining 
process caused by different variables. There are intrinsic factors, as the composition of the 
tissue (e.g more or less myelinization) and external processes, like fixation and storage 
conditions, that change the outcome of the labeling. In addition to that, mesoscopic 
reconstructions are subjected to alteration of light absorption due to the presence of various 
tissue components that can introduce higher light absorption or scattering (eg. blood vessels). 
All these aspects lead to an image contrast variability between different specimens and inside 
the same samples through the scanned surface and the depth as shown in supplementary 
figure S3. 
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The network parameters are as follows: 

Layer name (type) Output N. params

conv2d_1 (Conv2D) 32 1632

max_pooling2d_1 (MaxPool 2) 32 0

conv2d_2 (Conv2D) 64 18496

max_pooling2d_2 (MaxPool 2) 64 0

conv2d_3 (Conv2D) 64 36928

conv2d_4 (Conv2D) 128 131200

dropout_1 (Dropout) 128 0

conv2d_5 (Conv2D) 128 16512

dropout_2 (Dropout) 128 0

output (Conv2D) 2 256

Total params:           205,024 

Trainable params:   205,024 

Non-trainable params:       0 

Optimizer hyper-parameters are as follows: 

 type: SGD (mini-batch stochastic) 

 batch size: 256 

 epochs: 300 

 scale: 0.003921568627 (= 1/255) 

 learning rate: 0.01 

 weight decay: 0.00001 

 momentum: 0.9 

 loss: infogain_categorical_crossentropy 

 infogain weight matrix: 0.7; 0; 0 ;1 

The datasets extracted from the raw images are as follows: 
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