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SUPPLEMENTARY NOTE 1. DETAILS OF CCSD(T) COMPUTATIONS

Definitions:

• Interaction energy: according to the Methods Section of the main text, the difference of the complex’s energy
consisting of all molecules and of the two subsystem energies, using unrelaxed structures for the latter. Notation:

E
LNO−CCSD(T)
Y [aug-cc-pVXZ], where Y refers to the level of local approximations (Normal, Tight, or veryTight)

and X labels the cardinal number of the basis set.

• counterpoise (CP) corrected interaction energy: the energy of the subsystems are evaluated for the interaction
energy expression using all single-particle basis functions of the complete complex including basis functions
residing on the atomic positions of the other subsystem.

• local error bar: difference of the Tight and very Tight LNO-CCSD(T) results evaluated with the largest possible
basis set.

• basis set incompleteness (BSI) error bar: maximum of two BSI error indicators, which are the difference of the
CP corrected and uncorrected LNO-CCSD(T)/CBS(Q,5) interaction energies, and the difference of CP corrected
LNO-CCSD(T)/CBS(T,Q) and LNO-CCSD(T)/CBS(Q,5) interaction energies.

A. Convergence of local approximations

The LNO-CCSD(T) energy expression reformulates the CCSD(T) energy in terms of localized molecular orbitals
(LMOs, i′, j′) [1–3]:

ELNO−CCSD(T) =
∑
i′

δECCSD(T)
i′ + ∆EMP2

i′ +
1

2

distant∑
j′

δEi′j′

 . (1)

The correlation energy contribution of distant LMO pairs is obtained at the level of approximate MP2 [3, 4] (third
term), while all remaining LMO-pairs contribute to the CCSD(T) level treatment (first term). For the latter, first,
local natural orbitals (LNOs) are constructed individually for each LMO at the MP2 level using a large domain of

atomic and correlating (virtual) orbitals surrounding the LMO. The δE
CCSD(T)
i′ contribution is then computed in this

compressed LNO orbital space, while the second term of Eq. (1) represents a correction for the truncation of the
LNO space at the MP2 level of theory.

The convergence of all approximations in LNO-CCSD(T) can be assessed via the use of pre-defined threshold sets,
which provide systematic improvement simultaneously for all approximations of the LNO scheme [1–7]. In this series of
threshold sets (Normal, Tight, veryTight), the accuracy determining cutoff parameters are tightened in an exponential
manner [7]. For instance, the veryTight set collects an order of magnitude tighter truncation thresholds than those
of the Normal set, which is the default choice. The convergence behavior of the LNO-CCSD(T) interaction energies
separates the studied complexes (see Fig. 2 of manuscript) into two groups. For GGG, PHE, CBH, and GCGC we
observe rapid convergence toward the corresponding canonical CCSD(T) interaction energy as indicated, e.g. by the
local error estimates collected in Supplementary Table 1. The excellent convergence is apparent as the differences
of the Tight and veryTight interaction energies are all in the 0.1-0.3 kcal mol−1 range for these four complexes.
This uncertainty range is highly satisfactory for the local approximations considering that the estimated basis set
incompleteness (BSI) errors for LNO-CCSD(T) are also comparable.
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Supplementary Table 1: Best converged [Tight–veryTight extrapolated LNO-CCSD(T)/CBS(Q,5) based] CCSD(T)
interaction energies (IEs) and corresponding error estimates with full, half, and no CP correction. Our best estimates
are highlighted in bold and are used throughout the manuscript.

System: GGG CBH GCGC C3A C2C2PD PHE C3GC C60@[6]CPPA
IE, no CP -1.98 -10.93 -13.38 -16.79 -20.36 -25.34 -28.67 -41.60
IE, CP -2.20 -11.10 -13.80 -16.28 -20.84 -25.38 -28.73 -41.89
IE, half CP -2.09 -11.01 -13.59 -16.53 -20.60 -25.36 -28.70 -41.74
Local error 0.09 0.10 0.16 0.42 0.38 0.07 0.65 1.10
BSI error 0.11 0.06 0.22 0.24 0.24 0.12 0.19 0.36
∆BSI error 0.10 0.17 0.25
Total error 0.20 0.15 0.39 0.75 0.62 0.18 1.01 1.71

Consequently, we perform an even more thorough analysis of the local errors for the remaining four complexes,
C2C2PD, C3A, C3GC, and C60@[6]CPPA, where the local error estimate of the LNO-CCSD(T) interaction energies
is larger than 0.3 kcal mol−1. The convergence patter with Normal, Tight, and veryTight settings of the C3A and
C3GC interaction energies is shown on the panel b) of Fig. 4 of the main text. The monitored convergence is monotonic
and the remaining local error is about halved in each step, as observed for multiple systems previously [7] as well
for the above four complexes. Additionally, the Normal–Tight and the Tight–veryTight based CCSD(T) estimates
(data points with error bars on panel b) of Fig. 4 of the main text) agree closely, and the Tight–veryTight error
bars are enveloped by the Normal–Tight ones. The same trends can be observed in Fig. 1 for the coronene dimer,
where LNO-CCSD(T) interaction energies are collected with all investigated basis sets and all three LNO threshold
combinations. Again, the convergence patterns with the improving local approximations are parallel for all basis sets,
the Normal–Tight and Tight–veryTight estimates agree within 0.5 kcal mol−1, and the Tight–veryTight error bars
are 2-3 times narrower. Although, in the case of C60@[6]CPPA, the Normal to very Tight series is only available with
the aug-cc-pVTZ basis set, the 0.2 kcal mol−1 agreement of Normal–Tight and the Tight–veryTight based CCSD(T)
estimates and the threefold improvement provided by the Tight–very Tight error bar over the Normal–Tight one
illustrate analogous behavior to the cases of C2C2PD, C3A, and C3GC.

One can also consider internal convergence indicators besides the total energy. At the very Tight level, the π–π,
π–σ, and also the majority of the σ–σ orbital interactions benefit from the full CCSD(T) treatment for all complexes.
Additionally, none of the remaining weak electronic interactions, contributing only about 0.01% or lower portion of
the correlation energy, are neglected, they are, however, approximated via second-order pair energies [3, 7]. At the
very Tight level, the orbital domains employed for the LNO-CCSD(T) treatment include all atoms, all atomic orbitals,
and the majority of the correlating (virtual) space, spanned by, on the average, 80–95% of the orbitals of the entire
complexes.

Finally, the weakly-correlated character of the studied system is also verified via the T1 [8] diagnostics. The T1
measures obtained for the most complicated C3GC and C60@[6]CPPA complexes are found to be at most 0.016 and
0.014, respectively. Considering that the T1 measure grows with the number of basis functions and that smaller than
0.02 T1 values are considered weakly-correlated already for very small systems [8], there appears to be no indication
of even moderate static correlation. Moreover, neither the HF nor the CCSD iterations indicated any problems
emerging usually for strongly correlated systems. The size of the singles and doubles amplitudes were also monitored
in all domain CCSD computations indicating the validity of the single-reference approach, while it is convincing that
the LNO approximations were found to operate excellently also for moderately statically correlated species [9]. The
magnitude of the (T) correction compared to the full CCSD(T) interaction energy is also an informative measure of
the static or dynamic nature of the correlation.

B. Single-particle basis set convergence

Regarding the convergence of the interaction energies with respect to the single particle basis set, we rely on
approaches used routinely in wavefunction computations on small molecules. Dunning’s correlation consistent basis
sets [10] employed here are designed to systematically approach the complete basis set (CBS) limit with a polynomial
convergence rate, which can be exploited to reduce the remaining basis set incompleteness (BSI) error via basis set
extrapolation approaches [11, 12]. We employ two-point formulae for extrapolation, labeled as CBS(X,X + 1), where
X refers to the cardinal number of the aug-cc-pVXZ basis set [10] with X=T, Q, and 5.

For the proper description of important medium- and long-range interactions and of the cross-polarization of the
monomers in the complex, it is crucial to the employ diffuse, i.e., spatially spread basis functions. The use of such
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Supplementary Fig. 1: Convergence of LNO-CCSD(T) interaction energies for the C2C2PD complex with various
basis sets and LNO threshold sets. The left (right) panel collects results obtained without (with) CP correction.
The Normal–Tight and the Tight–veryTight extrapolated results are plotted with a smaller point size also at the
Tight and veryTight x axis labels, respectively, and they are accompanied by error bars indicating the uncertainty
estimate of the local approximations at that level. For comparison the best CCSD(T)/CBS estimate [Tight-very

Tight approximated, half CP corrected LNO-CCSD(T)/CBS(Q,5)] result and its corresponding uncertainty estimate
is depicted on both panels via the light blue error bars and dashed horizontal lines. Note the different y ranges of

the two panels as highlighted by dashed blue lines connecting the two panels. Also note that symbols corresponding
to a given basis set are slightly shifted along the x-axis to improve visibility for all data points.

diffuse basis functions, however, greatly enhances technical challenges characteristic of interaction energy computations
with atom centered Gaussian type basis functions. As long as the basis set expansion of the monomers is not
saturated completely, the basis functions residing on the atoms of one monomer can contribute to the description
of the wavefunction components of the other monomer. Thus, the resulting basis set superposition error (BSSE)
emerges from the unbalanced improvement of the basis set expansion of the monomers and the dimer and usually
leads to artificially overestimated interaction strength. The BSSE can be decreased significantly by counterpoise
(CP) corrections [13], i.e., by using the entire dimer basis set also for the monomer calculations. Naturally, for small
basis sets this approach might lead to a more saturated basis set expansion on the monomers and can potentially
overcorrect the BSSE. In the case of aug-cc-pVXZ with X=T, Q, and 5 the CP correction decreases monotonically
with increasing basis set size, thus a decreasing CP correction is an excellent indicator of basis set saturation, which
we employ here.

To characterize the convergence of the LNO-CCSD(T) interaction energies in terms of the basis set completeness,
the maximum of two BSI error indicators is considered with the best available LNO threshold set. One of them is
the difference of the CP corrected and uncorrected LNO-CCSD(T)/CBS(Q,5) interaction energies, and the other one
is the difference of CP corrected LNO-CCSD(T)/CBS(T,Q) and LNO-CCSD(T)/CBS(Q,5) interaction energies. The
resulting BSI error bar values of Supplementary Table 1 indicate that the above two four-membered groups exhibit
much more homogeneous basis set convergence behavior. For the GGG, GCGC, PHE, and CBH interaction energies,
this BSI measure is 0.06-0.22 kcal mol−1, while for the other four complexes a twice as large uncertainty of 0.19-0.36
kcal mol−1 is found. Compared to the similar or larger local error bars, we find this level of basis set convergence to
be highly satisfactory.

We again investigate more closely only the C3A, C3GC, C2C2PD, and C60@[6]CPPA quartet. The convergence of
LNO-CCSD(T) interaction energies with improving basis sets for C3A and C3GC is shown on panel a) of Fig. 4 of
the main text. The large BSSE obtained with the aug-cc-pVTZ, and to some extent also with the aug-cc-pVQZ basis
set is apparent for both complexes. Such large BSSE also affects the extrapolation, the CBS(T,Q) results clearly
overshoot the basis set limit due to the underestimation of the aug-cc-pVTZ result. The BSSE is significantly reduced
by the CP correction. All CP corrected results (solid symbols) closely agree already at the aug-cc-pVTZ level. Most
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importantly, the CBS(Q,5) entries of both the CP corrected and uncorrected series match each other within a few
tenth of a kcal mol−1, providing strong indication of basis set saturation. Upon inspection of the CP corrected and
uncorrected interaction energies of Supplementary Table 1, this statement can be extended for the remaining six
complexes as well.

The left and right panels of Supplementary Fig. 1 collect CP uncorrected and corrected LNO-CCSD(T) interaction
energies for the coronene dimer. The overbinding of the aug-cc-pVTZ and aug-cc-pVQZ results caused by the BSSE is
again significant, close to 50 and 20%, respectively. With the exception of the overshooting CBS(T,Q) extrapolation,
the aug-cc-pVXZ energies, with X=T, Q, and 5, as well as the CBS(Q,5) extrapolation form a highly convincing,
converging series of results both with and without CP correction. The CP corrected and uncorrected CBS results
approach the region of convergence from the opposite directions, hence their average, i.e., the half CP corrected results
appear to be the best estimate at the CBS(Q,5) level. Concerning CBS(T,Q), the fully CP corrected results are found
more reliable due to the excessive BSSE obtained with aug-cc-pVTZ.

Finally, we assess the accuracy of the composite BSI correction approach employed for C3A, C3GC, and C60@[6]CPPA.
Due to the prohibitive computational costs, the most accurate interaction energies presented here for these three

systems are obtained by adding a ∆BSI = E
LNO−CCSD(T)
Normal [CBS(Q, 5)]−ELNO−CCSD(T)

Normal [aug-cc-pVTZ] BSI correction to

the E
LNO−CCSD(T)
Tight−very Tight[aug-cc-pVTZ] interaction energies. This formula exploits the similarity of the local approximation

convergence curves obtained with different basis sets and it is numerically identical to E
LNO−CCSD(T)
Tight−very Tight[CBS(Q,5)] if

the local convergence patterns are exactly parallel. To assess the quality of ∆BSI, we compared ∆BSI to the analogous

∆very Tight
BSI = E

LNO−CCSD(T)
very Tight [CBS(Q, 5)]−ELNO−CCSD(T)

very Tight [aug-cc-pVTZ] wherever it is available. For the system most

similar with the above three, that is, for C2C2PD, the |∆very Tight
BSI −∆BSI| value is about 0.12 kcal mol−1. To account

for the potentially size-extensive nature of this unparallelity error, the final ∆BSI error estimates of Supplementary
Table 1 were obtained by scaling the 0.12 kcal mol−1 with the ratio of the interaction energies of the given complex
and C2C2PD. The “Total error bar” values of Supplementary Table 1 also include this third, ∆BSI related uncertainty
estimate for these three complexes.

SUPPLEMENTARY NOTE 2. DETAILS OF QUANTUM MONTE CARLO CALCULATIONS

The FN-DMC calculations mostly used 10 nodes with 28 cores each, and 14,000 walkers distributed across the
cores (i.e. 50 walkers per core). We used 20 nodes for the C60@[6]CPPA complex and 28,000 walkers to reduce
the stochastic error in a shorter time. Here we give further details on (i) the optimization of the Jastrow factor for
the reported complexes, (ii) time-step and node-structure tests for the coronene dimer and (iii) results of additional
FN-DMC simulations of C60@[6]CPPA. Typically, the reported error bar in FN-DMC corresponds to one standard
deviation (σ). The ±σ interval corresponds to less than 70%. This is quite low for a meaningful comparison with
other approaches, therefore we opted for an an interval of 95% in the main results while we show the typical ±σ
interval here in the supplemental.

A. Variational Monte Carlo Optimization of the Jastrow Factor

Variational Monte Carlo (VMC) obeys the variational principle, allowing the initial Slater-Jastrow wavefunction
to be optimized iteratively towards a lower energy. Importantly, the zero-variance principle ensures that variance of
the energy tends to zero as the exact energy of the system is approached. This is used in the varmin and varmin–
linjas optimization algorithms in CASINO [14] to optimize the variable parameters of the Jastrow factor. The Jastrow
factor is composed of explicit distance-dependent polynomial functions for inter-particle interactions, such as electron-
electron (u), electron-nucleus (χ), and electron-electron-nucleus (f ), and is also system-dependent. For all complexes,
we performed a term-by-term optimization using 24 parameters for u, 12-14 parameters per element for χ, and 8
parameters per element for f. The resulting VMC energy and variance for the complexes is given in Supplementary
Table 2.

B. Time-Step and Node-Structure Dependence of the Coronene Dimer and Benzene Dimer

It can be seen from Supplementary Fig. 2 that the FN-DMC interaction energy of C2C2PD is converged within the
stochastic error bar (corresponding to 1 standard deviation) with respect to the time-step in FN-DMC (from 0.003
to 0.03 a.u.). In addition, we computed PBE0 and PBE initial determinants (orbitals) from PWSCF, in order to
assess the FN-DMC dependence of the interaction energy on the nodal-structure. An unconstrained propagation of
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Supplementary Table 2: The variance (σ2) and VMC energy (EVMC) in atomic units for each complex, as a result of
optimizing the trial wavefunction. The uncertainty is indicated in parentheses.

Complex σ2 EVMC

CBH 4.07(5) -249.26(1)
C2C2PD 4.76(6) -285.769(8)

GGG 5.18(3) -290.195(5)
GCGC 5.71(3) -336.296(1)
PHE 6.03(4) -367.239(8)
C3A 6.38(4) -397.085(6)

C3GC 7.82(5) -484.474(7)
C60@[6]CPPA 10.54(5) -624.140(6)

an electronic wavefunction would project out a bosonic function, which is an unphysical solution. To prevent this,
the only affordable solution for large molecular systems is to constrain the walkers to not cross the nodal surface. In
this way the projected wave function ΨFN has the same nodes as the trial wave function ΨT.

Supplementary Fig. 2 shows that the FN-DMC interaction energy is the same within the stochastic error bars of
∼0.5 kcal mol−1 across the three nodal-structures.

Supplementary Fig. 2: FN-DMC interaction energy of C2C2PD (coronene dimer) with 0.003, 0.01 and 0.03 a.u.
time-steps. Different nodal-structures from LDA (black circle), PBE (blue triangle), and PBE0 (red square) initial

orbitals are reported using 0.01 a.u. time-step; these are slightly offset along the x-axis for clarity. Here the
stochastic uncertainty corresponds to 1-σ.

Similar considerations apply also to the parallel displaced benzene dimer, entry 24 in the S66 set. Supplementary
Fig. 3 shows the DMC evaluations of the interaction energy as obtained with different time-steps and different
initialisations of the orbitals. It appears that any possible bias given by the orbitals is much smaller than the stochastic
uncertainty of the DMC evaluations. Moreover, a time-step of 0.03 or smaller has a negligible bias compared to the
stochastic uncertainty. This conclusion applies as well to all the other 8 complexes of the S66 set that we considered
in this work (24 to 29, and 47 to 49). In the manuscript we report the results obtained with a time-step of 0.01 a.u.

We note that the agreement between FN-DMC and CCSD(T) on small-to-medium sized dimers is in-line with
previous predictions of carbon dioxide, ammonia, benzene, anthracene, and naphthalene dimer interaction energies as
shown in the supporting information of Ref. [15].

C. The GGG Trimer and Coronene Dimer with the Determinant Localization Approximation

Using non-local pseudopotentials in FN-DMC requires an approximation for the evaluation of the local energy –
not to be confused with the type of local approximations, such as LNO, made in local CCSD(T) methods. The recent
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Supplementary Fig. 3: FN-DMC interaction energy of the benzene dimer parallel displaced (entry 24 in the S66
set). Different nodal-structures from LDA (black circle), PBE (blue triangle), and PBE0 (red square) initial orbitals
are reported using 0.003 (only for LDA), 0.01, 0.03 and 0.1 a.u. time-step; these are slightly offset along the x-axis
for clarity. The error bars account for the stochastic uncertainty of the DMC estimations and correspond here to 1

standard deviation (i.e. a 95% confidence interval is roughly twice as large as the reported error bars).

determinant localization approximation (DLA) introduced by Zen et al. [16] has some advantages over the pre-existing
standard algorithms: the locality approximation [17] (LA) and T-move scheme [18]). The DLA FN-DMC energies
are less sensitive to the Jastrow factor that is used in combination with pseudopotentials at larger time-steps. This
enables better overall convergence with the time-step in FN-DMC and the DLA method is also more numerically
stable than LA. We tested the use of the DLA method for the GGG trimer and the coronene dimer and present the
results in Supplementary Table 3. The interaction energies of the GGG and C2C2PD complexes remain in agreement,

Supplementary Table 3: Comparison of the standard LA to the DLA method in the GGG and C2C2PD complexes
with 1-σ stochastic uncertainty.

Complex Approximation Time-step IE (kcal mol−1)
GGG standard LA 0.03 1.5 ± 0.3
GGG DLA 0.03 1.4 ± 0.2

C2C2PD standard LA 0.03 −18.1 ± 0.4
C2C2PD DLA 0.01 −17.4 ± 0.5

within the one-standard deviation stochastic errors, between the DLA and the standard LA algorithms. The results
support that the FN-DMC results are converged with respect to the time-steps and employed Jastrow factors.

D. FN-DMC with T-move on the C60@[6]CPPA Complex

The C60@[6]CPPA complex proved to be more challenging to compute with FN-DMC, due to numerical instabilities
when using the locality approximation. This was alleviated by the use of the DLA method, and separately using the
T-move approximation in place of the locality approximation. The T-move scheme reinstates variational form of the
energy, but the energies with this approximation are more time-step dependent, as can be seen in Supplementary Fig. 4.
Linear extrapolations to ’zero’ time-step limit yield −31.14± 2.57 kcal mol−1 using LDA orbitals and −29.16± 2.33
kcal mol−1 using PBE0 orbitals (with 1-σ stochastic uncertainty). Moreover, we show the DLA obtained FN-DMC
interaction energy at 0.03 and 0.01 a.u. time-steps. In this way, the independence of the interaction energy on the
nodal structure and the FN-DMC algorithm is established.
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Supplementary Fig. 4: FN-DMC interaction energy of C60@[6]CPPA complex using two algorithms. T-move
interaction energies at 0.01 and 0.02 a.u. time-steps are shown for LDA (black stars) and PBE0 orbitals (red stars).

The linear extrapolation to zero time-step for each set is indicated by the dashed lines, with the result in circles.
The error on the zero time-step FN-DMC interaction energies are propagated according to the extrapolation from

the 1-σ error bars. For comparison, the DLA method is shown in blue squares. The DLA FN-DMC interaction
energy at 0.01 a.u. is slightly offset along the x-axis for clarity.

SUPPLEMENTARY NOTE 3. DETAILS OF DFT CALCULATIONS

The PBE0+MBD calculations were performed using FHI-aims v.190225 with all-electron numerical basis sets, with
“tight” defaults and tier 2 basis functions for all elements. The total energy threshold for self-consistent convergence
was set to 10−7 eV. Spin and relativistic effects have not been included. London dispersion energies from the D4
model are computed with the dftd4 standalone program using the electronegativity equilibration charges (EEQ) and
include a coupled-dipole based many-body dispersion correction (D4(EEQ)-MBD) [19]. The same geometries have
been used as for the benchmark calculations for all structures.

SUPPLEMENTARY NOTE 4. GEOMETRY OF THE L7 AND THE C60@[6]CPPA COMPLEXES

The structures and fragment definitions in Ref. 20 were used for the L7 calculations. For C60@[6]CPPA, a
C70@[6]CPPA geometry from Ref. 21 was modified, by replacing C70 with C60 and the complex was symmetrized to
D3d point group. The high-symmetry structure allows more efficient calculations with LNO-CCSD(T) with a speedup
proportional to the rank of the point group [3, 5]. The stability of this complex was assessed by relaxing the geometry
whilst retaining the symmetry group, at the DFT level (B97-3c exchange-correlation functional). The interaction
strength increases by less than 0.1 kcal mol−1 with respect to the unrelaxed structure. Relaxing the C60 and [6]CPPA
fragments reduces the interaction strength by 0.9 kcal mol−1.

The C60@[6]CPPA Cartesian coordinates used in LNO-CCSD(T) and FN-DMC calculations is given here.

C -0.72650728 -1.22225849 -3.24715547
C 0.72650728 -1.22225849 -3.24715547
C -1.42176054 -0.01804451 -3.24715547
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C 1.42176054 -0.01804451 -3.24715547
C 2.59727407 0.14217202 -2.40825772
C 1.17551245 -2.32039134 -2.40825772
C 2.30045705 -2.16706760 -1.60544793
C 3.02696412 -0.90872044 -1.60544793
C -3.02696412 -0.90872044 -1.60544793
C -2.30045705 -2.16706760 -1.60544793
C -2.59727407 0.14217202 -2.40825772
C -1.17551245 -2.32039134 -2.40825772
C 0.00000000 -2.99907290 -1.88979043
C -2.30045914 -2.68553418 -0.24808191
C -1.17551125 -3.33502315 0.24808191
C 0.00000000 -3.49523729 -0.59081634
C -3.02696429 1.74761865 -0.59081634
C -3.47597040 0.64948897 0.24808191
C -2.59727332 1.49953645 -1.88979043
C -3.47597040 -0.64948897 -0.24808191
C -3.02696429 -1.74761865 0.59081634
C -3.02696412 0.90872044 1.60544793
C -2.59727407 -0.14217202 2.40825772
C -2.59727332 -1.49953645 1.88979043
C -0.72650707 3.07578804 -1.60544793
C -1.17551125 3.33502315 -0.24808191
C -1.42176162 2.17821932 -2.40825772
C -2.30045914 2.68553418 0.24808191
C -2.30045705 2.16706760 1.60544793
C -0.00000000 3.49523729 0.59081634
C -0.00000000 2.99907290 1.88979043
C -1.17551245 2.32039134 2.40825772
C 0.69525326 1.24030300 -3.24715547
C 1.42176162 2.17821932 -2.40825772
C -0.69525326 1.24030300 -3.24715547
C 0.72650707 3.07578804 -1.60544793
C 1.17551125 3.33502315 -0.24808191
C 2.59727332 1.49953645 -1.88979043
C 3.02696429 1.74761865 -0.59081634
C 2.30045914 2.68553418 0.24808191
C 0.72650728 1.22225849 3.24715547
C 1.17551245 2.32039134 2.40825772
C 2.30045705 2.16706760 1.60544793
C 1.42176054 0.01804451 3.24715547
C -0.69525326 -1.24030300 3.24715547
C -1.42176054 0.01804451 3.24715547
C -0.72650728 1.22225849 3.24715547
C 0.69525326 -1.24030300 3.24715547
C 0.72650707 -3.07578804 1.60544793
C -0.72650707 -3.07578804 1.60544793
C -1.42176162 -2.17821932 2.40825772
C 1.42176162 -2.17821932 2.40825772
C 3.02696429 -1.74761865 0.59081634
C 2.30045914 -2.68553418 -0.24808191
C 1.17551125 -3.33502315 0.24808191
C 2.59727332 -1.49953645 1.88979043
C 3.02696412 0.90872044 1.60544793
C 3.47597040 0.64948897 0.24808191
C 3.47597040 -0.64948897 -0.24808191
C 2.59727407 -0.14217202 2.40825772
C -4.43498968 4.84818396 -0.00326334
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C -5.43089278 3.84285784 -0.00366147
C -3.85193459 5.28074380 -1.21899357
C -3.85171966 5.27950986 1.21280412
C -2.64632983 5.97544200 -1.21280412
C -2.64729099 5.97624511 1.21899357
C -1.98115563 6.26490571 0.00326334
C -6.04345890 2.78186219 -0.00366147
H -4.31742848 4.99255327 -2.16174586
H -4.31701338 4.99032575 2.15534928
H -2.16324219 6.23380613 -2.15534928
H -2.16496372 6.23527938 2.16174586
C 1.98115563 6.26490571 0.00326334
C 0.61256612 6.62472003 0.00366147
C 2.64632983 5.97544200 -1.21280412
C 2.64729099 5.97624511 1.21899357
C 3.85193459 5.28074380 -1.21899357
C 3.85171966 5.27950986 1.21280412
C 4.43498968 4.84818396 -0.00326334
C -0.61256612 6.62472003 0.00366147
H 2.16324219 6.23380613 -2.15534928
H 2.16496372 6.23527938 2.16174586
H 4.31742848 4.99255327 -2.16174586
H 4.31701338 4.99032575 2.15534928
C 6.41614531 1.41672175 -0.00326334
C 6.04345890 2.78186219 -0.00366147
C 6.49922558 0.69550131 -1.21899357
C 6.49804949 0.69593214 1.21280412
C 6.49804949 -0.69593214 -1.21280412
C 6.49922558 -0.69550131 1.21899357
C 6.41614531 -1.41672175 0.00326334
C 5.43089278 3.84285784 -0.00366147
H 6.48239220 1.24272611 -2.16174586
H 6.48025557 1.24348038 2.15534928
H 6.48025557 -1.24348038 -2.15534928
H 6.48239220 -1.24272611 2.16174586
C 4.43498968 -4.84818396 0.00326334
C 5.43089278 -3.84285784 0.00366147
C 3.85171966 -5.27950986 -1.21280412
C 3.85193459 -5.28074380 1.21899357
C 2.64729099 -5.97624511 -1.21899357
C 2.64632983 -5.97544200 1.21280412
C 1.98115563 -6.26490571 -0.00326334
C 6.04345890 -2.78186219 0.00366147
H 4.31701338 -4.99032575 -2.15534928
H 4.31742848 -4.99255327 2.16174586
H 2.16496372 -6.23527938 -2.16174586
H 2.16324219 -6.23380613 2.15534928
C -1.98115563 -6.26490571 -0.00326334
C -0.61256612 -6.62472003 -0.00366147
C -2.64729099 -5.97624511 -1.21899357
C -2.64632983 -5.97544200 1.21280412
C -3.85171966 -5.27950986 -1.21280412
C -3.85193459 -5.28074380 1.21899357
C -4.43498968 -4.84818396 0.00326334
C 0.61256612 -6.62472003 -0.00366147
H -2.16496372 -6.23527938 -2.16174586
H -2.16324219 -6.23380613 2.15534928
H -4.31701338 -4.99032575 -2.15534928
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H -4.31742848 -4.99255327 2.16174586
C -6.41614531 -1.41672175 0.00326334
C -6.04345890 -2.78186219 0.00366147
C -6.49804949 -0.69593214 -1.21280412
C -6.49922558 -0.69550131 1.21899357
C -6.49922558 0.69550131 -1.21899357
C -6.49804949 0.69593214 1.21280412
C -6.41614531 1.41672175 -0.00326334
C -5.43089278 -3.84285784 0.00366147
H -6.48025557 -1.24348038 -2.15534928
H -6.48239220 -1.24272611 2.16174586
H -6.48239220 1.24272611 -2.16174586
H -6.48025557 1.24348038 2.15534928
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ately strong correlation regime: Hückel–Möbius interconversions in expanded porphyrins, J. Chem. Theory Comput. 16,
3641 (2020).

[10] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis
sets and wave functions, J. Chem. Phys. 96, 6796 (1992).

[11] A. Karton and J. M. L. Martin, Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations”,
Theor. Chem. Acc. 115, 330 (2006).

[12] T. Helgaker, W. Klopper, H. Koch, and J. Noga, Basis-set convergence of correlated calculations on water, J. Chem. Phys.
106, 9639 (1997).

[13] S. F. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies.
Some procedures with reduced errors, Mol. Phys. 19, 553 (1970).
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