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Figure S 1: Scale-Free distributions using the connectome model. Left: Adjacency matrix resulting
from b = 15. Middle, right: Degree distributions of scale-free graph of b = 15. Both in- and out-degree
distributions are best fit by p(k) = 0.5 ⇤ k�1, as long as the outlier highest degree is excluded.
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Figure S 2: Scale Free Distribution with �2 exponent. Left: Adjacency matrix resulting from b = 12.
Middle, right: Degree distributions of scale-free graph of b = 12. While the standard model has matching in-
and out-degree distribution, this alternative model has an out-degree distribution is best fit by pout ⇠ k

�0.5,
and in-degree distribution is best fit by pin ⇠ k

�2.
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Figure S 3: Scale Free Distribution with �3 exponent. Left: Adjacency matrix resulting from b = 12.
Middle, right: Degree distributions of scale-free graph of b = 12. While the standard model has matching in-
and out-degree distribution, this alternative model has an out-degree distribution is best fit by pout ⇠ k

�1/3,
and in-degree distribution is best fit by pin ⇠ k

�3.
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Figure S 4: Heuristic Models for Well-Studied Networks. (a) Binary tree of depth 4, with node
barcodes labeled. (b-d) Hierarchical networks for n = 1 (b), n = 2 (c), and n = 3 (d).
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Figure S 5: Networks Arising from Homophily Wiring Rules. Plots of (a) Density, (b) Average
Clustering, and (c) Average Path Length as a function of o/b (overlapping bits normalized by bit-length of
identity) are shown for various system sizes (expressed as b values in legend). For all metrics the various
system sizes (b values) display nearly identical scaling, with deviations attributable to small system sizes.
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Figure S 6: Scaling of Network Metrics with System Size. Plots of Density, LCC and #CC are shown
for four r values. In all metrics and r values, the various system sizes display nearly identical scaling, with
deviations attributable to finite size arguments, as expressed in Methods 1.3.2.
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Figure S 7: Additional Simulations for Network Robustness. Robustness of RG networks (blue) and
ER networks of equivalent density (orange), under random removal (top row) and targeted attacks (bottom
row). Each line corresponds to a single simulation, for a total of 100 initialization of each RG and ER
parameter set. Each column’s r and x values correspond to the values set in Figure 4d-f above (left: x = 3,
r = 15, middle: x = 4, r = 30, right: x = 5, r = 70). The y-axis measures the relative size of the current LCC
compared to the initial giant component, and the x-axis corresponds to the proportion of nodes removed.
For both y- and x-axes, the first tick corresponds to 0.5 and the second tick, where visible, corresponds to 1.
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