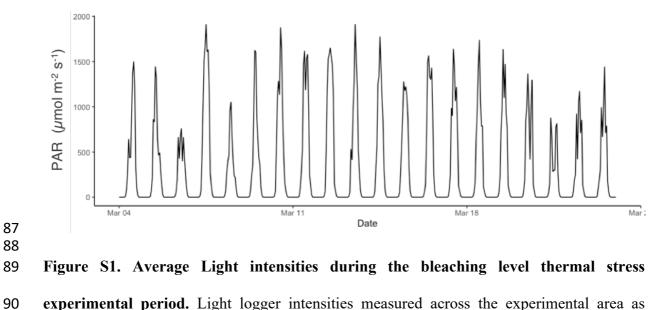
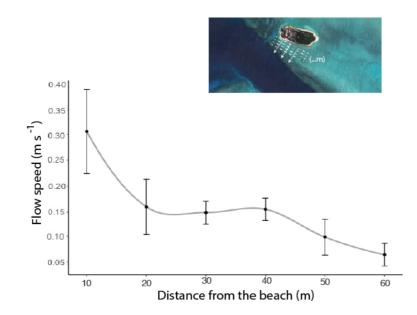
1	Supplemental Materials
2	
3	High flow conditions mediate damaging impacts of sub-lethal thermal
4	stress on corals' endosymbiotic algae
5	Page C E ^{1,2,3} , Leggat W ³ , Heron S F ^{4,5} , Fordyce A J ³ , Ainsworth T D ²
6	
7	¹ Life Sciences, Imperial College, London, SW7 2AZ, United Kingdom
8	² School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW,
9	2033, Australia
10	³ University of Newcastle, School of Environmental and Life Sciences, University Dr,
11	Callaghan, NSW, 2308, Australia
12	⁴ Physics and Marine Geophysical Laboratory, College of Science and Engineering, James
13	Cook University, Townsville, 4811, QLD, Australia
14	⁵ NOAA Coral Reef Watch, College Park, MD, 20740 USA
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

S1 Statistical analysis conducted on measured in situ flow conditions


37 The stationarity of the time series for each current meter was tested using the package tseries 38 in R (Trapletti et al., 2011) for the Augmented Dickey-Fuller Test (adf.test). A time series is stationary if its underlying statistical properties (i.e. mean, variance, autocorrelation) do not 39 change over time. If a time series did not show stationarity, it was transformed through 40 differencing to be made stationary (performed by subtracting the previous observation from 41 the current observation). In addition to summary statistics for each meter, a two sample 42 43 Kolmogorov-Smirnov test was used to compare the cumulative distributions of flow speeds measured at each meter using pairwise comparisons in (Team, 2019). To test whether the flow 44 45 speeds measured at each meter are causal (i.e. can be used to forecast each other), patterns of 46 flow speed were compared between loggers through testing for causality through the Granger Test using the function grangertest from the R package lmtest (Zeileis et al., 2002). The test is 47 a Wald test comparing an unrestricted model in which y is explained by the lags (up to order 1 48 49 unit of time) of y and x and the restricted model, in which y is only explained by the lags of y. Results will either confirm or reject a null hypothesis that past values of meter x do not explain 50 51 values from meter y. Pairwise comparisons between each meter were conducted.

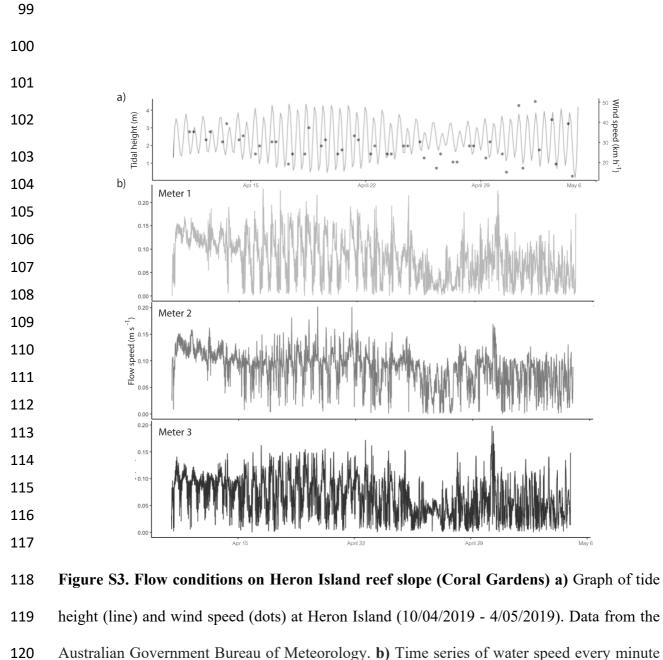
52

53 S2 Results of statistical analysis conducted on measured *in situ* flow conditions


54 Application of the Augmented Dickey-Fuller Test indicate that the time series data for each 55 meter are stationary. Meters 1 and 2 have higher values in general and show similar patterns in 56 speed over time (Figure 5a). The distributions of speeds at each meter varies (Figure 5b). Each 57 logger showed a peak at ~ 0.10 m s⁻¹ and logger three shows a bimodal distribution in speed, 58 with peaks at both ~ 0.10 m s⁻¹ and 0.04 m s⁻¹ (Figure 5b).

60	Pairwise comparisons of cumulative distributions for each logger using a two sample
61	Kolmogorov-Smirnov test indicate that all meters have significantly different distributions
62	(1:2, D =0.137, p < 0.001; 2:3, D = 0.274, p < 0.001; 1:3, D = 0.185, p < 0.001) (see
63	Supplemental Information, Figure S5 for a graph showing the empirical distribution function
64	for each meter). Pairwise comparisons of meters using the granger test shows that whilst meter
65	1 is not able to predict meter 2 (F $_{(34557,-1)} = 0.041$, p = 0.839), nor meter 3 (F $_{(34557,-1)} = 2.338$, p
66	= 0.127), all other meter pairs are predictable of each other (2:1, $F_{(34557,-1)}$ = 80.018, p = < 0.001;
67	$2:3, F_{(34557, -1)} = 7.166, p = 0.007; 3:2, F_{(34557, -1)} = 56.662, p = < 0.001; 3:1, F_{(34557, -1)} = 151.52, p = -2.0001; 3:1, F_{(34557, -1)} = 151.52, p = -2.0001; 3:1, F_{(34557, -1)} = -2.0000; 3:1, F_{(34557, -1)} = -2.0000; 3:1, F_{(34557, -1)} = -2.000; 3:1, $
68	= <0.001). Meter 1 and 2 show a northwesterly pattern in direction of flow over the deployment
69	period, whilst there is no clear pattern in direction of meter 3 (Figure 5c).
70	
70 71	
71	
71 72	
71 72 73	
71 72 73 74	
71 72 73 74 75 76 77	
71 72 73 74 75 76 77 78	
71 72 73 74 75 76 77 78 79	
71 72 73 74 75 76 77 78 79 80	
71 72 73 74 75 76 77 78 79 80 81	
71 72 73 74 75 76 77 78 79 80 81 82	
71 72 73 74 75 76 77 78 79 80 81 81 82 83	
71 72 73 74 75 76 77 78 79 80 81 82	

photosynthetically active radiation (PAR, µmol m⁻² s⁻¹). Plot displays the hourly average across
all mesocosm tanks in Experiment 2.



95 Figure S2. Flow conditions on Heron Island reef Flat. Average flow speeds across all

- 96 transects at 10 m increments from the beach. Bars represent \pm standard error.
- 97

120 Australian Government Bureau of Weterology: **b**) This series of water speed every minute 121 (ms^{-1}) for meter 1, 2 and 3. **c**) A graph showing the cumulative sum flow speed (ms^{-1}) measured

122 at current meter one, two and three coloured light, medium and dark grey respectively.

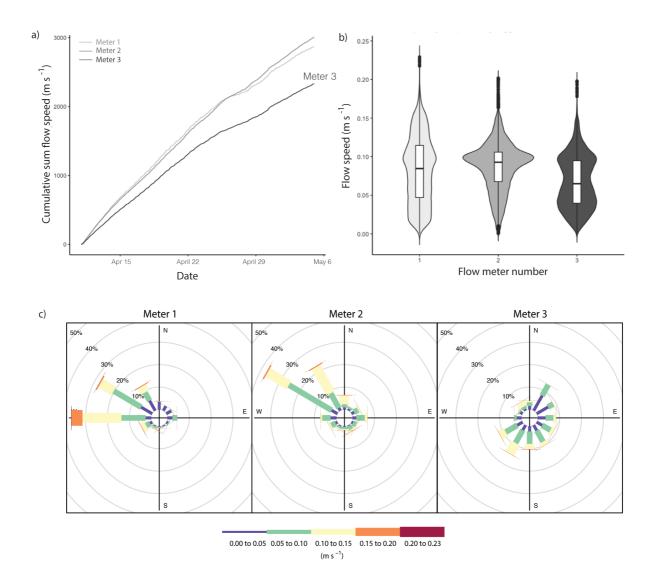


Figure S4. Flow conditions on Heron Island reef slope (Coral Gardens) a) A graph showing 125 the cumulative sum flow speed (m s⁻¹) measured at current meters. Meters 1, 2 and 3 are 126 127 coloured light, medium and dark grey respectively. b) Violin box plots for each meter. Boxplot shows the median value, interquartile range and upper/lower first and third quartiles. Wider 128 129 sections of represent a higher probability of observation at that speed, and the thinner sections 130 correspond to a lower probability. Points represent outliers. Meters 1, 2 and 3 are coloured 131 light, medium and dark grey respectively. c) Rose plots for each meter showing the frequency 132 (%) of different flow speeds and direction over time. Colour of bar represents speed bin.

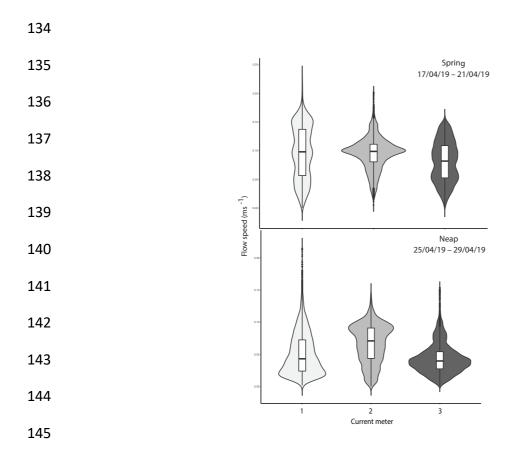


Figure S5. Violin box plots for each meter during periods defined around spring (17/04/19 –
21/04/19) and neap tides (25/04/19 – 29/04/19). Boxplot shows the median value, interquartile
range and upper/lower first and third quartiles. Wider sections of represent a higher probability
of observation at that speed, and the thinner sections correspond to a lower probability. Points
represent outliers. Meters 1, 2 and 3 are coloured light, medium and dark grey respectively.

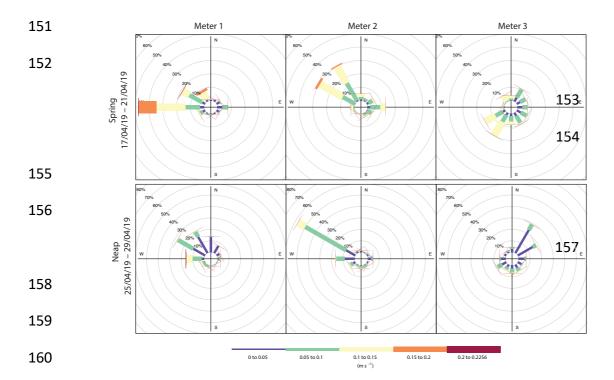
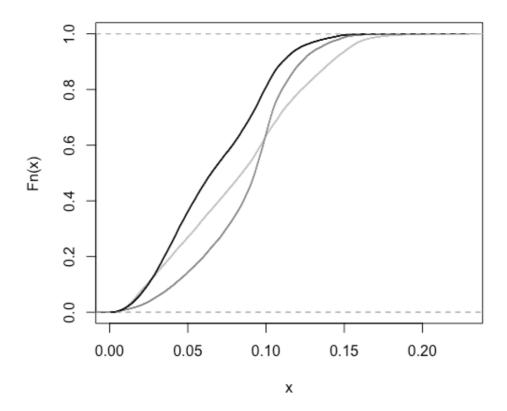



Figure S6. Rose plots for each meter showing the frequency (%) of different flow speeds and
direction during periods defined around spring (17/04/19 – 21/04/19) and neap tides (25/04/19)
- 29/04/19). Colour of bar represents speed bin.

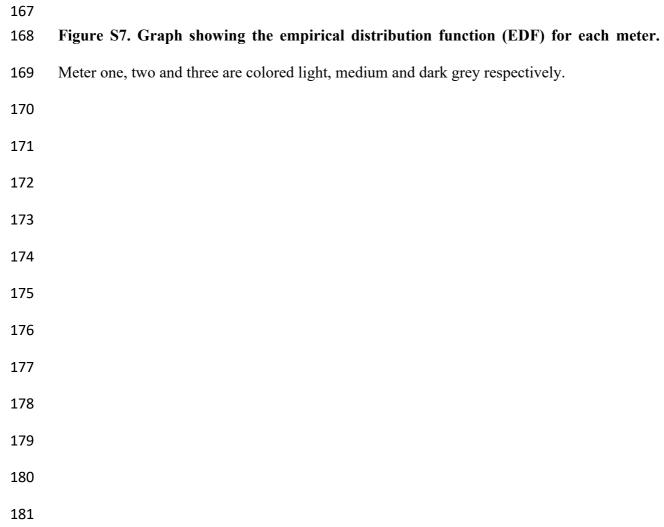


Table S1. Type I analysis of variance with Satterthwaite's Method from a mixed model analysis to test for the effects of day, temperature trajectory (PS SB, SB and control) and flow condition (high and low flow) on measured Fv/Fm. p-values < 0.05 are highlighted in bold. Num df = numerator degrees of freedom, den df = denominator degrees of freedom.

186

Effect	Num df	Den df	F-statistic	p-value
Experiment 1: M	leasure of photop	hysiology, Qu	antum Yield (Fv	/Fm)
Day	21	655	13.554	< 0.001
Trajectory	2	655	159.605	< 0.001
Flow	1	655	0.084	0.772
Day*Trajectory	42	655	4.016	< 0.001
Day*Flow	21	655	0.607	0.915
Trajectory*Flow	2	655	4.674	0.010
Day*Trajectory*Flow	42	655	0.802	0.811

- 187
- 188

189Table S2. Type I analysis of variance with Satterthwaite's Method from a mixed model190analysis to test for the effects of time point (Day 15 or Day 24), temperature trajectory191(PS SB, SB and control) and flow condition (high and low flow) on endosymbiont192densities. P-values <0.05 are highlighted in bold. Num df = numerator degrees of freedom, den</td>193df = denominator degrees of freedom.

Effect	Num df	Den df	F-statistic	p-value
Exp	eriment 1: Ei	ndosymbiont den	sities	
Time point	1	171626778	39.922	<0.001
Trajectory	2	124829727	21.607	<0.001
Flow	1	144226759	0.199	0.655
Time point*Trajectory	2	104450442	6.059	0.002
Time point*Flow	1	120247022	1.181	0.276
Trajectory*Flow	2	86674254.6	0.637	0.528
Time point*Trajectory*Flow	2	76154665.8	1.489	0.225

Table S3. Type I analysis of variance with Satterthwaite's method from a mixed model
analysis to test for the effects of day, temperature trajectory (B and control) and flow
condition (high and low flow) on measured Fv/Fm. p-values <0.05 are highlighted in bold.
Num df = numerator degrees of freedom, den df = denominator degrees of freedom.

Effect	Num df	Den df	F-statistic	p-value
Experiment 2: M	easure of photop	ohysiology, Qu	antum Yield (Fv/Fi	m)
Day	17	424.007	52.096	< 0.001
Trajectory	1	424.005	687.934	< 0.001
Flow	1	423.996	87.140	< 0.001
Day*Trajectory	17	424.016	63.206	< 0.001
Day*Flow	17	423.998	8.810	< 0.001
Trajectory*Flow	1	423.998	47.577	<0.001
Day*Trajectory*Flow	17	423.998	8.408	< 0.001

Table S4. Type I analysis of variance table with Satterthwaite's Method from a mixed
model analysis to test for the effects of day, temperature trajectory (B and control) and
flow condition (high and low flow) on measured Fv/Fm after light stress and recovery of
PSII (induction recovery). p-values <0.05 are highlighted in bold. Num df = numerator
degrees of freedom, den df = denominator degrees of freedom.

Effect	Num df	Den df	F-statistic	p-value
Experiment 2: Meas	ure of photophysi	ology, Quantun	n Yield (Fv/Fm)	IR curve
Trajectory	1	706.45	315.868	< 0.001
Flow	1	717.93	19.015	< 0.001
Day	7	717.93	10.268	< 0.001
Trajectory*Flow	1	717.93	5.642	0.019
Trajectory*Day	7	717.93	18.926	< 0.001
Flow*Day	7	717.93	0.694	0.676
Day*Trajectory*Flow	7	717.93	1.028	0.410

Table S5. Type I analysis of variance with Satterthwaite's Method from a mixed model
analysis to test for the effects of time point (Day 1 or Day 20), temperature trajectory (B
and control) and flow condition (high and low flow) on endosymbiont densities. P-values
< 0.05 are highlighted in bold. Num df = numerator degrees of freedom, den df = denominator
degrees of freedom.

Effect	Num df	Den df	F-statistic	p-value		
Experiment 2: Endosymbiont densities						
Time point	1	3.35E+40	16.891	< 0.001		
Trajectory	1	3.35E+40	126.936	< 0.001		
Flow	1	3.35E+40	0.2829	0.595		
Time point*Trajectory	1	3.35E+40	81.386	< 0.001		
Time point*Flow	1	3.35E+40	0.598	0.439		
Trajectory*Flow	1	3.35E+40	4.246	0.039		
Time point*Trajectory*Flow	1	3.35E+40	0.155	0.694		

218 Table S6. Variance and standard deviation of random effects and residuals of mixed

- effects models conducted on response variables from Experiment 1 and Experiment 2.

Response variable	Random effect	Variance	Standard deviation			
Experiment 1						
Quantum Yield	Coral ID : Tank	0.0000412	0.006419			
	Tank	0.0001233	0.011105			
	Residual	0.0012834	0.035825			
Endosymbiont						
density	Tank	6.12E+09	78200			
	Residual	2.42E+11	491713			
	Experin	nent 2				
Quantum Yield	Tank	0.0001414	0.01189			
	Residual	0.0013026	0.03609			
Quantum Yield: IR	Tank	9.77E-05	0.009882			
curve	Residual	1.84E-02	0.135722			
Endosymbiont						
density	Tank	0	0			
	Residual	2.01E+11	448176			