
S.I Materials and methods (continued)
S.I.A Reflectance calibration and optical properties
SFDI reflectance images were obtained by phase-stepping a si-
nusoidal pattern onto the object plane, namely Si(x, y, fx, φi) =
A0 cos (2πfxx+ φi) , with φ0 = 0, φ1 = 2π/3, and φ2 = 4π/3 radians.
The modulation transfer function (MTF) of the tissue is captured by the
AC component of illumination pattern at a specific optical wavelength and
spatial frequency, commonly termed asMAC(x, y, fx, λ), is obtained by
combining the three phases at a single spatial frequency using a square-
law detector

MAC(x, y, fx, λ) =

√
2

3

√
(I1 − I2)2 + (I1 − I3)2 + (I2 − I3)2, (1)

where Ii = I(Si(x, y, fx, φi), λ) is the optical intensity image captured
when the projector is displaying Si(x, y, fx, φi) on the sample. This pro-
cess is commonly referred to as demodulation. From these MTF images,
the calibrated reflectance functionRd(fx, λ) of a sample can be obtained
by eliminating the MTF of the imaging system with a reference material
of known absorption and scattering properties, which was imaged under
identical exposure and lighting conditions; this measurement is referred
to asMAC,ref . Then, the calibrated reflectance of a sample at a specific
wavelength and spatial frequency, Rd(x, y, fx, λ) can be obtained via

Rd(x, y, fx, λ) = Rd,ref (x, y, fx, λ)
MAC(x, y, fx, λ)

MAC,ref (x, y, fx, λ)
, (2)

and here Rd,ref is a theoretical model of the reference material.

S.I.A.1 Diffusion approximation of the RTE

For a single pixel, the diffusion approximation of the RTE for air-turbid
media interfaces is

Rd(fx;µ
′
s, µa) =

3Aa′(
µ′
eff

µtr
+ 1

)(
µ′
eff

µtr
+ 3A

) , (3)

where A is a proportionality constant that satisfies

A =
1

2

(
1−Reff
1 +Reff

)
, (4)

Reff ≈ 0.0636n+ 0.668 +
0.710

n
−

1.440

n2
, (5)

a′ = µ′s/µtr is the reduced albedo, µtr = µa + µ′s is the transport co-
efficient, and µ′eff = (µ2eff + k2x)

1/2 with µeff = (3µaµtr)
1/2 is the

modified effective transport coefficient, which is a function of both the
spatial frequency of the projected pattern, fx, and the optical wavelength,
λ. Finally, n is the refractive index of the sample. Equation (3) assumes
a semi-infinite air-turbid medium geometry with partial-current boundary
conditions. Quantification requires finding a µ′s and µa pair that provides
a solution to the nonlinear least-squares fit problem that relatesmeasured
reflectance Rd(fx, λ) and Equation (3). Since this method is computa-
tionally expensive, additional procedures exist to increase curve fitting
speed, namely LUT-based approaches [S1] and feedforward neural net-
works [S2, S3]. The latter option is optimal both in terms of precision and
speed.

S.I.A.2 Sub-diffuse regime model

For spatial frequencies above fx � 0.33µtr (i.e., ∼ 0.5 mm−1 in breast
tissue [S4]), the actual light transport specified by the RTE differs from
the diffusion approximation by an order of magnitude, rendering Equa-
tion (3) inaccurate. Instead, a sub-diffuse light transport model is used,
which assumes fewer scattering events and insensitivity to absorption.
The detected signal is a function of the direction of individual backscat-
tering events, revealing information about surface tissue microstructure
[S5, S6]. This backscattered reflectance model, Rd,sd, also assumes a
semi-infinite air-turbid medium and is given by

Rd,sd(fx;µ
′
s, γ) = η

(
1 +

(
ζ4γ
−2
)
v−ζ3γ

)( vζ2γ

ζ1γ2 + vζ2γ

)
, (6)

where v = µ′sf
−1
x , and η, ζ1, . . . , ζ4 are fitted parameters semi-

empirically via Monte Carlo simulations of the medium. Specifically,
ζ1 = 68.6± 3.3, ζ2 = 0.98± 0.01, ζ3 = 0.61± 0.01, ζ4 = 16.6± 0.94, and
η is set to the insertion losses of the imaging system (for wide-field imag-
ing, η = 1). Finally, the phase function parameter, γ = (1− g2)/(1− g1),
characterizes the relative probability of large backscattering events in the
tissue, where g1 and g2 are the first and second Legendre moments of
the scattering phase function p(θ) of the tissue under analysis [S6].

S.I.B Loss functions
The following loss functions are defined at different stages across the
graph shown in Fig. 3(a)–(d) in the main document. We will refer to
these expressions as loss functions, cost functions or error functions in-
terchangeably throughout the article.

S.I.B.1 Primary autoencoder reconstruction loss

This network uses a combination of the L2 loss and an L1 feature match-
ing loss [S7 , S8] at the discriminator:

L(r, r̂) = ‖r − r̂‖2 + α

Nconv∑
k=1

|ψk(r)− ψk(r̂)|, (7)

where ψk(r) is all the feature maps at the k-th convolutional layer, for a
total of Nconv layers in the discriminator, Daux(r). This term allows the
network to learn textures eluded by the L2 distance. In all experiments,
α = 0.05, replicating previous work [S9].

S.I.B.2 Bottleneck constraints

Variational autoencoders apply an additional constraint to the bottle-
neck by comparing z’s distribution fZ(z|x) with a known prior distribution
fZ,target(z). For these experiments, two well-known expressions were
tested: the conventional VAE loss [S10, S11]:

LVAE(z, fZ,target(z)) = −β · DKL
(
q(z|x)‖fZ,target(z)

)
, (8)

with β ∈ R+ a constant for weighing the relevance of latent space Gaus-
sianity versus reconstruction quality, DKL(p‖q) the Kullback-Leibler di-
vergence between distributions p and q, and the more recent Maximum
Mean Discrepancy (MMD) loss [S12]:

LMMD(z, fZ,target(z)) = EfZ,target(z),fZ,target(z
′)
[
k(z, z′)

]
+ EfZ(z),fZ(z′)

[
k(z, z′)

]
− 2EfZ(z),fZ,target(z

′)
[
k(z, z′)

]
. (9)

In this expression, k(., .) is a Gaussian kernel function. Zhao et al.’s im-
plementation for TensorFlow 1.14 was used in this manuscript (assuming
α = 1.0 in their decomposition of the ELBO objective, thereby prioritiz-
ing information preservation) [S12]. Autoencoders that use Equation 8
are usually referred to as β-Variational Autoencoders, or β-VAEs. Those
using Equation 9 are defined as InfoVAEs or MMD-VAEs. The target dis-
tribution for both models is the standard normal Gaussian fZ,target(z) =
N (0, I).

S.I.B.3 Classifier

For classification, ŷ will be C(z)’s prediction to datapoint z, and y will
be its actual label. In that case, the conventional multiclass categorical
cross-entropy loss will be used, as the output of the network will be a
softmax layer representing predicted probabilities:

Lcce(ŷ, y) = −
n∑
i=1

yi log (ŷi). (10)

S.I.B.4 Nonlinear regressor

The OP estimation uses the Mean Squared Error on the OP vector
µ ∈ R3, namely LMSE(µ, µ̂) = ‖µ− µ̂‖2, where µ̂ =M(rgen).

S.I.B.5 Least-Squares GAN

Each individual GAN uses the Least-Squares GAN losses for the gen-
erator, LG, and the discriminators, LD1

, . . . ,LDNdisc
,, respectively [S13,

S14]:

LG(zgen) =

Ndisc∑
k=1

(Dk(zgen)− 1)2, (11)

LDk
(zgen) = Dk(zgen)

2 + (Dk(zreal)− 1)2 . (12)

S.I.C Other technical considerations
Additional technical decisions were made to ensure that the networks
operated adequately. Consider the following:

S.I.C.1 Primary autoencoder

The primary autoencoder is a fully-skip-connected, convolutional MMD-
VAE with an auxilliary discriminator. Additionally, the network includes
small fully-connected layers to connect feature maps directly to the MLP
elements of encoder and decoder, which we show speeds up learning.
These layers substitute typical global averaging and/or flatten layers typ-
ical of standard architectures. An example is depicted in Fig. S1, with
its tabular representation in Table 1.(a). Actual network dimensions are
provided in Table 1.(b). Bottleneck size is nz = 256. The decoder
is comprised of consecutive, linearly-increasing xy-wise resizing of all
previous layers, followed by a convolution operation, similarly to Grad-
ually Upscaling Networks for image super-resolution [S20]. The model
is trained with the reconstruction loss function described in Equation 7,
and the bottleneck constraints from Equations 8 and 9. The rationale
behind these choices is explained experimentally in Section III.A in the
main manuscript.
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Figure S1: Example diagram of the final primary autoencoder architecture, as a result of combining current scientific literature for skip-connection
multilayer perceptron VAEs, convolutional DenseNets, CoordConv layers, and all-convolutional nets [S10, S11, S12, S15, S16, S17 , S18]. These
figures represent a side view of the network, similar to schematics used to depict U-Nets [S19]. The skip-connected convolutional part of the en-
coder (a) is connected to a skip-connected MLP network (b) by concatenating fully connected projections of each individual generated feature map at
maximum resolution. A two-layer MLP encoder (c) is then used to generate bottleneck layer z (d), followed by an MLP decoder and a convolutional,
skip-connected Gradually Upsampling Network (GUN) [S20]. Small fully-connected feature maps (f) are included to the concatenated input stack
of each convolutional layer, helping each new upscaling and convolutional layers in feature generation of the final patch (g) [S17 ]. The tabulated
version of this network is provided in Table 1.(a).

Table 1: Network architectures

(a) Fig. S1, encoder (↓)* (b) Primary AE and Auxilliary
Discriminator (↓)*

(c) Secondary AE (↓) (d) Classifier (↓)

?× 14× 14× 16 Input ?× 31× 31× 16 Input ?× 256 Input ?× 256 Input (or ?× 49)
1× 20 ELU, f.s. 3× 3 3× 120 ELU, f.s. 3× 3 8× 500 ELU, dense, s.c. 4× 400 ELU, dense, s.c.
1× 20 ELU, f.s. 3× 3, stride=2 1× 120 ELU, f.s. 3× 3, stride=2 ?× 2 Bottleneck, linear ?× ncls Output, softmax
1× 20 ELU, f.s. 3× 3 3× 120 ELU, f.s. 3× 3 8× 500 ELU, dense, s.c. (e) OP estimator (↓)
1× 20 ELU, f.s. 3× 3, stride=2 1× 120 ELU, f.s. 3× 3, stride=2 ?× 256 Output, linear ?× 16 Input
1× 20 ELU, f.s. 3× 3 3× 120 ELU, f.s. 3× 3 5× 300 ELU, dense, s.c.
Map to ? × 40 ELU per feature
map

1× 120 ELU, f.s. 3× 3, stride=2 ?× 3 Output, sigmoidal (**)

Concatenation, 200 units total 3× 120 ELU, f.s. 3× 3 (f) LS-GAN Generator (↓) (g) LS-GAN Discriminator(↓)
2× 200 ELU, dense, s.c. Map to ? × 150 ELU per feature

map
?× 100 Input noise, ∼ N (0, 1) ?× 256 Input

?× 10 Bottleneck, linear Concatenation, 2250 units total 5× 300 ELU, dense, s.c. 5× 300 ELU, dense, s.c.
3× 1024 ELU, dense, s.c. ?× 256 Output, linear ?× 1 Output, linear
?× 256 Bottleneck, linear

(*) Only the input half of the primary autoencoder is provided in this table. The decoder is symmetrically identical in terms of units per layer and activations. However, upscaling
is linearly increased from 4× 4 to the output width and height at every layer. Tensor upscaling uses tf.image.resize_images. Where the decoder of Fig. S1 uses 3 auxiliary
input feature maps per new input convolutional layer, (b) uses 10 auxiliary feature maps.
(**) The output sigmoidal layers in the OP estimator are then renormalized to the allowed ranges specified in Section II.D of the manuscript. This ensures no negative OP values
and detectable saturation beyond tolerable numbers.
Notation: f.s. stands for filter size (per unit). Layer notation is c × n, c := number of identical consecutive layers, n := number of hidden neurons in each layer. Finally, stride
indicates stride steps, if there are any. Input/output tensor shape notation as in TensorFlow: (batch, height, width, channels). The token ’?’ denotes an unknown input
batch size.

S.I.C.2 2D visualization autoencoder

The secondary autoencoder is a skip-connected, multi-layer perceptron
MMD-VAE. Similarly to the primary autoencoder, all layers are connected
to each other, with the exception of the bottleneck (nz′ = 2). No skip-
connections are allowed to cross the bottleneck. This type of structure
is known to allow the encoder and decoder layers to adapt to specific
problems, improving reconstruction fidelity [S18]. The number of layers
and units per layer is left in Table 1.(c). The model is trained to minimize
1
2
‖z − ẑ‖2 and Equation 9.

S.I.C.3 Baseline autoencoder

To prove whether or not textural information improves separability among
tissue categories, an additional autoencoder was prepared. Its architec-
ture is identical to the secondary autoencoder of Table 1.(c), but with a
16-unit input (4 frequencies, 4 wavelengths). Intuitively, it is expected
that tissue morphology (i.e. SFDI-enhanced textural contrast) will im-
prove overall classification in more ambiguous cases where optical re-
sponses will be similar (this has been tested in practice with more tra-
ditional machine learning methods [S21]). To prove this notion in deep
learning models, the aforementioned autoencoder will serve as a control
baseline for separability without taking textural information into account.

S.I.C.4 Classifier

An example classifier is provided separately as a tentative study of clas-
sification accuracy, and it consists of a skip-connected MLP. Presented
in Table 1.(d), it feeds from the primary autoencoder bottleneck z, and
provides a classification based on a set of specified categories ŷ. The
model is trained with a categorical cross-entropy loss (Equation 10).

S.I.C.5 Optical properties estimator

The estimator is another MLP with skip connections. This last network
connects reflectance data with the optical properties model: fOP : r → µ̂,
where µ = (µ′s, µa, γ). In these experiments we only evaluate pixel-wise
OPs.

S.I.C.6 Skip connections

Generally, all the networks use skip connections, which are known to
smooth out the loss function landscape [S22] and avoid Fisher informa-
tion losses between layers [S18]. Skip connections between layers were
tested in the primary autoencoder, and the same decision was replicated
in the rest of the networks. As demonstrated in Section III.A, skip con-
nections provide an improved degree of generalization and faster con-
vergence than networks without them [S18].
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Figure S2: Close-up detail for patch reconstructions for different values of nz . This plot is identical to Figure 7.(c) in the Main Document but with
more patches and up to nz = 80 dimensions. Patches are selected randomly and are not cherry-picked. Best viewed in digital format.

S.I.C.7 Additional fully-connected layers

The primary autoencoder connects the middle MLP section of the net-
work to convolutional elements via fully-connected layers. These con-
nections can be seen in Fig. S1 linking feature maps in the encoder to
the first fully connected layer. They are also visible in the decoder, as
small feature maps that are concatenated to the input of each additional
convolutional layer.

S.I.C.8 Dropout regularization

Dropout is a well-known method for minimizing overfitting in neural net-
works [S23]. Generally, dropout is used with different drop values de-
pending on the network and simulation, as specified in Table III in the
main document.

S.I.C.9 Activation functions

The ELU activation function was employed in all hidden units, given
its faster convergence and approximate batch normalization properties,
while avoiding ReLU death and gradient vanishing across layers [S24].
ELU units are inhibited or signify the presence of some feature, with an
improved resilience to noise. Classifier networks are provided with an
output softmax layer, and all other output layers (such as the bottlenecks
and outputs in the AEs, the optical estimator network, and LS-GANs)
are linear units. The auxilliary discriminator Daux(r) uses a different ac-
tivation function –leaky ReLUs—as a way to hinder its learning speed
while still avoiding ReLU death (convergence was not achieved other-
wise). The OP estimator also uses leaky ReLUs for a slower, more stable
convergence.

S.I.C.10 Hardware used

A total of 5 machines were employed. The first three were Docker con-
tainers running in parallel, each with a 64-core Intel Xel Gold 6230 CPU
and an nVidia Tesla v100 GPU (32 GB of VRAM), with up to 384 GB of
shared RAM and sufficient storage, which were used for large-network
training, namely Sections III.A, III.D and III.E in the main article. The
other two were equivalent desktop computers, one with an Intel Core i9-
9700K CPU and an nVidia RTX 2080Ti GPU, with 64 GB of RAM, and
a second computer with an AMD Ryzen 5 3600 CPU, an nVidia 2080
Super GPU, and 32 GB of RAM. The latter were used on inference for all
Sections and training the OP estimator, which required less compute.
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