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Supplementary Note 1: Defining a similarity measure
A sequence-based similarity quantifies the cost of transforming a string x into a string y when the two strings are viewed as
sequences of characters. String transformation is defined by three elementary operations: 1) deleting a character, 2) inserting a
character and 3) substituting one character with another1. The edit distance function d(x,y) aims at capturing the mistakes
of human editing, such as inserting extra characters or swapping any two characters. To merge only strings that are either
misspelled or different by number (i.e. singular in place of plural and viceversa) we have set the threshold for the maximum
number of allowed differences between any two strings to 2.

Supplementary Note 2: Projecting and validating bipartite networks
As anticipated in the main text, the idea behind a filtered projection is that of linking any two nodes belonging to the same layer
if found to be sufficiently similar. The steps to implement such a procedure are described below.

Quantifying nodes similarity. First, a measure quantifying the similarity between nodes is needed. Given any two nodes
(say, α and β ) we follow2 and count the total number of common neighbors V ∗

αβ
, i.e.

V ∗
αβ

=
N>

∑
j=1

mα jmβ j =
N>

∑
j=1

V j
αβ

(1)

the value of V j
αβ

being 1 if nodes α and β share the node i as a common neighbor and 0 otherwise. Notice that the non-filtered
projection of a bipartite network corresponds to a monopartite network (say, A) whose generic entry reads aαβ = Θ[V ∗

αβ
] (i.e. it

is an edge in correspondence of any non-zero value of V ∗
αβ

).

Quantifying the statistical significance of nodes similarity. The statistical significance of any two nodes similarity is
quantified with respect to a bunch of null models which will be now derived from first principles. To this aim, let us consider
the maximization of Shannon entropy

S =− ∑
G∈G

P(G) lnP(G) (2)

over the set of all, possible, bipartite graphs with, respectively, N> nodes on one layer (say, users) and N⊥ nodes on the other
(say, hashtags). Since entropy-maximization will be carried out in a constrained framework, let us discuss each set of constraints
separately.

Bipartite Configuration Model. The Bipartite Configuration Model (BiCM) represents the bipartite variant of the Con-
figuration Model (CM). Upon introducing the Lagrangian multipliers θθθ and ηηη to enforce the proper constraints (i.e. the
ensemble average of the degrees of users and hashtags, respectively h∗i = ∑α miα , ∀ i and k∗α = ∑i miα , ∀α) and ψ to enforce
the normalization of the probability, the recipe prescribes to maximize the function

L = S−ψ

[
1− ∑

G∈G
P(G)

]
−

N>

∑
i=1

θi[h∗i −〈hi〉]−
N⊥

∑
α=1

ηα [k∗α −〈kα〉] (3)



(with respect to P(G). This leads to

P(G|θθθ ,ηηη) =
e−H(G)

Z
=

N>

∏
i=1

N⊥

∏
α=1

(
xiyα

1+ xiyα

)miα
(

1
1+ xiyα

)1−miα

=
N>

∏
i=1

N⊥

∏
α=1

pmiα
iα (1− piα)

1−miα (4)

where xi ≡ e−θi and yα ≡ e−ηα . The quantity piα = xiyα

1+xiyα
can be interpreted as the probability that a link connecting nodes i

and α is there; the matrix of probability coefficients {piα} induces the expected values 〈hi〉= ∑α piα , ∀ i and 〈kα〉= ∑i miα , ∀α

and can be numerically determined by solving the set of N>+N⊥ equations 〈hi〉= h∗i , ∀ i and 〈kα〉= k∗α , ∀α .
According to the BiCM, the presence of each V j

αβ
can be described as the outcome of a Bernoulli trial:

fBer(V
j

αβ
= 1) = pα j pβ j, (5)

fBer(V
j

αβ
= 0) = 1− pα j pβ j. (6)

The independence of links implies that each Vαβ is the sum of independent Bernoulli trials, each one characterized by
a different probability. The behavior of such a random variable is described by a Probability Mass Function (PMF) called
Poisson-Binomial.

Bipartite Partial Configuration Model. The BiCM constrains the degrees of both the users and the hashtags. Such a model
can be ‘relaxed’ by limiting ourselves to constrain the degrees of the nodes belonging to the layer of interest - in this case, the
degrees of the hashtags. Upon ‘switching off’ the user-specific constraints, one end up with a simplified version of the BiCM,

characterized by a generic probability coefficient reading piα =
h∗α
N>

, in turn leading to the expression fBer(V
j

αβ
= 1) =

h∗α h∗
β

N2
>

.

The evidence that the latter expression does not depend on j simplifies the description of the random variable Vαβ , now obeying
a PMF called Binomial, i.e.

fBiPCM(Vαβ = n) =
(

N>
n

)(h∗α h∗
β

N2
>

)n(
1−

h∗α h∗
β

N2
>

)N>−n

. (7)

Bipartite Random Graph Model. The BiRG (Bipartite Random Graph) model is the bipartite variant of the traditional
Random Graph Model. As for its monopartite counterpart, the probability that any two nodes are linked is equal for all
the nodes and reads piα = N>N⊥

L ≡ pBiRG (where L is the empirical number of ‘bipartite’ edges). In this case, we have
fBer(V

j
αβ

= 1) = p2
BiRG and the PMF describing the behavior of Vαβ is a Binomial, i.e.

fBiRG(Vαβ = n) =
(

N>
n

)
(p2

BiRG)
n(1− p2

BiRG)
N>−n. (8)

Validating the monopartite projection. The statistical significance of the similarity of nodes α and β , thus, amounts at
computing a p-value on one of the aforementioned probability distributions, i.e. the probability of observing a number of
V-motifs greater than, or equal to, the observed one:

p-value(V ∗
αβ

) = ∑
Vαβ≥V ∗

αβ

f (Vαβ ). (9)

After this procedure is repeated for each pair of nodes, an N⊥×N⊥ matrix of p-values is obtained. The choice of which
p-values to retain has to undergo a validation procedure for testing multiple hypotheses at the same time: here, the False
Discovery Rate (FDR) procedure is used. The m p-values (in our case, m = N⊥(N⊥−1)/2) are, first, sorted in increasing order,
p-value1 ≤ . . .≤p-valuem and, then, the largest integer î satisfying the condition

p-valueî ≤
ît
m

(10)

(where t represents the single-test significance level - in our case, set to 0.05) is individuated. All p-values that are less than,
or equal to, p-valueî are kept, i.e. all node pairs corresponding to those p-values will be linked in the resulting monopartite
projection.
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Supplementary Note 3: Analysing a network mesoscale structure
Community detection: the Louvain algorithm
After the daily monopartite user networks have been obtained, the Louvain algorithm3 has been run to detect the presence of
communities. This algorithm works by searching for the partition attaining the maximum value of the modularity function Q,
i.e.

Q =
1

2L ∑
i, j

[
ai j−

kik j

2L

]
δci,c j (11)

a score function measuring the optimality of a given partition by comparing the empirical pattern of interconnections with
the one predicted by a properly-defined benchmark model. In the expression above, ai j is the generic entry of the network
adjacency matrix A, the factor kik j

2L is the probability that nodes i and j establish a connection according to the Chung-Lu
model, ccc is the N-dimensional vector encoding the information carried by a given partition (the i-th component, ci, denotes
the module to which node i is assigned) and the Kronecker delta δci,c j ensures that only the nodes within the same modules
provide a positive contribution to the sum. The normalization factor 2L guarantees that− 1

4 ≤Q(ccc)≤ 1. Moreover, a reshuffling
procedure has been applied to overcome the dependence of the original algorithm on the order of the nodes taken as input.

Core-periphery detection
Core-periphery detection can be carried out upon adopting the method proposed in4 and prescribing to search for the network
partition minimizing the quantity called bimodular surprise, i.e.

S‖ = ∑
i≥l∗•

∑
j≥l∗◦

(V•
i

)(V◦
j

)(V−(V•+V◦)
L−(i+ j)

)(V
L

) ; (12)

as anticipated in the main text, L is the total number of links, while V is the total number of possible links, i.e. V = N(N−1)
2 .

The quantities marked with • (◦) refer to the corresponding core (periphery) quantities, i.e. V• is the total number of possible
core links, V◦ is the total number of possible periphery links, l∗• is the number of observed links within the core and l∗◦ is the
number of observed links within the periphery.

From a technical point of view, S‖ is the p-value of a multivariate hypergeometric distribution, describing the probability of
i+ j successes in L draws (without replacement), from a finite population of size V that contains exactly V• objects with a first
specific feature and V◦ objects with a second specific feature, wherein each draw is either a ‘success’ or a ‘failure’: analogously
to the univariate case, i+ j ∈ [l∗• + l∗◦ ,min{L,V•+V◦}]. The method outputs the most statistically significant core-periphery
structure compatible with the network under analysis.

Supplementary Note 4: Computing the polarization of non-verified users
Let Cc, with c = 1,2,3, indicate the set of (both verified and non-verified) users belonging to community c and Nα , with
α = 1,2,3 the set of neighbours of verified users belonging to the community c = α . A non-verified user polarization is defined
as

ρα = max
c
{Iαc} (13)

where

Iαc =
|Cc∩Nα |
|Nα |

. (14)

As it has been shown in5, the polarization index reveals how unbalanced is the distribution of interactions between non-
verified users and verified users: non-verified accounts basically focus their retweeting activity on the tweets of verified users
within the same community, thus providing a clear indication of the community of which a non-verified user is likely to be a
member.
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