Online Repository

The Efficacy of Omalizumab Treatment in Chronic Spontaneous Urticaria is Associated with Basophil Phenotypes

Kirti J. Johal, MD^{1,2}, Kristin L. Chichester, MS¹, Eric T. Oliver, MD¹, Kelly C. Devine, RN, BSN¹, Anja P. Bieneman, BS¹, John T. Schroeder, PhD¹, Donald W. MacGlashan, Jr., MD, PhD¹, Sarbjit S. Saini, MD¹.

Corresponding Author:

Sarbjit S. Saini, MD; Johns Hopkins Asthma and Allergy Center 5501 Hopkins Bayview Circle, 2B.71B Baltimore, MD 21224 Phone: 410-550-2129

Fax; 410-550-2527 Email: ssaini@jhmi.edu

¹Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine

²Division of Allergy & Immunology, Department of Medicine, George Washington University School of Medicine and Health Sciences

Table E1

	Basopenic (B)	Non-Basopenic (NB)
Responder (R)	1	6
Non-Responder (NR)	7	3

Basopenic <8000 basophils /mL Non-responder < 10% histamine release in response to optimal dose of anti-IgE Chi-squared $p=0.004\,$

Supplemental Figure Legends:

Figure E1: Basophil counts (alcian blue-based) distribution for all subjects (n=18) at baseline.

Figure E2: Consort diagram of subject enrollment.

Figure E3. *In vitro* response kinetics for stimulation with FMLP during treatment with omalizumab. (A) Histamine release in response to 1 μM fMLP for the 3 groups (2-parameter categorization). (B) BAT CD63 response to 1 μM FMLP for the 3 groups. For both panels, gray line – CSU-R/NB average, Orange line – CSU-NR/NB average, Blue line – CSU-NR/B average.

Figure E4: *In vitro* basophil CD63 expression response to anti-IgE stimulation at the indicated day of study. (A) Responder/Non-basopenics (CSU-R/NB), (n=6). (B) Non-responder/Non-basopenics (CSU-NR/NB) (N=3). (C) Non-responder/basopenics (CSU-NR/B) (n=7). The colored lines represent each visit day.

Figure E5: Kinetics of the decrease in symptom scores vs. the kinetics of the decrease in basophil surface IgE. Three groups defined by the relationships; IgE $T_{1/2} \ll UAS T_{1/2}$, IgE $T_{1/2} \gg UAS T_{1/2}$, IgE $T_{1/2} \gg UAS T_{1/2}$. (A) The symptom change relative to baseline in these 3 groups and (B) kinetics of the basophil surface IgE changes relative to baseline in the same 3 groups as A. Arrows indicate 50% of measure.

Figure E6: Kinetics of basophil counts during treatment. Average counts grouped by 2-parameter categories. Black line (n=6)– CSU-R/NB average, Orange line (n=3) – CSU-NR/NB average, Blue line (n=7) – CSU-NR/B average, Green dashed line (n=16) – Average.

Figure E7: (A) Kinetics of pDC surface IgE, (B) total FceRI and (C) unoccupied FceRI during treatment for 5 subjects.

Table E1: Association between responder status (R, NR) and basopenic status (NB,B). Chi-squared analysis, p < 0.004.