
Reviewer #4, expert in single cell sequencing and deconvolution (Remarks to the Author): 

I will limit my comments to the bioinformatics analysis. I am glad to say that it seems mostly 

sensible. There are a few parts that are bemusing - for example, the use of the MCVR method to 

choose the optimal number of PCs seems like an unnecessary complication - but I don't think 

those parts matter all that much. 

The deconvolution strategy looks reasonable enough. I have some concerns about their use of the 

intercept as a quality control measure for the appropriateness of the fit. It seems very difficult for 

this value to increase in response to, e.g., the presence of a cell type that is missing from the 

reference. To do so requires a consistent additive effect across all genes in the sample, and it is 

easy to imagine situations where this does not occur. For example, if almost all marker genes are 

fitted perfectly with the intercept set to zero, there is no scope for the model to increase the 

intercept in response to a handle of markers for a missing cell type. Similarly, it is not clear to me 

that a non-zero intercept in the model is sufficient to restore accuracy for the remaining cellular 

signal estimates in the presence of a cell type/signal that is not in the reference. 

I am also surprised that existing deconvolution methods do not work, such that the authors were 

compelled to develop their own bespoke method to analyze this dataset. This usually requires a 

demonstration that their new method has at least comparable performance to the existing 

methods on some independent datasets (beyond the RCC dataset presented in the manuscript). I 

could not find any such results in either the main manuscript or the supplementary materials. 

Were I being uncharitable, I would say that there is a 50:50 chance that any novelty in the 

authors' results are an artifact of their method, rather than any failure of the existing methods. 

Some additional testing would put these concerns to bed. 

Finally, while this is outside the scope of my review, I will second reviewer 3's comments that this 

is quite a descriptive study. It would have been nice to see a more extensive follow-up of just one 

of the computational results in this manuscript. As it stands, it's like I'm reading four beginnings of 

a story rather than a cohesive narrative, which leaves the reader with just as many questions as 

answers. For example: do we see this effect in a wider population of CCSK patients beyond a 

single sample? Can the putative mesenchymal origin be validated with lineage tracing? Same for 

the MRTs? Does this approach have diagnostic benefit beyond a single 11yo boy? And so on. 

Reviewer #5, expert in kidney cancer biology and genomics (Remarks to the Author): 

In this paper, the author analysed transcriptomic data from a large number of renal tumor samples 

with a focus on characterising the different cellular origin of childhood and adult tumors. They 

deconvoluted the contribution of different cell types toward the measured transcriptomic signal 

using single cell transcriptomic from the Human Cell Atlas with a new method. They show that this 

method performs better for this task than other deconvolution methods and they also conclude 

that childhood tumors are of fetal origin whereas adult tumors are of normal kidney cell origin. 

Overall, the study is highly interesting and the usefulness of the deconvolution method is clearly 

demonstrated for the data presented. The conclusion regarding the cell origin of tumors and 

dedifferentiation state are of high interest for the field. This method could benefit cancer studies in 

different contexts. Authors have responded well to all concerns raised by the previous reviewers. 

There are some minor points (detailed below) that would need to be clarified before publication. 

In the manuscript, the authors conclude that the tumor cells of adult kidney tumors are not 

globally dedifferentiated. This conclusion is very important but is currently not described well in 

the main text. The term “dedifferentiation” can be interpreted in different ways. The concept is 

actually much better explained in the rebuttal, where the authors clearly describe the concept of 

dedifferentiation as “reversion of adult tumours to a foetal state at the whole transcriptome level”. 

It would be great if the authors could also mention this clearly in the main text of their manuscript. 

The authors shows interesting examples on how this approach can be used to generate diagnostic 

clues. While the results are certainly encouraging, only two examples are not enough to tell how 



accurate and generalizable the method may be for such use (only 2 patients). We would 

recommend changing the title of the section “Single cell signal provides diagnostic clues” to reflect 

this, and explain this further in the discussion. 

In the discussion, the authors state that they observe “Remarkably uniform cellular signals". It is 

not clear to which results exactly the authors refer to when making this statement. It would also 

help if the authors could give and discuss specific examples of such features from the data. 

Are there plans to make this new method to deconvolute signal contribution as a package? In its 

current state, it is not clear how other scientists may use this method with their own data. 

Furthermore, what are the requirements and limits of the method? For example, how many cells / 

samples are required to obtain accurate deconvolution ? I think making this tool available will 

certainly be important for the field! 

It would be useful to add titles to the plots of figure 7 E and G to indicate what they represent. 

Rafael Kramann



Revision of NCOMMS-20-44567A = Single cell derived mRNA signals across human kidney tumors 
 
 
 
Reviewer #4, expert in single cell sequencing and deconvolution (Remarks to the Author): 
 
 

4.0 I will limit my comments to the bioinformatics analysis. I 
am glad to say that it seems mostly sensible 

Thank you.  

4.1 There are a few parts that are bemusing - for example, the 
use of the MCVR method to choose the optimal number of 
PCs seems like an unnecessary complication - but I don't 
think those parts matter all that much.  

We do not entirely understand the objection here.  The standard practice 
in the field is to arbitrarily choose a number of PCs based on (at best) 
“squinting” at a plot of variance explained by number of PCs.  The 
molecular cross validation method proposes a mathematically justified 
approach to avoid this arbitrary choice and motivate the selection of 
number of PCs (https://www.biorxiv.org/content/10.1101/786269v1).  
We agree that this is a relatively minor point and will not change the 
findings of the paper.  

4.2 The deconvolution strategy looks reasonable enough. I 
have some concerns about their use of the intercept as a 
quality control measure for the appropriateness of the fit. 
It seems very difficult for this value to increase in response 
to, e.g., the presence of a cell type that is missing from the 
reference. To do so requires a consistent additive effect 
across all genes in the sample, and it is easy to imagine 
situations where this does not occur. For example, if 
almost all marker genes are fitted perfectly with the 
intercept set to zero, there is no scope for the model to 
increase the intercept in response to a handle of markers 
for a missing cell type. Similarly, it is not clear to me that a 
non-zero intercept in the model is sufficient to restore 

Motivated by the reviewers comments we have: 
- Included a theoretical exploration of how a model with and without 

an intercept term will quantify a model where there is no 
relationship between the covariates and response variable.  We can 
show that in the limit of no relationship between the covariates and 
the response variable, the fit will only assign non-zero values to the 
intercept term.   
 
In more general circumstances where there is some correlation 
between the bulk expression and the single cell derived signals, an 
intercept model will always improve upon a model without an 
intercept (where improvement is measured as attributing less signal 



accuracy for the remaining cellular signal estimates in the 
presence of a cell type/signal that is not in the reference. 

to inappropriate reference populations). 
 

- See the section “Quantification of goodness of fit” in the 
supplementary methods for a full explanation.  As well as the points 
mentioned above, it also follows that the situation the reviewer 
describes can be well accounted for with an intercept term.  We 
show that fitting a bulk signal comprised mixture of two populations 
in which one has a perfect reference, is mathematically equivalent to 
fitting the second population on its own.  Provided this second 
population is not strongly correlated with the perfectly explained 
one, the effect of including it will be to increase the value of the 
intercept. 
 

- To further demonstrate this point, we have included an example of 
how the intercept behaves as the reference population is made 
progressively more unsuitable (Fig. S2C).  We start with a bulk 
population that is well explained by a single reference cellular signal 
(B cells).  We then progressively perturb the reference population 
decreasing its suitability as a reference for the bulk data.  We show 
that as the reference becomes more and more unsuitable, the 
unexplained signal (intercept term) progressively dominates the fit. 

 



 
Fig. S2C – Bulk transcriptomes of flow sorted B cells are fit using a 
reference derived from single cell B cells.  The y-axis then shows 
how much signal is attributed to the unexplained signal (Intercept) 
and how much to the reference.  As you move to the right on the 
x-axis the reference used is randomised to make it less and less 
appropriate, resulting in a steady increase of the Intercept term. 

 
 

- We agree that the intercept term alone cannot provide a complete 
control of the appropriateness of the fit.  To complement this metric, 
we also calculate a pseudo-R squared value, as discussed in the 
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supplementary methods in the “post processing” and “Quantification 
of goodness of fit” sections.  In general, there is a strong anti-
correlation between the pseudo-R squared value and the 
unexplained signal.  That is, when the unexplained signal is high, the 
pseudo-R squared value is low. 
 
For narrative simplicity, we elected to focus on the unexplained 
signal as the primary metric in the main manuscript as in our opinion 
this quantification was most likely to be widely understood.  For 
expert readers such as the reviewer we have included the pseudo-R 
squared values for all our fits in Fig. S4,6,9,12,14 and Data S3. 

4.3 I am also surprised that existing deconvolution methods 
do not work, such that the authors were compelled to 
develop their own bespoke method to analyze this 
dataset. This usually requires a demonstration that their 
new method has at least comparable performance to the 
existing methods on some independent datasets (beyond 
the RCC dataset presented in the manuscript). I could not 
find any such results in either the main manuscript or the 
supplementary materials. 

We try to be clear that we do not think that existing methods are 
“wrong”.  Indeed, they perform admirably at the task that they are 
designed for: quantifying the composition of a bulk sample based on a 
complete set of reference cell types.  Our point is that the question we 
are interested in is one for which they were not designed.  We have 
changed the main text to make this clear (see section “Quantification of 
reference cellular mRNA signals in bulk transcriptomes”). 
 
To further clarify this, we have included a new benchmark evaluating a 
key metric in “traditional deconvolution”: accurately inferring the correct 
abundances of cells in a pseudobulk transcriptomes.  When evaluated on 
this metric, our approach (cellular signal analysis) performs worse than 
the best existing methods, although the accuracy is still good (Fig. S2D). 



 
Fig. S2D – 100 Bulk transcriptomes were generated by randomly 
summing cells selected from the single cell reference.  The 
accuracy of MuSiC and Cell Signal Analysis in recovering the true 
cell proportions was then calculated and the root mean squared 
error is what is plotted above.  Solid lines represent the median.  
This shows that each method performs best on the task for which 
it is designed.  Cell Signal Analysis is best able to account for an 
inappropriate reference, while deconvolution methods achieve 
slightly higher accuracy at recovering the correct cellular 



composition of bulk tissues when a complete reference is 
available.  

 
This is the cost to including an intercept term in the statistical model and 
why existing methods do not do so.  Existing methods are interested in 
solving the problem of estimating the cellular composition where a 
complete reference is available.  Including an intercept in such 
circumstances will moderately decrease the accuracy of methods 
designed for this task and so they do not do so. 
 
We are not primarily interested in quantifying how many cells are 
present in a tumour transcriptome, but instead aim to identify which 
reference normal population contributes the most to the transcriptome 
of the cancer cells.  For this task, it is more important to have a way of 
preventing the assignment of inappropriate signals and so including an 
intercept is a sensible approach. 
 
As well as the pseudobulk benchmark (Fig. S2D), we have included 
benchmarking using bulk transcriptomes from leukaemias of known 
origin, peripheral blood, and flow sorted leucocytes (Fig. 1D-E).  In 
performing these comparisons, we are evaluating not just the ability of 
each method to recover the correct cell type, but also its success (or 
otherwise) in handling the discrepancies between the bulk transcriptome 
and provided single cell derived reference.  Further details of these 
benchmarks are available in Fig. S2. 
 



 
Fig 1E – When bulk transcriptomes are fit using a deliberately 
incomplete reference, MuSiC will assign implausible reference 
signals (green).  This is true whether the mismatch is due to 
absence of a cell type from the reference (Unmatched cells on left) 
or because cells are transformed relative to the reference (cancer 
data on right).  

 
4.4 Were I being uncharitable, I would say that there is a 50:50 

chance that any novelty in the authors' results are an 
artifact of their method, rather than any failure of the 
existing methods. Some additional testing would put these 
concerns to bed. 

We hope that the additional benchmarking and mathematical arguments 
provided above are convincing to the reviewer.   
 
We would further emphasise that our starting point is always that no one 
method or piece of data can be completely relied upon.  It is for this 
reason that we have gone to considerable effort to generate validation 
data (in the form of tumour derived single cell transcriptomes) in our 
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manuscript.  Several of the tumour types we study are extremely rare 
and so acquiring the material for such a validation has been extremely 
challenging.  We hope the fact that we have nonetheless taken the effort 
to generate these data demonstrates that we recognise the importance 
of validating our findings. 
 
We also provide additional layers of validation in several cases:  
immunohistochemistry, single molecule fluorescence in-situ 
hybridisation, and examination of patterns of somatic alterations to DNA. 

4.5 Finally, while this is outside the scope of my review, I will 
second reviewer 3's comments that this is quite a 
descriptive study. It would have been nice to see a more 
extensive follow-up of just one of the computational 
results in this manuscript. As it stands, it's like I'm reading 
four beginnings of a story rather than a cohesive narrative, 
which leaves the reader with just as many questions as 
answers. For example: do we see this effect in a wider 
population of CCSK patients beyond a single sample? Can 
the putative mesenchymal origin be validated with lineage 
tracing? Same for the MRTs? Does this approach have 
diagnostic benefit beyond a single 11yo boy? And so on. 

Our investigation provides an overview of cellular signals across the 
entire spectrum of human renal tumours, akin to a mutational signature 
analyses of cancer genomes. We completely agree that we have obtained 
many insights that will have to be pursued in the future, but it really 
would be beyond the scope of our work to pursue all these insights in a 
single paper. The focus of our work is the cell signals themselves.  
 
The aspect of our paper that we wanted to flesh out was the clinical 
diagnostic utility, which is convincingly shown in the AUC curves. We 
agree that it would be interesting to include more ambiguous cases for 
investigation. Thankfully, such cases are extremely rare, and the 
overwhelming majority of diagnoses of renal tumours can be reached by 
an experienced pair of eyes. However, when it cannot, as illustrated by 
the case of our patient, our method has proved to be diagnostically 
extremely powerful in terms of quantifying the maturity of the tumour 
(adult VS foetal) and in terms of phenotyping (i.e. Wilms like).  
 

 
 
 
 



 
Reviewer #5, expert in kidney cancer biology and genomics (Remarks to the Author): 
 
 

5.0 In this paper, the author analysed transcriptomic data from a 
large number of renal tumor samples with a focus on 
characterising the different cellular origin of childhood and 
adult tumors. They deconvoluted the contribution of different 
cell types toward the measured transcriptomic signal using 
single cell transcriptomic from the Human Cell Atlas with a 
new method. They show that this method performs better for 
this task than other deconvolution methods and they also 
conclude that childhood tumors are of fetal origin whereas 
adult tumors are of normal kidney cell origin.  
 
Overall, the study is highly interesting and the usefulness of 
the deconvolution method is clearly demonstrated for the data 
presented. The conclusion regarding the cell origin of tumors 
and dedifferentiation state are of high interest for the field. 
This method could benefit cancer studies in different contexts. 
Authors have responded well to all concerns raised by the 
previous reviewers 

 

5.1 In the manuscript, the authors conclude that the tumor cells of 
adult kidney tumors are not globally dedifferentiated. This 
conclusion is very important but is currently not described well 
in the main text. The term “dedifferentiation” can be 
interpreted in different ways. The concept is actually much 
better explained in the rebuttal, where the authors clearly 
describe the concept of dedifferentiation as “reversion of adult 
tumours to a foetal state at the whole transcriptome level”. It 

We agree, and thank the reviewer for pointing this out.  We have 
made it clear that what we are measuring here is a similarity of the 
transcriptome not for a handful of key marker genes, but a broad 
adoption of a developmental pattern.  Specifically, we have made the 
following changes to the manuscript: 
- Added sentence to section “Childhood tumors, but not adult 

tumors, exhibit a fetal transcriptome”: 



would be great if the authors could also mention this clearly in 
the main text of their manuscript.  

We define dedifferentiation to be the reversion of a mature cell to 
a fetal state, at the level of the whole transcriptome. 

- Modified discussion to reinforce our definition of 
dedifferentiation: 
At the same time, our analyses question the suggestion that adult, 
epithelial-derived kidney cancers revert to a fetal state at the 
whole transcriptome level (i.e., “dedifferentiate”). 
 

 
5.2 The authors shows interesting examples on how this approach 

can be used to generate diagnostic clues. While the results are 
certainly encouraging, only two examples are not enough to 
tell how accurate and generalizable the method may be for 
such use (only 2 patients). We would recommend changing the 
title of the section “Single cell signal provides diagnostic clues” 
to reflect this, and explain this further in the discussion. 

We thank the reviewer for bringing this to our attention.  Upon 
rereading this section, it is clear that we have not explained our 
approach in this section sufficiently well.  In this section, we first 
begin by taking all our data and asking how accurately can we 
identify the tumor of origin using only the results of cellular signal 
analysis.  The results of this analysis are shown in (Fig. 7A,B) and 
demonstrate that this approach can identify the tumor type of a 
sample with good sensitivity and specificity. 
 
In this revision, we provide further validation by showing the correct 
tumor type can be recovered applying the same approach to non-
primary Wilms tumors not included in our main analysis.  We have 
rewritten this section to make clear that it is this analysis that forms 
the basis for our claim that cellular signal analysis can provide 
diagnostic clues. 

An overarching finding of our study was that each tumor type 
possesses a particular pattern of cellular signals that were 
uniform in, and specific to, bulk transcriptomes from 
individual tumor types. Accordingly, cellular signal assessment 
of bulk transcriptomes may provide sensitive and specific 
diagnostic clues.   To test this proposition, we assessed how 
accurately the tumor type of each sample in our data could be 



determined based only on its cellular signals.  We found that 
the prevalence of the most common cellular signal for each 
type could be used to infer each bulk transcriptomes tumor 
type (Fig. 7A-B, S15).  As further validation of this approach 
we applied this approach to non-primary Wilms tumors 
(metastatic, secondary) that were excluded from our main 
analysis.  All were correctly identified as childhood tumors and 
had cellular signals consistent with Wilms tumor (Fig. S16). 
 

The two case studies examined in detail are the two samples in our 
cohort that have a high degree of ambiguity using standard clinical 
approach and where the additional information that cellular signal 
analysis can provide is of most interest.  That is, the two case studies 
simply provide a concrete demonstration of when this additional 
information can be clinically useful 
  

5.3 In the discussion, the authors state that they observe 
“Remarkably uniform cellular signals". It is not clear to which 
results exactly the authors refer to when making this 
statement. It would also help if the authors could give and 
discuss specific examples of such features from the data.  

Several of the diseases we study here show a large diversity in their 
clinical course (e.g. Wilms tumour).  Despite this, the dominant 
transcriptional signal they exhibit is basically the same across the 
entire cohort.  This points to the “transcriptional base” of a tumour 
type being essentially the same within a tumour type, suggesting that 
the clinically important differences within tumour type are driven by 
relatively small perturbations on this “remarkably uniform” 
background.  We have changed the text in the discussion to make 
this clearer: 

A further finding of our study was that within each category, 
the majority of tumors exhibited remarkably uniform cellular 
signals. That is, despite a high diversity in clinical outcome, 
tumors of the same type almost universally had the same 
dominant cellular signal (Fig. 7A-B).  This indicates that there 



are overarching transcriptional features, beyond individual 
gene markers, that unite tumor entities despite underlying 
intra- and inter- tumor genetic heterogeneity. 

 
5.4 Are there plans to make this new method to deconvolute 

signal contribution as a package? In its current state, it is not 
clear how other scientists may use this method with their own 
data. Furthermore, what are the requirements and limits of 
the method? For example, how many cells / samples are 
required to obtain accurate deconvolution? I think making this 
tool available will certainly be important for the field! 

We would be delighted to make our method available.  We had 
included the code as part of our submission, but as an extra 
convenience we have created a github page with the code, a basic 
example, and some documentation on how it should be used.  This 
can be found here 
https://github.com/constantAmateur/cellSignalAnalysis 

5.5 It would be useful to add titles to the plots of figure 7 E and G 
to indicate what they represent.  

Fixed.  Thank you. 

 
 
 



Reviewer #4 (Remarks to the Author): 

Looks good to me. Authors have addressed my concerns. 

Reviewer #5 (Remarks to the Author): 

I appreciate the changes the authors have made and do not have further comments.


