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Supplementary Table 1. Count, recording time, waveform signal-to-noise ratio, and cue-evoked firing 

rate (post-cue epoch: 0-500 ms, averaged across all conditions) for the population of neurons from each 

region entering the classification analysis (Figure 2). Triplets reflect 25th/50th/75th percentiles across the 

population. 

 

  

region N (neurons) time (hours) waveform SNR firing rate (Hz) 

LPFC 359 3.2 3.3 3.6 5.3 7.7 11.1 0.7 2.2 5.7 
FEF 105 3.2 3.5 3.7 5.2 8.0 11.4 1.0 2.5 5.9 
Parietal (7a/b) 193 3.2 3.5 3.8 5.5 7.6 10.4 0.8 2.0 5.1 
V4 224 3.3 3.5 3.9 6.2 8.4 11.3 0.8 2.2 6.0 



Supplementary Discussion 1: Balancing between generalized and task-specific representations for the 

control of attention and selection 

In the main text, we show that a classifier trained to decode the location of selection from the activity of 

neurons in LPFC was able to generalize and decode the location of attention (and vice-versa; Fig. 2c, 

purple traces). These generalized representations may allow for behaviors learned in one domain (e.g., 

adding visible numbers) to be easily extended to a different domain (e.g., adding remembered 

numbers)1. 

However, it is important to note that we also found task-specific representations. In LPFC, the 

performance of the generalized classifier was not exactly the same as the selection classifier (Fig. 2c, 

blue traces; trained and tested within the selection condition alone). Similarly, we observed less 

generalization in FEF and no generalization in parietal or V4 (Fig. 2c). Previous work has suggested task-

specific representations could arise from ‘non-linear mixed selectivity’2. For example, in the current task, 

neurons with non-linear mixed selectivity would respond uniquely to the combination of the cued 

location (upper vs. lower) and task (selection vs. attention), which would lead to a classifier being unable 

to generalize across tasks. While such non-linear, task-specific representations may hinder 

generalization, they have the advantage of increasing the coding capacity of the network2. This allows 

associations to be learned for a specific stimulus, in a specific context. In contrast, generalized 

representations may emerge from linear mixed selective representations3, which have a lower coding 

capacity but allow learning to be generalized across contexts. Our results suggest the brain uses a 

combination of both generalized and specialized representations for selection and attention. This may 

allow the brain to balance the relative advantages (and disadvantages) of the two types of 

representations, generalizing learning when beneficial while also using task-specific representations to 

optimize behavior in a specific task. 

Finally, we want to note that our results are correlative, and future work is needed to causally establish 

the role of prefrontal cortex in selection and attention. Future work is also needed to test whether 

generalized task representations are seen when selecting stimuli/memories in other tasks.  



Supplementary Discussion 2: Memory information was distributed across prefrontal, parietal, and 

visual cortex 

As described in the main text, individual neurons in LPFC, FEF, parietal and V4 carried information about 

the color of the upper and lower stimuli (Extended Data Fig. 5a). On average across the population, all 

four regions carried significant information about the color of the stimuli during the stimulus 

presentation (Fig. 3, left panels). Color information was then maintained across this distributed network 

during the first memory delay (Fig. 3, middle panels, before selection).  

Previous work has argued for little working memory information in prefrontal cortex4 and visual cortex5 

of monkeys (but see6). The increased information observed in our task could reflect a difference in how 

memories are stored; recent theoretical work7 suggests active representations are particularly 

important when manipulating memories, such as in the retro task, while activity-silent mechanisms may 

suffice for more passive tasks. Consistent with this, there was less information about the color of the 

remembered stimulus on pro trials in comparison to retro trials (Extended Data Fig. 6).  

 

  



Supplementary Discussion 3: Estimating and comparing the transformation of the selected and 

unselected items 

As described in the main text, selection transformed the representation of the selected item into a new 

subspace where the neural representations of the lower and upper items were aligned. This could 

facilitate read-out from a common subspace within LPFC in the post-cue period, allowing color to be 

decoded, regardless of the location of the item. In addition, the neural representation of the unselected 

item was also transformed, such that, in the post-cue period, it shifted into a new ‘unselected’ subspace 

that was orthogonal to the ‘selected’ subspace (Extended Data Fig. 9). 

Given that both items were transformed, we were interested in understanding how the transformation 

of the selected item related to the unselected item. One hypothesis is that selection is a ‘united’ process 

that applies a single affine transformation to both the selected and unselected items, shifting them from 

their pre-cue representation to post-cue representation. Alternatively, the selection process could 

transform the selected and unselected memories independently, by applying a unique transform to each 

item (e.g., serially over time) or by applying a non-affine transformation. Finally, selection may involve a 

combination of both a united transform and independent transformations. 

To understand if selection transformed the selected and unselected item in the same way, we estimated 

the transformation matrix that mapped a pre-cue representation onto its post-cue state (see methods). 

The transformation within a condition was stable: applying the estimated transformation to withheld 

pre-cue data from the same condition, accurately predicted the post-cue response (measured as a low 

reconstruction error between the predicted and observed post-cue representations, ED Fig. 9e, first 

column).  

To discriminate the unified and independent hypotheses, we applied the estimated transform from the 

selected item (e.g., selected upper) to held-out data from the associated unselected item in the same 

trial condition (e.g., non-selected lower). As seen in Extended Data Figure 9e (second column), the 

transformation of the selected and unselected items was more similar than expected by chance (as 

indicated by a lower reconstruction error than in randomly permuted data). This suggests there is a 

common component that is transforming both the selected and unselected items in memory. However, 

this reconstruction error is also greater than what is seen within a condition (first column), suggesting 

that the transformation may also contain item-specific components (or may not be affine). 

An alternative explanation for these results is that the united part of the transformation reflects the 

shift of representations from a general ‘pre-cue’ subspace (with both upper and lower items) to a 

general ‘post-cue’ subspace (with both the selected and unselected items). If this were true, then all 

transformations from pre- to post-cue should have low reconstruction error. To test this, we measured 

whether the transformation of an item at a specific location was the same regardless of whether it was 

selected or unselected (e.g., selected upper vs. non-selected upper). As seen in Extended Data Figure 9e 

(third column), the reconstruction error was not significantly different than chance (if anything, it was 

slightly greater than chance).  Similarly, the transformation of an item did not generalize across both 

selection-condition and item (e.g., selected upper vs. selected lower or non-selected upper vs. non-

selected lower). Again, the reconstruction error was not significantly different than chance (ED Fig. 9e, 

fourth column).  Together these results suggest the common component of the transformation was not 

simply due to a generic change in memory representations from a pre-cue subspace to a post-cue 

subspace.  Rather, selection seems to act, in part, on both the selected and unselected memory 



representations, transforming them from independent, item-specific, subspaces to an aligned ‘template’ 

subspace, facilitating visual search and the behavioral report. 

 

  



Supplementary Discussion 4: Cognitive control through dynamic transformations 

As detailed in the main text, and as previously theorized8, we found selection transformed memory 

information in a manner consistent with task demands. Early in the trial, working memory 

representations were held in item-specific ‘upper’ and ‘lower’ spaces, likely to facilitate the selection of 

a memory by its associated location.  Then, later in the trial, the selected memory shifted into a shared 

‘template’ space, which could be used to guide responses by acting as a template for searching the color 

wheel. Previous work has found stable subspaces can maintain working memory information despite 

dynamics in neural activity9; our work suggests multiple such subspaces can exist and that information 

can be transformed between subspaces in a task-dependent manner8.  

Importantly, all three spaces (upper, lower, and template) were approximately orthogonal to one 

another, which could reduce interference between simultaneously maintained memory representations 

(i.e. upper and lower) and limit interactions between memory representations and search-related 

representations.  

The dynamic transformation of the selected memory from the upper/lower space to the shared 

template space is reminiscent of the rotation of representations from a passive ‘null’ space to an active 

‘response’ space in motor planning and attention10,11. Our results are consistent with this work and 

extend it to show multiple representational spaces can converge onto a single common space (i.e., both 

lower and upper transform into the template space). Furthermore, we find these dynamics are under 

cognitive control and depend on task demands, reflected in the fact that the transformation happens 

after selection during the retro task but immediately in the pro (attention) task. 

More broadly, dynamic transformations could be a mechanism of cognitive control. Cognitive control is 

thought to rely on task-specific routing of information, either due to gain modulation12 or changes in 

synchrony13,14.  Our results suggest an additional mechanism – cognitive control dynamically transforms 

information in a task-specific manner, allowing information to selectively engage with task-relevant 

circuits15.  For example, in our task, a downstream ‘visual search’ circuit could use color information 

from the common template space to guide visual search. Early in the trial, this circuit is not engaged, as 

memories are stored in the orthogonal upper/lower spaces and so colors are not differentiable by the 

visual search circuit (Fig. 4g, left; i.e., they are in the circuits null space). Later, selection transforms 

memory information into the shared template space (Fig. 4g, right) and the visual search circuit can be 

engaged. In this way, dynamically transforming representations may allow the brain to control what and 

when cognitive computations are engaged. 
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