# Identification of a covalent importin-5 inhibitor, goyazensolide from a collective synthesis of furanoheliangolides

Weilong Liu,<sup>#1</sup> Rémi Patouret,<sup>#1</sup> Sofia Barluenga,<sup>1</sup> Michael Plank,<sup>2</sup> Robbie Loewith,<sup>2</sup> Nicolas Winssinger<sup>1</sup>\*

- 1. Departement of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland
- 2. Departement of Molecular Biology, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland

| Table of Contents                                                                                                                    |           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| a) General information (Chemistry)                                                                                                   | S2        |  |  |
| b) Summary of synthesized natural products ( <b>Figure S1</b> ) and other structurally similar natural products ( <b>Figure S2</b> ) | S3-S6     |  |  |
| c) Structure revision of atripliciolide (2) (Table S1)                                                                               | S7-S8     |  |  |
| d) Structure elucidation of 13 (Figure S3, Table S2)                                                                                 | S9-S10    |  |  |
| e) Data comparison and full analyses of <b>1</b> , <b>3-6</b> , <b>8-12</b> , <b>14-17</b> ( <b>Table S3-16</b> )                    | S11-S24   |  |  |
| f) Experimental procedures for Scheme 1 (Figure S4-8)                                                                                | S25-S50   |  |  |
| g) Experimental procedures for Scheme 2 (Figure S9-12)                                                                               | S51-S69   |  |  |
| h) Experimental procedures for Figure 2 (Figure S13-17, Table S17)                                                                   | S70-S77   |  |  |
| i) Experimental procedures for Figure 3 (Figure S18-20, Table S18)                                                                   | S78-S83   |  |  |
| j) Experimental procedures for Figure 4 (Figure S 1-26, Table S19-21)                                                                | S84-S90   |  |  |
| k) Chiral-HPLC spectra of <b>20a</b>                                                                                                 | S91-S92   |  |  |
| l) <sup>1</sup> H and <sup>13</sup> C NMR spectra                                                                                    | S93-S234  |  |  |
| m) X-Ray data of <b>2</b> , <b>30</b> and <b>34</b>                                                                                  | S235-S250 |  |  |
| n) Abbreviation                                                                                                                      | S251-S252 |  |  |

## a) General information (Chemistry)

NMR spectra were recorded on AMX-300, AMX-400 and AMX-500 Bruker Avance spectrometers at 298 K with CDCl<sub>3</sub> as the solvent unless otherwise stated. Chemical shifts are reported in parts per million, relative to chloroform (<sup>1</sup>H,  $\delta$  7.26; <sup>13</sup>C,  $\delta$  77.16) unless otherwise stated. Data for <sup>1</sup>H NMR are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintuple, sept. = septuple, m = multiplet) and coupling constants. Infrared spectra (IR) were recorded on a Perkin-Elmer 1650 FT-IR spectrometer using neat samples on a diamond ATR Golden Gate sampler. High-resolution mass spectra (HRMS) were obtained on a Xevo G2 Tof spectrometer (Ionization mode: ESI positive polarity; Mobile phase: MeOH 100 μl/min). Optical rotations were recorded on OMNI Lab JASCO P-1030 polarimeter at 589 nm and are recorded as  $[\alpha]_{D}^{T}$  (concentration in grams/100 mL solvent). Analytical thin layer chromatography (TLC) was performed using 0.25 mm silica gel 60-F<sub>254</sub> plates from *Merck*, using 250nm UV light as the visualizing agent and a solution of phosphomolybdic acid or KMnO<sub>4</sub> and heat as developing agents. Flash chromatography was performed using 200-400 mesh silica gel. Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated. Reverse phase column chromatography was performed using Isolera Biotage using SNAP Cartridge KP-C18-HS of 60 g or 12 g. The Xray diffraction data was collected on an Agilent Supernova diffractometer equipped with an ATLAS CCD detector using Cu radiation. The enantiomeric excess (ee) was determined by HPLC analysis. Chiral HPLC analysis was performed on Waters Acquity UPC2 with column OJ-H. All reagents were used as supplied by Aldrich, Fluka, Acros or Strem and used without purification unless otherwise noted. All reactions were carried out in ovendried glassware under nitrogen atmosphere unless otherwise noted.

### **Safety Statement**

No unexpected or unusually high safety hazards were encountered.

### b) Summary of synthesized natural products (Figure S1) and other structurally similar natural products (Figure S2)

Figure S1. Isolation, structure and activity of compounds 1-17.



J. Ethnopharmacol. 2017, 198, 444-450

MIC 10.5 µM lated MoA: inhibition quorum sensi Planta Med. 2006, 72, 1427-1430 ensing Phytomedicine, **2012**, *19*, 1173-1177 Molluscicidal LD<sub>50</sub> 135µM Chem. Biodivers. 2009, 6, 513-519 Immuno-modulatory/ROS generation J. Pharm. Pharmacol. 2006, 58, 853-858



Atripliciolide (2) Eremanthus glomerulatus Phytochemistry, 1982, 21, 1669-1673

J. Braz. Chem. Soc. 2005, 16, 677-680

<sup>1</sup>H, misassignment as 8β-OH Phytochemistry, 1982, 21, 1669-1673 Revised by us as  $8\alpha\text{-OH}$ Whole assignment (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY)



15-Deoxygoyazensolide (3)

Vanillosmopsis erythropappa <sup>1</sup>H, misassignment as C<sub>8</sub> Phytochemistry, 1976, 15, 1775-1776 Phytochemistry, 1989, 28, 1441-1451 Lychnophora villosissiin Trans. R. Soc. Trop. Med. Hvg. 1991, 85, 372-374 Phytochemistry, 1992, 31, 692-695

J. Nat. Prod. 2018, 81, 554-561

J. Org. Chem. 1982, 47, 2798-2800

Magn. Reson. Chem. 2004, 42, 364-367

Trypanosomicidal/schistosomicidal/Trypanocidal IC<sub>50</sub> 514 μM Phytochemistry, 1976, 15, 1775-1776 Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 372-374 Fitoterapia, 2005, 76, 73-82 Anti-inflammatory IC<sub>50</sub> 4.6 μM fMLP 7.4 μM PAF Biologicals, 2005, 33, 175-184 Genotoxicity in bacteria and yeast Mutat. Res. 2007, 631, 16-25 Nat. Prod. Res. 2009, 25, 326-331 Cytotoxicity and NF-kB p65 inhibition IC<sub>50</sub> 0.26 μM IC<sub>50</sub> 0.26 μM Tetrahedron, 2012, 68, 2671-2678 Induces Apoptosis same as goyazensolide



Lychnopholide (4)

Isolation Lychnophora hakeaefolia <sup>1</sup>H NMR, misassignment as C<sub>8</sub> lactone Phytochemistry, 1980, 19, 2381-2385 Lychnophora blanchetii Phytochemistry, 1980, 19, 2669-2673 Proteop. Phytochemistry, 1981, 20, 739-741 Lychnophora uniflora Sch. Bip Phytochemistry, 1981, 20, 1149-1151 Alcantara Phytochemistry, 1982, 21, 456-457 Lychnophora sellowii/Lychnophora bahiensis/Lychnophora crisp Phytochemistry, 1982, 21, 1087-1091 Piptolepis I Phytochemistry, 1982, 21, 1439-1441 Fremanthus cro Phytochemistry, 1982, 21, 1669-1673 Vanillosmopsis erythr <sup>13</sup>C NMR Phytochemistry, 1989, 28, 1441-1451 Lychnophora rupe Phytochemistry, 1995, 39, 387-389 Lychnophora trichocarpha Phytother. Res. 1996, 10, 292-295 Lychnophora pseudovillosissin Biochem, Syst. Ecol. 1998, 26, 671-676 Lychnophora pohli Fitoterapia, 2005, 73, 73-82 Structure re J. Org. Chem. 1982, 47, 2798-2800 Activity Trypanocidal IC<sub>50</sub> 585 μM Phytother. Res. 1996, 10, 292-295 Fitoterapia, 2005, 76, 73-82 WO 2013059898 A1 20130502 Antimicrob. Agents Chemother. 2014, 58, 2067-2075 Antimicrob. Agents Chemother. 2016, 60, 5215-5222 Sci. Rep. 2017, 7, 44998 Antimicrob. Agents Chemother. 2020, 64, e01937-19 Immuno-modulatory/ROS generation J. Pharm. Pharmacol. 2006, 58, 853-858 Anti-hyperuri Rev. Bras. Farmacogn. 2019, 29, 241-245 J. Ethnopharmacol. 2012, 142, 845-850 Anti-infla dose 25mg/Kg J. Ethnopharmacol. 2012, 142, 845-850 Phytother. Res. 2013, 27, 384-389 Cytotoxicity and NF-kB p65 inhibition IC<sub>60</sub> 1.4 μM IC<sub>60</sub> 2.9 μM Tetrahedron, 2012, 68, 2671-2678

WO 2013059898 A1 20130502



Isolation Eremanfhus bicolor <sup>1</sup>H NMR, misassignment as C<sub>8</sub> lactone Phytochemistry, 1980, 19, 2663-2668 Eremanthus crotonoides Phytochemistry, 1982, 21, 1669-1673 Lychnophora crispa Phytochemistry, 1982, 21, 1087-1091 Minasia alpestris J. Braz. Chem. Soc. 2005, 16, 677-680 Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY)

Atripliciolide-isobutyrate (6)

Isolation Eremanthus crotonoides <sup>1</sup>H NMR, misassignment as C<sub>8</sub> lactone Phytochemistry, 1982, 21, 1669-1673 *Minasia alpestris* J. Braz. Chem. Soc. 2005, 16, 677-680 *Piptocoma rufescens* Tetrahedron, 2012, 68, 2671-2678 Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY) Activity

Cytotoxicity IC<sub>50</sub> 0.58 μM *Tetrahedron*, **2012**, *68*, 2671-2678

ОН Me

8-epi-Atripliciolide (7) Original name: Atripliciolide Revised in this manuscript as structure 2 Isolation has not been reported Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY)



Calaxin (8) Calaxin is also the name of a protein

> Isolation Helianthus ciliaris <sup>1</sup>H NMR Rev. Latinoam. Quim. 1970, 1, 81-85 Isocarpha atriplicifolia, <sup>1</sup>H NMR Phytochemistry, 1978, 17, 471-474

Calaxin (8) - continued Calea pilosa Phytochemistry, 1981, 20, 743-749 Calea spec Phytochemistry, 1981, 20, 1643-1647 Sclerocarpus sessilifolius Biochem. Syst. Ecol. 1991, 19, 523 Heliomeris obscura Phytochemistry, 1997, 46, 969-972 Viguiera eriopi Phytochemistry, 2000, 55, 255-261 C<sub>o</sub>-stereochemistry J. Org. Chem. 1980, 45, 4993-4997 Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY) Activity Anti-funga Pesticides, 1979, 13, 31-32 Pesticides, 1982, 16, 19-20 Pesticides, 1985, 19, 58-60 Toxicity/cytotoxicity Arch. Invest. Med. 1980, 11, 435-443 Acta Hvdrochim. Hvdrobiol. 1984, 12, 563-565 Acta Hydrochim. Hydrobiol. 1985, 13, 391-394 Anti cance

WO 2017079429 A1 20170511

8-epi-Lychnopholide (15-deoxybudlein A, 9) Isolation Calea pilosa <sup>1</sup>H NMR Phytochemistry, 1981, 20, 743-749 Disynaphia halimifolia Phytochemistry, 1981, 20, 1077-1080 Calea teucrifolia Phytochemistry, 1981, 20, 1643-1647 Calea villosa Phytochemistry, 1982, 21, 2593-2595 Calea angusta Phytochemistry, 1982, 21, 2117-2118 Trichogoniopsis mori Phytochemistry, 1982, 21, 2035-2040 Calea hymenolepis Phytochemistry, 1982, 21, 2045-2048 Calea lantanoides <sup>13</sup>C NMF Phytochemistry, 1982, 21, 464-465 Helianthus nuttalli J. Nat. Prod. 1984, 47, 1021-1023 Calea divaricata J. Nat. Prod. 1985, 48, 302-306 Helianthopsis bishopi Phytochemistry, 1985, 24, 1108-1110 Viguiera sylvatica Phytochemistry, 1989, 28, 2737-2740 Helianthus species (Asteraceae) Biochem. Syst. Ecol. 1989, 17, 519-528 Helianthus stuebelii/ Phytochemistry, 1991, 30, 1861-1867 Sclerocarpus sessilifolius <sup>13</sup>C Biochem. Syst. Ecol. 1991, 19, 523 Heliomeris obscura Phytochemistry, **1997**, 46, 969-972 Activity NF-kB p65 inhibition QSAR, IC<sub>100</sub> 2.5-5 μM J. Med. Chem. 2004, 47, 6042–6054 J. Med. Chem. 2006, 49, 2241-2252



8-epi-Atripliciolide-tiglate (10) Isolation Isocarpha artiplicifolia <sup>1</sup>H NMR Phytochemistry, 1978, 17, 471-474 Calea pilosa/ Calea morii Phytochemistry, 1981, 20, 743-749 Bejaranoa s Phytochemistry, 1981, 20, 1639-1642 Chresta sphaerocephala Phytochemistry, 1982, 21, 1669-1673 Calea angusta Phytochemistry, 1982, 21, 2117-2118 Helianthus species Biochem. Syst. Ecol. 1989, 17, 519-528 Helianthus sagastegui Phytochemistry, 1991, 30, 1861-1867 Viguiera species Fitoterapia, 1998, 69, 86-87 Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY) Activity Antibacterial activity Fitoterapia, 1998, 69, 86-87 NF-kB p65 inhibition QSAR, IC<sub>100</sub> 5 μM J. Med. Chem. 2004, 47, 6042-6054 J. Med. Chem. 2006, 49, 2241-2252 Antileishmanial IC<sub>50</sub> 872 µM, related MoA: DHODH Eur. J. Med. Chem. 2018, 157, 852-866



Isolation Helianthus ciliaris <sup>1</sup>H NMR Rev. Latinoam. Quim. 1970, 1, 81-85 Isocarpha artiplicifolia <sup>1</sup>H NMR Phytochemistry, 1978, 17, 471-474 Calea rupicola Phytochemistry, 1986, 25, 1753-1754 Viguiera acutifolia/ Helianthus sagasteguii Phytochemistry, 1991, 30, 1861-1867 Casterochemistry J. Org. Chem. 1980, 45, 4993-4997

Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY)

8-epi-Atripliciolide-isovalerate (12)

Isolation Isocarpha artiplicifolia <sup>1</sup>H NMR Phytochemistry, 1978, 17, 471-474 Calea rupicola Phytochemistry, 1986, 25, 1753-1754 Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H.<sup>1</sup>H COSY, HSQC, HMBC, NOESY)



8-epi-Atripliciolide-2'-(S)-MeBu (13)

Isolation Helianthus Ichmannii <sup>1</sup>H NMR Phytochemistry, 1979, 18, 676 Calea angusta Phytochemistry, 1982, 21, 2117-2118 Calea rupicola Phytochemistry, 1986, 25, 1753-1754 Helianthus species Biochem. Syst. Ecol. 1989, 17, 519-528 Helianthus stuebelii/sagasteguii Phytochemistry, 1991, 30, 1861-1867 Structure elucidation-(S)-MeBu Whole assignment by us (<sup>1</sup>H, <sup>13</sup>C, <sup>1</sup>H-<sup>1</sup>H COSY, HSQC, HMBC, NOESY)

Eremantholide C (14) Isolation Eremanthus elaeagnus Schultz-Bip <sup>1</sup>H NMR J. Chem. Soc., Perkin Trans. 1, **1978**, 1572-1580 Eremanthus b Phytochemistry, 1980, 19, 2663-2668 Lychnophora uniflora Phytochemistry, 1981, 20, 1149-1151 Lychnophora affinis Gardr J. Org. Chem. 1982, 47, 1519-1521 Piptolepis leptospermoides Phytochemistry, 1982, 21, 1439-1441 Eremanthus croton Phytochemistry, 1982, 21, 1669-1673 Eremanthus glomeru Planta Med 1985, 51, 38-39 Eremanthus govazensis Phytochemistry, 1989, 28, 1441-1451 Lychnophora rupestris Phytochemistry, 1995, 39, 387-389 Lychnophora trichocarpha Phytother. Res. 1996, 10, 292-295 Cunninghamella echinulata Fitoterapia, 2000, 71, 60-64 Minasia alpestris *J. Braz. Chem.* Soc. **2005**, *16*, 677-680 <sup>1</sup>H and <sup>13</sup>C NMR J. Org. Chem. 2012, 77, 9374-9378 NMR assignment Magn. Reson. Chem. 2008, 46, 576-581 Activity Anti-Inflammatory J. Ethnopharmacol. 2012, 142, 845-850 Phytother, Res. 2013, 27, 384-389 Planta Med. 2015, 81, 1296-1307 J. Pharm. Pharmacol. 2019, 71, 910-919 Trypanocida Phytother. Res. 1996, 10, 292-295 Molecules, 2013, 18, 7761-7847 Antifungal Fitoterapia, **2000**, 71, 60-64 Anti-hyperuricemic J. Ethnopharmacol. 2012, 142, 845-850 Rev. Bras. Farmacogn. 2019, 29, 241-245 Cytotoxicity J. Chem. Soc., Perkin Trans. 1, 1978, 1572-1580 Molluscidal Planta Med. 1985, 51, 38-39

5-epi-Isogoyazensolide (15)

Isolation Vanillosmopsis brasiliensis/pohlii <sup>1</sup>H NMR misassignment as C<sub>8</sub> lactone Phytochemistry, 1981, 20, 731-734 Eremanthus mattogrossensis <sup>1</sup>H <sup>13</sup>C NMR structure revision J. Braz. Chem. Soc. 1995, 6, 307-311 Camchaya calcarea Planta Med. 2006, 72, 1427-1430 Piptocoma rufescens Tetrahedron, 2012, 68, 2671-2678 Piptocoma antillana Nat. Prod. Commun. 2014, 9, 1403-1406 Activity Antiplasmodial, Antimycobacterial, and Cytotoxic Planta Med. 2006, 72, 1427-1430 Cytotoxic and NF-kB inhibitory Tetrahedron, 2012, 68, 2671-2678 Antiproliferative and antimalarial Nat. Prod. Commun. 2014, 9, 1403-1406

НΟ

Tagitinin F (16)

Isolation tithonia tagitiflora (no NMR) J. Pharm. Sci. 1976, 65, 918-920 C<sub>8</sub> revised Indian. J. Chem. B, 1977, 15B, 208-211 Tithonia diversifolia J. Org. Chem. **1979**, 44, 1831-1835 Greenmaniella resinosa Phytochemistry, 1987, 26, 1999-2006 <sup>1</sup>H and <sup>13</sup>C Photochem. Photobiol. 2020, 96, 14-20 Activity Anti-tumo WO 2005051955 A1 20050609 Chem. Pharm. Bull. 2007, 55, 1240-1244 FR 2941697 A1 20100806 Cytotoxicity IC<sub>50</sub> 3µM J. Pharm. Sci. 1976, 65, 918-920 Leishmanicidal Molecules, 2014, 19, 6070-6079 Anti-inflammatory Planta Med. 2015, 81, 450-458

Planta Med. **2015**, *81*, 450-458 Rev. Bras. Farmacogn. **2015**, *25*, 111-116 Metabolites, **2015**, *5*, 404-430



Tagitinin C (17) Isolation Tithonia tagitiflora ( no NMR) J. Pharm. Sci. 1976, 65, 918-920 Tithonia diversifolia C<sub>8</sub> revision <sup>1</sup>H, <sup>13</sup>C J. Org. Chem. 1979, 44, 1831-1835 Greenmaniella resinosa Phytochemistry, 1987, 26, 1999-2006 <sup>1</sup>H and <sup>13</sup>C Photochem. Photobiol. 2020, 96, 14-20 Activity Feeding deterrents/antifeedant Phytoparasitica, 1986, 14, 77-80 Phytochemistry, 2008, 69, 2052-2060 Chemistry & Industry, 1985, 5, 167-168 Arab. J. Chem. 2020, 13, 5292-5298 Germination and growth inhibitory Phytochemistry, 1994, 36, 29-36 Phytotoxicity Acta. Biol. Hung. 2017, 68, 187-195 Antiplasmodial activity Planta Med. 2002, 68, 543-545 anti-tumor/anticancer/cytotoxicity WO 2005051955 A1 20050609 Chem. Pharm. Bull. 2007, 55, 1240-1244 FR 2941697 A1 20100806 Fitoterapia, 2011, 82, 331-341 J. Nat. Med. 2013, 67, 98-106 Eur. J. Med. Chem. 2013, 63, 313-320 J. Nat. Prod. 2002, 65, 532-536 J. Agric. Food Chem. 2011, 59, 2347-2355 Curr. Top. Med. Chem. 2017, 17, 3256-3268 Anti-inflammator Metabolites, 2015, 5, 404-430 Rev. Bras. Farmacogn. 2015, 25, 111-116 Planta Med. 2015, 81, 1296-1307 Anti-Tobacco mosaic virus Pestic. Biochem. Phys. 2017, 140, 24-29 Anti-ulcer Molecules, 2011, 16, 665-674 Antitrypanosomal/leishmanicidal/trypanocidal Molecules, 2014, 19, 6070-6079 *Fitoterapia,* **2018**, *124*, 145-151 *Eur. J. Med. Chem.* **2018**, *157*, 852-866 Int. Immunopharmaco. 2019, 77, 105961 Antimalarials Bioorg. Med. Chem. 2009, 17, 3229-3256 Hsp90 Inhibitors

Biology, 2014, 3, 101-138

### Figure S2. Other structurally similar natural products.





Me H OH H OH Me H OH Eremantholide B Isolation

J. Chem. Soc., Perkin Trans. 1, **1978**, 1572-1580 J. Org. Chem. **1980**, 45, 2503-2506 Activity J. Pharm. Pharmacol. **2019**, 71, 910-919 J. Org. Chem. **1980**, 45, 2503-2506



Eremantholide A Isolation Biochem. Syst. Ecol. 1998, 26, 671-676 Phytochemistry, 1980, 21, 1669-1673 Phytochemistry, 1980, 21, 2663-2668 Phytochemistry, 1980, 45, 2503–2506 J. Am. Chem. 1980, 45, 2503–2506 J. Am. Chem. Soc. 1975, 97, 6884-6886 Activity J. Pharm. Pharmacol. 2019, 71, 910-919 Bioorg. Med. Chem. 1999, 7, 2343-2352 Total synthesis Org. Lett. 2007, 9, 1267–1270 J. Org. Chem. 1995, 60, 8179–8193 Tetrahedron Lett. 1995, 36, 1487-1490



Isolation Phytochemistry, 1982, 21, 1087-1091 Phytochemistry, 1982, 21, 1669-1673 J. Org. Chem. 1982, 27, 1519-1521 Phytochemistry, 1981, 20, 739-741 Phytochemistry, 1981, 20, 739-741 Phytochemistry, 1985, 39, 387-389 Activity

Eur. J. Med. Chem. 2018, 157, 852-866



Phytochemistry, **1980**, *19*, 2663-2668 Phytochemistry, **1982**, *21*, 1669-1673



Phytochemistry, **1981**, *20*, 739-741 Phytochemistry, **1982**, *21*, 1669-1673



Phytochemistry, 1982, 21, 1669-1673

## c) Structure revision of atripliciolide (2)

The name atripliciolide was initially used for the proposed structure of a parent compound of an 8 $\beta$ -OH derivative by King and Robison in 1978 (*Phytochemistry*, **1978**, *17*, 471-474). Its isolation was reported by the same group in 1982 (*Phytochemistry*, **1982**, *21*, 1669-1673).

The structure was confirmed by <sup>1</sup>H NMR comparison with other known 8 $\beta$ -OH furanoheliangolides (*structure of 19 followed from its molecular formula and the* <sup>1</sup>H NMR spectrum (Table 2). The presence of a 6, 12-lactone was deduced from the characteristic signals of H-5 through H-8, which were similar to those of 20. The 8 $\beta$ -hydroxyl group was assigned from the couplings observed and from the chemical shifts of H-13, which were at lower fields due to the free hydroxyl at C-8. --**original sentences** from Phytochemistry, **1982**, 21, 1669-1673).

However, the proposed 8 $\beta$ -OH compound was isolated along with other 8 $\alpha$ -esters instead of 8 $\beta$ -esters. For example, *Phytochemistry*, **1982**, *21*, 1669-1673 and *J. Braz. Chem. Soc.*, **2005**, *16*, 677-680, indicating that atripliciolide might be 8 $\alpha$ -OH.

Both  $8\alpha$ -OH and  $8\beta$ -OH compounds were synthesized and the spectral data was compared with the data optained from the natural product (based on 2D NMR spectroscopic analyses as well). The structure of atripliciolide was finally revised to have an  $8\alpha$ -OH (**2**). The absolute configuration of **2** was also determined by X-ray diffraction.

| $\begin{array}{c} 0 & 14 \\ 1 & Me \\ 1 & 10 \\ H & H \\ 3 \\ 0 & 6 \\ H & 0 \\ 15 \\ 2 \end{array}$ |                                     |                                                    |                                           |         |                                |                   |
|------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|-------------------------------------------|---------|--------------------------------|-------------------|
| <sup>1</sup> H NMR <sup>13</sup> C NMR                                                               |                                     |                                                    |                                           |         |                                |                   |
|                                                                                                      | Natural<br>(400 MHz)                | 8α-OH <b>2</b><br>(Revised)<br>(500 MHz)           | 8β-OH <b>7</b><br>(Proposed)<br>(500 MHz) | Natural | <mark>2</mark><br>(125<br>MHz) | 7<br>(125<br>MHz) |
| 1                                                                                                    | -                                   | -                                                  | -                                         | -       | 206.0                          | 206.0             |
| 2                                                                                                    | 5.60, s                             | 5.60, s                                            | 5.59, s                                   | -       | 103.2                          | 103.2             |
| 3                                                                                                    | -                                   | -                                                  | -                                         | -       | 186.4                          | 186.4             |
| 4                                                                                                    | -                                   | -                                                  | -                                         | -       | 131.4                          | 131.4             |
| 5                                                                                                    | 5.90, dq (3.5, 1.5)                 | 5.91, dq (3.6, 1.7)                                | 5.95, dq (4.4, 1.8)                       | -       | 134.6                          | 134.6             |
| 6                                                                                                    | 4.86, ddq (4, 3.5, 1.5)             | 4.86, tq (4.0, 1.9)                                | 5.63, tq (4.5, 2.0)                       | -       | 81.0                           | 81.0              |
| 7                                                                                                    | 3.68, dddd (4, 3, 2.5, 2)           | 3.66, tt (5.2, 2.7)                                | 3.44, dtd (4.5, 2.9,<br>1.5)              | -       | 52.3                           | 52.3              |
| 8                                                                                                    | 3.82, m                             | 3.82, m                                            | 4.21, qd (3.3, 1.6)                       | -       | 71.8                           | 71.8              |
| 9α                                                                                                   | 2.31, dd (14.5, 2.5)                | 2.31, dd (14.7, 2.5)                               | 2.44, dd (14.7, 2.5)                      | -       | 44.9                           | 44.9              |
| 9β                                                                                                   | 2.17, dd (14.5, 8.3)                | 2.18, dd (14.6, 8.6)                               | 2.30, dd (14.6, 8.6)                      | -       | -                              | -                 |
| 10                                                                                                   | -                                   | -                                                  | -                                         | -       | 89.9                           | 87.7              |
| 11                                                                                                   | -                                   | -                                                  | -                                         | -       | 134.1                          | 140.6             |
| 12                                                                                                   | -                                   | -                                                  | -                                         | -       | 169.7                          | 169.7             |
| 13a                                                                                                  | 6.45, dd (3, 0.7)                   | 6.43, dd (3.0, 0.7)                                | 6.35, d (3.1)                             | -       | 127.4                          | 123.6             |
| 13b                                                                                                  | 5.86, dd (2.5, 0.7)                 | 5.84, dd (2.6, 0.7)                                | 5.61, d (2. 7)                            | -       | -                              | -                 |
| 14                                                                                                   | 1.44, s                             | 1.56, s                                            | 1.45, s                                   | -       | 20.7                           | 21.8              |
| 15                                                                                                   | 2.07, dd (1.5, 1.5)                 | 2.07, t (1.9)                                      | 2.06, t (1.9)                             | -       | 19.9                           | 19.6              |
| OH                                                                                                   | -                                   | 2.32                                               | 2.32                                      | -       | -                              | -                 |
|                                                                                                      |                                     |                                                    |                                           |         |                                |                   |
|                                                                                                      |                                     | 2D NMR cor                                         | relations                                 |         |                                |                   |
|                                                                                                      | <sup>1</sup> H- <sup>1</sup> H COSY | НМВС                                               | NOESY                                     |         | X-Ray                          |                   |
| 2                                                                                                    | Me.<br>Me.<br>Me                    | OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH       |                                           | af<br>A | ĘĘ.                            | -¥.               |
| 7                                                                                                    |                                     | OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH | Me H H H H H H H H H H H H H H H H H H H  |         |                                |                   |

**Table S1.** Comparison of natural and synthetic proposed/revised atripliciolide (2)(CDCl<sub>3</sub>)<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Only the <sup>1</sup>H NMR data was available in the literature (*Phytochemistry*, **1982**, *21*, 1669-1673). The solvent peak was set to be 7.27 ppm instead of 7.26 ppm. The chemical shift of 14-Me was erroneous, and has been correct by our full assignment. To the best of our knowledge no carbon NMR had been previously reported.

# d) Structure elucidation of 13

8-*epi*-Atripliciolide-2'-methyl butylate was first reported by Bohlmann and Dutta in 1979 (*Phytochemistry*, **1979**, *18*, 676). The configuration of the side chain was not assigned.

In this work 2'-(*S*)-MeBu-**13** was prepared from commercially available (*S*)-(+)-2-methyl butyric anhydride and 2'-(R+S)-MeBu-**13** from (±)-2-methyl butyric anhydride. The diastereomers are inseparable. The structures were fully elucidated based on 2D NMR spectroscopic analyses.

Based on <sup>1</sup>H NMR comparison (**Figure S3**), the structure of natural product was finally elucidated as 8-*epi*-atripliciolide-2'-(*S*)-MeBu (**13**).

**Figure S3.**<sup>1</sup>H NMR comparison of 8-*epi*-atripliciolide-2'-(*S*)-MeBu (**13**) and 8-*epi*-atripliciolide-2'-(*R*+*S*)-MeBu.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 0 14<br>14<br>10 H<br>3<br>0 7  | 2' 4'<br>≟<br>H Me 5'<br>→ 13            |         |                     |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|------------------------------------------|---------|---------------------|-------------------------------|
| $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ |                         |                                 |                                          |         |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 8- <i>epi</i> -Atriplici        | olide-2'-( <i>S</i> )-MeBu ( <b>13</b> ) | 1       | 120 1110            |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | <sup>1</sup> H NMR              | [                                        |         | <sup>13</sup> C NMR |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                 |                                          |         | $2^{-}(S)$ -        | 2' - (R) - R                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Natural                 | 2'-( <i>S</i> )-MeBu- <b>13</b> | 2'-( <i>R</i> )-MeBu- <b>13</b>          | N . 1   | MeBu-               | MeBu-                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (270 MHz)               | (400 MHz)                       | (400 MHz)                                | Natural | 13                  | 13                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                 |                                          |         | (100                | (100                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                 |                                          |         | MHZJ                | MHZ)                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                       | -                               | -                                        | -       | 205.44              | 205.50                        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.60, s                 | 5.60, s                         | 5.60, s                                  | -       | 102.99              | 103.09                        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                       | -                               | -                                        | -       | 185.10              | 185.10                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                       | -                               | -                                        | -       | 131.92              | 131.97                        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.93, dq (2.5, 1.5)     | 5.93, dq (3.6, 1.7)             | 5.93, m                                  | -       | 134.29              | 134.23                        |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.32, br dq (2.5, ~2)   | 5.32, dq (4.4, 2.1)             | 5.34, m                                  | -       | 87.48               | 87.51                         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.69, m                 | 3.69, dq (4.9, 2.6)             | 3.66, dq (4.9, 2.6)                      | -       | 138.29              | 138.46                        |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.25, ddd (5.5, 3.5, 2) | 5.25, ddd (6.1, 3.7,<br>2.2)    | 5.23, m                                  | -       | 168.92              | 168.87                        |
| 9α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.45, dd (15.5, 5.5)    | 2.45, dd (15.1, 6.1)            | 2.46, dd (15.1, 6.1)                     | -       | 124.01              | 124.07                        |
| 9β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.24, dd (15.5, 3.5)    | 2.24, dd (15.1, 3.7)            | 2.24, dd (15.1, 3.7)                     | -       | -                   | -                             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | -                               | -                                        | -       | 89.9                | 87.7                          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | -                               | -                                        | -       | 134.1               | 140.6                         |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | -                               | -                                        | _       | 169.7               | 169.7                         |
| 13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.35. d (3)             | 6.35. d (2.9)                   | 6.35. d (2.9)                            | _       | 127.4               | 123.6                         |
| 13h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 67 d (2 5)            | 5.67 d (2.5)                    | 5 68 d (2.5)                             | -       | -                   | -                             |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 49 s                  | 1 48 s                          | 1 47 s                                   | _       | 20.7                | 21.8                          |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 07 dd (1 5 1 5)       | $2.07 \pm (1.8)$                | $2.07 \pm (1.8)$                         | _       | 19.9                | 19.6                          |
| 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | -                               | -                                        | _       | 175.16              | 175 21                        |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.30  to (7.7)          | 2.28 m                          | 2.28 m                                   | _       | <i>A</i> 1 16       | <u>175.21</u><br><u>41.06</u> |
| 2'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 / m                   | 1 38 m                          | 1.20, m                                  | _       | 26.37               | 26.62                         |
| 2'h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. <del>1</del> , III   | 1.50, III<br>1.60 m             | 1.50, m                                  | -       | 20.37               | 20.02                         |
| 3 D<br>1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0, III<br>0.92 + (7)  | 1.00, III                       | 1.00, III                                | -       | -                   | -                             |
| 4<br>5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05, t(7)              | 1.05, t(7)                      | 1.07 d (71)                              | -       | 16 50               | 16.16                         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.05, u (7)             | 1.05, u (7.1)                   | 1.07, u (7.1)                            | -       | 10.50               | 10.10                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 2D NMP (                        | orrolations                              |         |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1H-1H COSV              | HMRC                            | NOFSV                                    |         |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11-11-0051              | Me                              | NOLSI                                    |         |                     |                               |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                 | Me Me Me                                 |         |                     |                               |

**Table S2.** Comparison of 2'-(S)-MeBu-**13**, 2'-(R)-MeBu-**13** and natural **13** (<sup>1</sup>H NMR)<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Previous report (*Phytochemistry*, **1979**, *18*, 676-676) provided <sup>1</sup>H NMR data without showing the spectra and did not assigned the side chain configuration. To the best of our knowledge no carbon NMR had been previously reported.

# e) Data comparison and full analyses of 1, 3-6, 8-12, 14-17

| $\begin{array}{c} & 4' & 3' \\ 0 & 14 & Me & 2' \\ 1 & 10 & 7 & 0 \\ 3 & 0 & 6_{H} & 0 & 0 \\ 15 & 0H & Goyazensolide (1) \end{array}$ |                              |                      |                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-----------------|-----------|
|                                                                                                                                        | <sup>1</sup> H NMI           | 1                    | <sup>13</sup> C | NMR       |
|                                                                                                                                        | Natural                      | Synthetic            | Natural         | Synthetic |
|                                                                                                                                        | (270 MHz)                    | (500MHz)             | (68 MHz)        | (126 MHz) |
| 1                                                                                                                                      | -                            | -                    | 204.6           | 204.6     |
| 2                                                                                                                                      | 5.83, s                      | 5.82, s              | 106.4           | 106.6     |
| 3                                                                                                                                      | -                            | -                    | 184.6           | 184.2     |
| 4                                                                                                                                      | -                            | -                    | 135.6           | 135.5     |
| 5                                                                                                                                      | 6.27, dt (1.5, 1.5)          | 6.30, dt (1.5)       | 134.6           | 134.2     |
| 6                                                                                                                                      | 5.33, dt (1.3, 2.5)          | 5.36, dd (4.9, 2.6)  | 81.7            | 81.5      |
| 7                                                                                                                                      | 3.80, m (2.5, 2.5, 3.3, 3.0) | 3.82, t (5.3)        | 51.0            | 50.9      |
| 8                                                                                                                                      | 4.53, dt (2.5, 13)           | 4.57, dt (2.2, 11.7) | 73.5            | 73.2      |
| 9α                                                                                                                                     | 2.50, dd (13, 15)            | 2.56-2.48, m         | 43.3            | 43.9      |
| 9β                                                                                                                                     | -                            | -                    | -               | -         |
| 10                                                                                                                                     | -                            | -                    | 89.7            | 89.8      |
| 11                                                                                                                                     | -                            | -                    | 135.6           | 135.3     |
| 12                                                                                                                                     | -                            | -                    | 166.8           | 166.8     |
| 13a                                                                                                                                    | 6.22, d (3.3)                | 6.25, d (3.1)        | 126.2           | 126.6     |
| 13b                                                                                                                                    | 5.49, d (3.0)                | 5.49, d (2.7)        | -               | -         |
| 14                                                                                                                                     | 1.52, s                      | 1.56, s              | 20.6            | 20.7      |
| 15                                                                                                                                     | 4.38, s (1.5, 1.3)           | 4.42, dt (3.1, 1.7)  | 62.9            | 63.2      |
| 1'                                                                                                                                     | -                            | -                    | 168.7           | 168.7     |
| 2'                                                                                                                                     | -                            | -                    | 133.6           | 133.1     |
| 3'a                                                                                                                                    | 6.02, s (1)                  | 6.03, s              | 124.5           | 124.6     |
| 3'b                                                                                                                                    | 5.56, m (1.5)                | 5.59-5.54, m         | -               | -         |
| 4'                                                                                                                                     | 1.83, m                      | 1.85, s              | 17.8            | 18.0      |

**Table S3.** Comparison of natural and synthetic goyazensolide (1) (CDCl<sub>3</sub>)<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> For NMR, see: *Phytochemishy*, **1976**, *15*, 191-193, structure misassignment as C-8 lactone. For structure revision, see: *J. Org. Chem.* **1982**, *47*, 2798-2800. For detailed full spectral assignments, see: *Magn. Reson. Chem.* **2001**, *39*, 3219-221.

|     |                       | $Me_{15}^{4'}$            |               |           |
|-----|-----------------------|---------------------------|---------------|-----------|
|     | 1H N                  | TS-Deoxygoyazensolide (3) | 13 <b>C</b> N | IMR       |
|     | Natural               | Synthetic                 | Natural       | Synthetic |
|     | (500 MHz)             | (400 MHz)                 | (125  MHz)    | (100 MHz) |
| 1   | -                     | -                         | 204.8         | 204.8     |
| 2   | 5.71, s               | 5.71, s                   | 104.7         | 104.7     |
| 3   | -                     | -                         | 186.8         | 186.9     |
| 4   | -                     | -                         | 130.4         | 130.3     |
| 5   | 6.00, m               | 6.00, m                   | 135.0         | 135.0     |
| 6   | 5.26, m               | 5.26, m                   | 81.5          | 81.5      |
| 7   | 3.72, m               | 3.73, dq (5.7, 2.9)       | 51.1          | 51.1      |
| 8   | 4.55, dt (11.5, 2.9)  | 4.54, dt, (11.6, 2.5)     | 73.4          | 73.3      |
| 9α  | 2.48, dd (13.8, 11.5) | 2.48, dd (13.9, 11.6)     | 43.8          | 43.8      |
| 9β  | 2.31, dd (13.8, 2.0)  | 2.31, dd (13.9, 2.1)      | -             | -         |
| 10  | -                     | -                         | 89.6          | 89.6      |
| 11  | -                     | -                         | 133.5         | 133.4     |
| 12  | -                     | -                         | 168.8         | 168.8     |
| 13a | 6.22, d (3.1)         | 6.21, d (3.1)             | 124.4         | 124.5     |
| 13b | 5.46, d (2.8)         | 5.45, d (2.7)             | -             | -         |
| 14  | 1.53, s               | 1.53, s                   | 20.6          | 20.6      |
| 15  | 2.08, t (2.2)         | 2.07, t (2.0)             | 20.3          | 20.4      |
| 1'  | -                     | -                         | 166.7         | 166.7     |
| 2'  | -                     | -                         | 135.5         | 135.4     |
| 3'a | 6.01, dq (1.6, 1.0)   | 6.01, m                   | 126.4         | 126.5     |
| 3'b | 5.54, quint (1.6)     | 5.54, m                   | -             | -         |
| 4'  | 1.83, dd (1.6, 1.0)   | 1.83, dd (1.6, 1.0)       | 18.0          | 18.0      |

Table S4. Comparison of natural and synthetic 15-deoxygoyazensolide (3) (CDCl<sub>3</sub>)<sup>4</sup>

<sup>&</sup>lt;sup>4</sup> Previous report (*Magn. Reson. Chem.* **2004**, *42*, 364–367) provides detailed full spectral assignments; for first isolation, see: *Phytochemishy*, **1976**, *15*, 1775-1776; for structure revision, see: *J. Org. Chem.* **1982**, *47*, 2798-2800. <sup>13</sup>C chemical shifts are reported relative to chloroform δ 77.00 ppm instead of 77.16 ppm.

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                               |                        |                   |              |
|-------------------------------------------------------|-------------------------------|------------------------|-------------------|--------------|
|                                                       |                               | Me <sub>15</sub> 6HO O |                   |              |
|                                                       |                               | Lychnopholide (4)      |                   |              |
|                                                       | <sup>1</sup> H NN             | AR                     | <sup>13</sup> C N | MR           |
|                                                       | Natural                       | Synthetic              | Natural           | Synthetic    |
|                                                       | (270 MHz)                     | (400 MHz)              | (68 MHz)          | (100 MHz)    |
| 1                                                     | -                             | -                      | 204./1            | 204.85       |
| 2                                                     | 5.72, s                       | 5.72, s                | 104.69            | 104.75       |
| 3                                                     | -                             |                        | 186.83            | 186.91       |
| 4                                                     | -                             | -                      | 130.44            | 130.31       |
| 5                                                     | 6.02, dq (3, 1.7)             | 6.02, dt (3.2, 1.7)    | 135.12            | 135.06       |
| 6                                                     | 5.30, ddq, (5, 3, 2.7)        | 5.31, dt (5.1, 2.6)    | 81.61             | 81.69        |
| 7                                                     | 3.72, dddd (5, 3.5, 2.8, 2.5) | 3.72, dq (5.5, 2.8)    | 51.23             | 51.17        |
| 8                                                     | 4.54, ddd, (12, 2.5, 2)       | 4.54, dt (11.8, 2.4)   | 73.00             | 72.97        |
| 9α                                                    | 2.49, dd (14, 12)             | 2.48, dd (13.8, 11.7)  | 44.04             | 44.04        |
| 9β                                                    | 2.32, dd (14, 2)              | 2.31, dd (13.9, 2.1)   | -                 | -            |
| 10                                                    | -                             | -                      | 89.64             | 89.70        |
| 11                                                    | -                             | -                      | 133.84            | 133.72       |
| 12                                                    | -                             | -                      | 168.02            | 168.91       |
| 13a                                                   | 6.23, d (3.2)                 | 6.23, d (3.1)          | 124.10            | 124.27       |
| 13b                                                   | 5.44, d (2.8)                 | 5.44, d (2.7)          | -                 | -            |
| 14                                                    | 1.54, s                       | 1.54, s                | 20.65             | 20.70        |
| 15                                                    | 2.09, dd (2.7, 1.7)           | 2.09, t (2.0)          | 20.22             | 20.35        |
| 1'                                                    | -                             | -                      | 167.00            | 167.06       |
| 2'                                                    | -                             | -                      | 126.51            | 126.38       |
| 3'                                                    | 6.09, qq (7, 1.5)             | 6.09, qq (7.3, 1.4)    | 140.54            | 140.80       |
| 4'                                                    | 1.90, dq (7, 1.5)             | 1.89, dq (7.3, 1.5)    | 15.64             | 15.71        |
| 5′                                                    | 1.80, dq (1.5, 1.5)           | 1.79, p (1.6)          | 19.93             | 20.03        |
|                                                       |                               |                        |                   |              |
|                                                       | 111 111 0001/                 | 2D NMR correlations    | NO                | <b>D</b> 017 |
|                                                       |                               | НМВС                   | NOI               | ESY          |
|                                                       |                               |                        | O<br>\\ Me,->     | Me Me        |
| 4                                                     |                               |                        | Me                |              |

Table S5. Comparison of natural and synthetic lychnopholide (4) (CDCl<sub>3</sub>)<sup>5</sup>

<sup>&</sup>lt;sup>5</sup> Previous report (*phytochemistry*, **1980**, *19*, 2381-2385) provides the <sup>1</sup>H NMR. Solvent peak was set up at 7.27 ppm instead of 7.26 ppm. And the <sup>13</sup>C NMR was provided in a later publication (*phytochemistry*, **1989**, *28*, 1441-1451) with the solvent peak set up at 77 ppm instead of 77.16 ppm.

| $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ |                                     |                            |                   |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|-------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | Atripliciolide-tiglate (5) |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | MR                         | <sup>13</sup> C I | NMR          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Natural                             | Synthetic                  | Natural           | Synthetic    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (270 MHz)                           | (400 MHz)                  |                   | (100 MHz)    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                   | -                          | -                 | 205.0        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.71, s                             | 5.70, s                    | -                 | 104.8        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                   | -                          | -                 | 187.0        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                   | -                          | -                 | 130.4        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.00, dq (3, 1.7)                   | 6.01, dq (3.4, 1.7)        | -                 | 135.2        |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.28, ddq, (5, 3, 2.5)              | 5.28, dt (5.2, 2.7)        | -                 | 81.7         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.73, dddd (5, 3.2, 2.8, 2.5)       | 3.72, dq (5.6, 2.9)        | -                 | 51.3         |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.54, ddd, (12, 2.5, 2)             | 4.54, dt (11.6, 2.5)       | -                 | 73.3         |
| 9α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.47, dd (14, 12)                   | 2.47, dd (13.9, 11.6)      | -                 | 44.1         |
| 9β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.30, dd (14, 2)                    | 2.31, dd (14.0, 2.1)       | -                 | -            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 89.8         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 133.7        |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 169.1        |
| 13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.20, d (3.2)                       | 6.20, d (3.1)              | -                 | 124.4        |
| 13b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.44, d (2.8)                       | 5.44, d (2.6)              | -                 | -            |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.53, s                             | 1.53, s                    | -                 | 20.8         |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.08, dd (2.5, 1.7)                 | 2.08, t (2.0)              | -                 | 20.5         |
| 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 167.5        |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 127.9        |
| 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.77, gg (7, 1.5)                   | 6.77, gg (7.1, 1.4)        | -                 | 138.8        |
| 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.77, dg (7, 1.5)                   | 1.76, dd (7.1, 1.2)        | -                 | 14.6         |
| 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.73, dg (1.5, 1.5)                 | 1.73, t (1.3)              | -                 | 11.9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                            |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 2D NMR correlations        |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>1</sup> H- <sup>1</sup> H COSY | НМВС                       | NO                | ESY          |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                            | O<br>Me           | Me<br>H<br>H |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                            | Me                | H O O        |

Table S6. Comparison of natural and synthetic atripliciolide-tiglate (5) (CDCl<sub>3</sub>)<sup>6</sup>

<sup>&</sup>lt;sup>6</sup> Solvent peak was set up at 7.27ppm instead of 7.26 ppm. <sup>1</sup>H NMR had been previously reported (*Phytochemistry*, **1980**, *19*, 2663-2668). To the best of our knowledge no carbon NMR had been previously reported.

| $\begin{array}{ccc}  & 4' & Me \\  & 0 & 14 & Me \\  & 1 & Me & H \\  & 1 & Me & H \end{array}$ |                                     |                       |          |           |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|----------|-----------|--|
| 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                         |                                     |                       |          |           |  |
|                                                                                                 | Me <sub>15</sub> H                  |                       |          |           |  |
|                                                                                                 | 1H N                                | MD                    | 13C N    | IMD       |  |
|                                                                                                 | Natural                             | Synthetic             | Natural  | Synthetic |  |
|                                                                                                 | (270 MHz)                           | (500 MHz)             | Inatural | (125 MHz) |  |
| 1                                                                                               | -                                   | -                     | -        | 205.0     |  |
| 2                                                                                               | 5.70, s                             | 5.70, s               | -        | 104.7     |  |
| 3                                                                                               | -                                   | -                     | -        | 187.1     |  |
| 4                                                                                               | -                                   | -                     | -        | 130.4     |  |
| 5                                                                                               | 5.90, dq, (3, 1.5)                  | 5.99, dt (3.1, 1.8)   | -        | 135.2     |  |
| 6                                                                                               | 5.23, ddg (5, 3, 1.5)               | 5.23, dp, (4.9, 2.3)  | -        | 81.8      |  |
| 7                                                                                               | 3.72, dddd (5, 3, 2.5, 2.5)         | 3.71, dq (5.6, 2.8)   | -        | 51.3      |  |
| 8                                                                                               | 4.42, ddd (11.5, 2.5, 2)            | 4.42, dt, (11.8, 2.4) | -        | 72.8      |  |
| 9α                                                                                              | 2.40, dd (14, 2)                    | 2.42, dd (13.9, 11.6) | -        | 44.1      |  |
| 9β                                                                                              | 2.25, dd (14, 11.5)                 | 2.25, dd (13.9, 2.0)  | -        | -         |  |
| 10                                                                                              | -                                   | -                     | -        | 105.0     |  |
| 11                                                                                              | -                                   | -                     | -        | 133.3     |  |
| 12                                                                                              | -                                   | -                     | -        | 168.9     |  |
| 13a                                                                                             | 6.26, d (3)                         | 6.26, d (3.1)         | -        | 124.4     |  |
| 13b                                                                                             | 5.47, d (2.5)                       | 5.46, d (2.6)         | -        | -         |  |
| 14                                                                                              | 1.52, s                             | 1.52, s               | -        | 20.8      |  |
| 15                                                                                              | 2.08, dd (1.5, 1.5)                 | 2.07, t (2.0)         | -        | 20.5      |  |
| 1'                                                                                              | -                                   | -                     | -        | 176.7     |  |
| 2'                                                                                              | 2.39, qq (7, 7)                     | 2.39, sept, (7)       | -        | 33.8      |  |
| 3'/4'                                                                                           | 1.40, d (7)                         | 1.04, d (7)           | -        | 18.9      |  |
| 3'/4'                                                                                           | 1.08, d (7)                         | 1.08, d (7)           | -        | 18.7      |  |
|                                                                                                 |                                     |                       |          |           |  |
|                                                                                                 |                                     | 2D NMR correlations   | 1        |           |  |
|                                                                                                 | <sup>1</sup> H- <sup>1</sup> H COSY | HMBC                  | NOI      | ESY       |  |
|                                                                                                 | \<br>\                              |                       |          |           |  |
|                                                                                                 |                                     | • <del>•</del>        | 0        | Me        |  |
|                                                                                                 | Ma                                  | Ma                    | Me,-'    |           |  |
| 7                                                                                               |                                     |                       |          | 10, -0    |  |
|                                                                                                 |                                     |                       |          |           |  |
|                                                                                                 |                                     | × − °                 | Me       | H TO      |  |
|                                                                                                 | Me                                  | Me                    |          |           |  |

Table S7. Comparison of natural and synthetic atripliciolide-isobutyrate (6) (CDCl<sub>3</sub>)<sup>7</sup>

 $<sup>^7</sup>$  <sup>1</sup>H NMR had been previously reported (*phytochemistry*, **1982**, *21*, 1669-1673) with different chemical shifts for H<sub>5</sub> and H<sub>3'</sub>, and J coupling constants of 9 $\alpha$  and 9 $\beta$  swapped. To the best of our knowledge no carbon NMR had been previously reported.

| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ |                                     |                            |                   |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|-------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>1</sup> H N                    | MR                         | <sup>13</sup> C I | NMR       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Natural                             | Synthetic                  | Natural           | Svnthetic |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (270 MHz)                           | (500 MHz)                  |                   | (125 MHz) |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                   | -                          | -                 | 205.4     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.59, s                             | 5.60, s                    | -                 | 103.3     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                   | -                          | -                 | 185.2     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                   | -                          | -                 | 131.9     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.94, dq (2.5, 1.5)                 | 5.95, dq (3.6, 1.8)        | -                 | 134.2     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.28, dq (2, 1.5)                   | 5.28, tq (4.0, 1.9)        | -                 | 75.3      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.70, m                             | 3.69, dtd (4.6, 2.7, 1.9)  | -                 | 48.5      |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.18, ddd (5, 3, 3)                 | 5.19, ddd, (5.4, 3.4, 1.9) | -                 | 75.1      |
| 9α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.55, dd (15, 5)                    | 2.55, dd (15.2, 5.4)       | -                 | 42.6      |
| 9β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.31, dd (15, 3)                    | 2.31, dd (15.1, 3.4)       | -                 | -         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 87.8      |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 139.0     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 168.9     |
| 13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.35, d (3)                         | 6.35, d (2.9)              | -                 | 123.6     |
| 13b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.67, d (2.5)                       | 5.67, d (2.6)              | -                 | -         |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.48, s                             | 1.49, s                    | -                 | 21.5      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.07, dd (1.5, 1.5)                 | 2.07, t (1.9)              | -                 | 19.7      |
| 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 165.9     |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | -                          | -                 | 135.2     |
| 3'a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.02, br s                          | 6.02, p (1.0)              | -                 | 127.6     |
| 3'b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.60, dq (7, 1)                     | 5.61, dq (7.1, 1.1)        |                   | 18.3      |
| 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.86, br s                          | 1.86, dd (1.6, 0.9)        | -                 | 21.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                            |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | 2D NMR correlations        |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>1</sup> H- <sup>1</sup> H COSY | НМВС                       | NO                | ESY       |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                            | Me<br>Me          |           |

# Table S8. Comparison of natural and synthetic calaxin (8) (CDCl<sub>3</sub>)<sup>8</sup>

<sup>&</sup>lt;sup>8</sup> For <sup>1</sup>H NMR, see: *Phytochemistry*, **1978**, *17*, 471-474. To the best of our knowledge no carbon NMR had been previously reported.

|     |                            | $\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ |                                                         |
|-----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|     | <sup>1</sup> H NN          | <u>//R</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |
|     | Natural                    | Synthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
|     | (270 MHz)                  | (300 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 1   | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 2   | 5.59, s                    | 5.60, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 3   | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 4   | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 5   | 5.95, dq (4, 1.5)          | 5.95, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/E isomorization from anglata to                       |
| 6   | 5.35, ddq (4, 4, 1.5)      | 5.35, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tiglate happened during the                             |
| 7   | 3.71, ddd (4, 2)           | 3.70, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | esterification and we obtained the                      |
| 8   | 5.14, d (6, 3, 2)          | 5.28, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tiglate <b>10</b> as major product. We couldn't         |
| 9α  | 2.53, dd (15, 6)           | 2.54, dd (15.3, 5.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | obtain enough 8- <i>eni</i> -lychnonholide ( <b>9</b> ) |
| 9β  | 2.30, dd (15, 3)           | 2.30, dd (15.1, 3.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for full analysis                                       |
| 10  | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 11  | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For detailed information see                            |
| 12  | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Supplementary Section f                                 |
| 13a | 6.36, d (4.5)              | 6.34, d (2.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |
| 13  | 5 70 d (4 5)               | 5 70 d (2 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| b   | 5.70, u ( <del>1</del> .5) | 5.70, u (2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |
| 14  | 1.49, s                    | 1.49, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 15  | 2.08, dd (1.5, 1.5)        | 2.08, t (1.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |
| 1'  | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 2'  | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |
| 3'  | 6.13, qq (7, 1.5)          | 6.12, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 4'  | 1.94, dq (7, 1.5)          | 1.94, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| 5'  | 1.80, dq (7, 1.5)          | 1.80, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |

# Table S9. Comparison of natural and synthetic 8-epi-lychnopholide (9) (CDCl<sub>3</sub>)<sup>9</sup>

<sup>&</sup>lt;sup>9</sup> A previous report (*Phytochemistry*, **1981**, *20*, 743-749) gave the chemical shift for H-8 to be at 5.14 ppm. A later report (*Phytochemistry*, **1982**, *21*, 464-465) assigned a chemical shift for H-8 to be at 5.25 ppm very similar to ours.

| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$ |                                     |                            |                 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|-----------------|-----------|
|                                                                                                                                            | <sup>1</sup> H N                    | IMR                        | <sup>13</sup> C | NMR       |
|                                                                                                                                            | Natural                             | Synthetic                  | Natural         | Synthetic |
|                                                                                                                                            | (270 MHz)                           | (400 MHz)                  |                 | (100 MHz) |
| 1                                                                                                                                          | -                                   | -                          | -               | 205.4     |
| 2                                                                                                                                          | 5.59, s                             | 5.59, s                    | -               | 103.3     |
| 3                                                                                                                                          | -                                   | -                          | -               | 185.1     |
| 4                                                                                                                                          | -                                   | -                          | -               | 131.8     |
| 5                                                                                                                                          | 5.94, dq (2.5, 1.5)                 | 5.94, dq (3.6, 1.8)        | -               | 134.3     |
| 6                                                                                                                                          | 5.28, dq (2, 1.5)                   | 5.28, m                    | -               | 75.4      |
| 7                                                                                                                                          | 3.70, m                             | 3.69, m                    | -               | 48.6      |
| 8                                                                                                                                          | 5.18, ddd (5, 3, 3)                 | 5.19, ddd, (5.4, 3.4, 1.9) | -               | 74.8      |
| 9α                                                                                                                                         | 2.52, dd (15, 5)                    | 2.52, dd (15.1, 5.4)       | -               | 42.7      |
| 9β                                                                                                                                         | 2.30, dd (15, 3)                    | 2.30, dd (15.1, 3.4)       | -               | -         |
| 10                                                                                                                                         | -                                   | -                          | -               | 87.8      |
| 11                                                                                                                                         | -                                   | -                          | -               | 139.1     |
| 12                                                                                                                                         | -                                   | -                          | -               | 169.0     |
| 13a                                                                                                                                        | 6.33, d (3)                         | 6.33, d (2.9)              | -               | 123.5     |
| 13b                                                                                                                                        | 5.65, d (2.5)                       | 5.66, d (2.5)              | -               | -         |
| 14                                                                                                                                         | 1.48, s                             | 1.48, s                    | -               | 21.5      |
| 15                                                                                                                                         | 2.07, dd (1.5, 1.5)                 | 2.07, t (1.9)              | -               | 14.8      |
| 1'                                                                                                                                         | -                                   | -                          | -               | 166.6     |
| 2'                                                                                                                                         | -                                   | -                          | -               | 127.6     |
| 3'                                                                                                                                         | 6.76, qq (7, 1)                     | 6.76, qq (7, 1.4)          | -               | 139.7     |
| 4'                                                                                                                                         | 1.78, dq (7, 1)                     | 1.78, dq (7.1, 1.1)        | -               | 19.7      |
| 5'                                                                                                                                         | 1.74, br s                          | 1.74, p (1.1)              | -               | 12.0      |
|                                                                                                                                            |                                     |                            |                 |           |
|                                                                                                                                            |                                     | 2D NMR correlations        |                 |           |
|                                                                                                                                            | <sup>1</sup> H- <sup>1</sup> H COSY | НМВС                       | NO              | ESY       |
| 10                                                                                                                                         |                                     |                            | Me<br>Me        |           |

**Table S10.** Comparison of natural and synthetic 8-*epi*-atripliciolide-tiglate (10)(CDCl3)<sup>10</sup>

<sup>&</sup>lt;sup>10</sup> For <sup>1</sup>H NMR, see: *Phytochemistry*, **1978**, *17*, 471-474. To the best of our knowledge no carbon NMR had been previously reported.

| $\begin{array}{c} 0 & 14 & Me & 3' \\ 1 & 10 & H & H & Me & 4' \\ 3 & 0 & 6 & 11 & 0 \\ Me_{15} & Cillarin (11) \end{array}$ |                                     |                            |                   |                        |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|-------------------|------------------------|
|                                                                                                                              | <sup>1</sup> H N                    | MR                         | <sup>13</sup> C N | MR                     |
|                                                                                                                              | Natural<br>(270 MHz)                | Synthetic<br>(400 MHz)     | Natural           | Synthetic<br>(100 MHz) |
| 1                                                                                                                            | -                                   | -                          | -                 | 205 5                  |
| 2                                                                                                                            | 5 59 s                              | 5.60 s                     | -                 | 103.1                  |
| 3                                                                                                                            | -                                   | -                          | -                 | 185.1                  |
| 4                                                                                                                            | -                                   | -                          | -                 | 132.0                  |
| 5                                                                                                                            | 5.94. dg (2.5. 1.5)                 | 5.93. dg (3.6. 1.8)        | -                 | 134.2                  |
| 6                                                                                                                            | 5.34. dg (2, 1.5)                   | 5.34. tg (3.9, 1.9)        | -                 | 75.4                   |
| 7                                                                                                                            | 3.67, m                             | 3.67, dg (4.8, 2.6)        | -                 | 48.6                   |
| 8                                                                                                                            | 5.21, ddd (5, 3, 3)                 | 5.21, ddd, (5.7, 3.6, 2.1) | -                 | 74.0                   |
| 9α                                                                                                                           | 2.48, dd (15, 5)                    | 2.48, dd (15.1, 5.4)       | -                 | 42.0                   |
| 9β                                                                                                                           | 2.24, dd (15, 3)                    | 2.24, dd (15.1, 3.6)       | -                 | -                      |
| 10                                                                                                                           | -                                   | -                          | -                 | 87.5                   |
| 11                                                                                                                           | -                                   | -                          | -                 | 138.5                  |
| 12                                                                                                                           | -                                   | -                          | -                 | 168.9                  |
| 13a                                                                                                                          | 6.35, d (3)                         | 6.35, d (2.9)              | -                 | 124.1                  |
| 13b                                                                                                                          | 5.67, d (2.5)                       | 5.67, d (2.5)              | -                 | -                      |
| 14                                                                                                                           | 1.48, s                             | 1.47, s                    | -                 | 21.3                   |
| 15                                                                                                                           | 2.07, dd (1.5, 1.5)                 | 2.07, t (1.8)              | -                 | 19.7                   |
| 1'                                                                                                                           | -                                   | -                          | -                 | 175.6                  |
| 2'                                                                                                                           | 2.46, qq                            | 2.46, m                    | -                 | 34.1                   |
| 3'/4'                                                                                                                        | 1.08, d                             | 1.10, d (2.5)              | -                 | 19.0                   |
| 3'/4'                                                                                                                        | 1.07, d                             | 1.08, d (2.6)              | -                 | 18.6                   |
|                                                                                                                              |                                     |                            |                   |                        |
|                                                                                                                              |                                     | 2D NMR correlations        |                   |                        |
|                                                                                                                              | <sup>1</sup> H- <sup>1</sup> H COSY | HMBC                       | NOE               | ESY                    |
| 11                                                                                                                           |                                     | Me<br>Me                   | Me<br>Me          |                        |

# Table S11. Comparison of natural and synthetic ciliarin (11) (CDCl<sub>3</sub>)<sup>11</sup>

<sup>&</sup>lt;sup>11</sup> For <sup>1</sup>H NMR, see: *Phytochemistry*, **1978**, *17*, 471-474. To the best of our knowledge no carbon NMR had been previously reported.

| $\begin{array}{c} 0 & 14 \\ 1 & Me \\ 1 & Me \\ 1 & 10 \\ 1 & H \\ 1 & H \\ 3 & 0 \\ 1 & 11 \\ 3 & 0 \\ 6 & 111 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\ 1 & 13 \\$ |                                                                                             |                                       |                 |           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-----------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | Me 15                                 |                 |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | 8-epi-Atripliciolide-isovalerate (12) |                 |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> H N                                                                            | IMR                                   | <sup>13</sup> C | NMR       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Natural                                                                                     | Synthetic                             | Natural         | Synthetic |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (270 MHz)                                                                                   | (400 MHz)                             |                 | (100 MHz) |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                     | -               | 205.6     |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.59, s                                                                                     | 5.60, s                               | -               | 103.2     |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                     | -               | 185.1     |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                     | -               | 132.0     |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.93, dq (2.5, 1.5)                                                                         | 5.93, dq (4.4, 1.7)                   | -               | 134.2     |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.34, dq (2, 1.5)                                                                           | 5.34, td (4.4, 2.1)                   | -               | 75.5      |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.65, m                                                                                     | 3.64, dq (4.9, 2.5)                   | -               | 48.5      |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.23, ddd (5, 3, 3)                                                                         | 5.24, ddd, (5.8, 3.6, 2.1)            | -               | 74.0      |  |  |  |
| 9α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.48, dd (15, 5)                                                                            | 2.48, dd (15.2, 6)                    | -               | 42.0      |  |  |  |
| 9β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.22, dd (15, 3)                                                                            | 2.23, dd (15.1, 3.6)                  | -               | -         |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                           | -                                     | -               | 87.5      |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                       | -               | 138.5     |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                           | -                                     | -               | 168.9     |  |  |  |
| 13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.36, d (3)                                                                                 | 6.36, d (2.9)                         | -               | 124.1     |  |  |  |
| 13b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.68, d (2.5)                                                                               | 5.68, d (2.6)                         | -               | -         |  |  |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.48, s                                                                                     | 1.47, s                               | -               | 21.2      |  |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.07, dd (1.5, 1.5)                                                                         | 2.07, t (1.8)                         | -               | 19.7      |  |  |  |
| 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                           | -                                     | -               | 171.6     |  |  |  |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.09, dd                                                                                    | 2.10, m                               | -               | 42.9      |  |  |  |
| 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.98, m                                                                                     | 1.97, ddd (12.9, 7.5, 6.4)            | -               | 25.5      |  |  |  |
| 4'/5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.90                                                                                        | 0.89, d (4.8)                         | -               | 22.5      |  |  |  |
| 4'/5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                        | 0.88, d (4.8)                         | -               | 22.4      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                       |                 |           |  |  |  |
| 2D NMR correlations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                       |                 |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> H- <sup>1</sup> H COSY                                                         | НМВС                                  | NO              | ESY       |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O |                                       | Me<br>Me        |           |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mé                                                                                          | Mo                                    |                 |           |  |  |  |

**Table S12.** Comparison of natural and synthetic 8-*epi*-atripliciolide-isovalerate (12)(CDCl<sub>3</sub>)<sup>12</sup>

<sup>&</sup>lt;sup>12</sup> For <sup>1</sup>H NMR, see: *Phytochemistry*, **1978**, *17*, 471-474. In this report the chemical shift of 0.87 ppm was wrongly moved to another column on the results table. To the best of our knowledge no carbon NMR had been previously reported.

| Me H OH 2' 3' OH |                                     |                                     |                               |                                   |                                       |                           |
|------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|-----------------------------------|---------------------------------------|---------------------------|
|                                                      |                                     |                                     | <sup>13</sup> C NMR           |                                   |                                       |                           |
|                                                      | Natural <sup>13</sup><br>(500 MHz)  | Natural <sup>14</sup><br>(500 MHz)  | Synthetic<br>(500 MHz)        | Natural <sup>13</sup><br>(125MHz) | Natural <sup>14</sup><br>(125<br>MHz) | Synthetic<br>(125<br>MHz) |
| 1                                                    | -                                   | -                                   | -                             | 205.2                             | 205.8                                 | 205.3                     |
| 2                                                    | 5.62, s                             | 5.63, s                             | 5.61, s                       | 104.5                             | 104.5                                 | 104.7                     |
| 3                                                    | -                                   | -                                   | -                             | 186.8                             | 187.2                                 | 186.9                     |
| 4                                                    | -                                   | -                                   | -                             | 130.2                             | 130.0                                 | 130.3                     |
| 5                                                    | 6.03, dq (2.7, 1.6)                 | 6.03, dq (2.7, 1.6)                 | 6.03, dq (3.6,<br>1.8)        | 134.6                             | 134.7                                 | 134.7                     |
| 6                                                    | 4.98, dddq (7,<br>2.7, 2.4, 0.6)    | 5.00, dddq (7.1,<br>2.7, 2.2, 0.6)  | 4.98, dp (7.2,<br>2.4)        | 81.5                              | 81.4                                  | 81.6                      |
| 7                                                    | 2.85, dd (7, 4.2)                   | 2.82, dd (7.1, 4.2)                 | 2.86, dd (7.2,<br>4.3)        | 62.5                              | 62.5                                  | 62.5                      |
| 8                                                    | 4.14, dddd (11.9,<br>4.2, 2.6, 0.6) | 4.10, dddd (11.9,<br>4.2, 2.6, 0.6) | 4.15, ddd (11.8,<br>4.3, 2.8) | 78.5                              | 78.3                                  | 78.6                      |
| 9α                                                   | 2.06, dd (13.6,<br>11.9)            | 2.01, dd (13.6,<br>11.9)            | 2.05, m                       | 43.7                              | 43.5                                  | 43.9                      |
| 9β                                                   | 2.41, dd (13.6,<br>2.6)             | 2.47, dd (13.6,<br>2.6)             | 2.39, dd, (13.6,<br>2.6)      | -                                 | -                                     | -                         |
| 10                                                   | -                                   | -                                   | -                             | 89.9                              | 90.2                                  | 90.1                      |
| 11                                                   | -                                   | -                                   | -                             | 59.8                              | 59.8                                  | 59.9                      |
| 12                                                   | -                                   | -                                   | -                             | 175.4                             | 175.7                                 | 175.6                     |
| 13                                                   | 1.19, s                             | 1.18, s                             | 1.20, s                       | 21.9                              | 21.9                                  | 22.0                      |
| 14                                                   | 1.49, s                             | 1.46, s                             | 1.50, s                       | 20.6                              | 20.5                                  | 20.7                      |
| 15                                                   | 2.06, dd (2.4, 1.6)                 | 2.05, dd (2.2, 1.6)                 | 2.06, m                       | 20.3                              | 20.3                                  | 20.5                      |
| 1'                                                   | -                                   | -                                   | -                             | 106.2                             | 106.1                                 | 106.3                     |
| 2'                                                   | -                                   | -                                   | -                             | 142.0                             | 142.1                                 | 142.1                     |
| 3'a                                                  | 5.08, dd (2.0, 1.5)                 | 5.07, dq (2.0, 1.8)                 | 5.08, p (1.6).                | 116.1                             | 115.8                                 | 116.4                     |
| 3'b                                                  | 5.33, dd (2.0, 0.9)                 | 5.30, dq (2.0, 1.1)                 | 5.33, dq (1.8,<br>0.8).       | -                                 | -                                     | -                         |
| 4'                                                   | 1.90, dd (1.5, 0.9)                 | 1.90, dd (1.8, 1.1)                 | 1.89, dd (1.6,<br>0.9)        | 18.9                              | 18.9                                  | 19.1                      |
| -OH                                                  | -                                   | 3.62, br s                          | -                             | -                                 |                                       | -                         |

Table S13. Comparison of natural and synthetic eremantholide C (14) (CDCl<sub>3</sub>)

<sup>&</sup>lt;sup>13</sup> Sass, D. C., Heleno, V. C. G., Cavalcante, S., da Silva Barbosa, J., Soares, A. C. F., Constantino, M. G. *J. Org. Chem.* **2012**, *77*, 9374–9378.

<sup>&</sup>lt;sup>14</sup> Heleno, V. C. G., de Oliveira, K. T., Lopes, J. L. C., Lopes, N. P., Ferreira, A. G. *Magn. Reson. Chem.* **2008**, *46*, 576-581.

| $\begin{array}{c} 0 & 14 \\ 1 & Me \\ 1 & 10 \\ 3 & 00H \\ 15 \end{array}$ |                                     |                             |                       |           |  |  |
|----------------------------------------------------------------------------|-------------------------------------|-----------------------------|-----------------------|-----------|--|--|
|                                                                            |                                     | 5-epi-Isogoyazensolide (15) |                       |           |  |  |
|                                                                            | <sup>1</sup> H N                    | MR                          | <sup>13</sup> C N     | IMR       |  |  |
|                                                                            | Natural <sup>15</sup>               | Synthetic                   | Natural <sup>16</sup> | Synthetic |  |  |
|                                                                            | (270 MHz)                           | (400 MHz)                   | (100 MHz)             | (100 MHz) |  |  |
| 1                                                                          | -                                   | -                           | 203.7                 | 203.8     |  |  |
| 2                                                                          | 5.97, s                             | 5.96, s                     | 106.5                 | 106.5     |  |  |
| 3                                                                          | -                                   | -                           | 185.2                 | 185.2     |  |  |
| 4                                                                          | -                                   | -                           | 137.3                 | 137.1     |  |  |
| 5                                                                          | 4.69, ddd (9.5, 2, 2)               | 4.67, dt (9.6, 2.2)         | 74.0                  | 73.9      |  |  |
| 6                                                                          | 4.60, dd (9.5, 5)                   | 4.60, dd (9.6, 6)           | 85.0                  | 85.0      |  |  |
| 7                                                                          | 3.66, dddd (5, 2, 3.5, 3)           | 3.66, m                     | 51.2                  | 51.1      |  |  |
| 8                                                                          | 4.39, ddd (2, 11.5, 2)              | 4.37, dt (12, 1.8)          | 70.6                  | 70.5      |  |  |
| 9α                                                                         | 2.50, dd (13, 11.5)                 | 2.50, dd (13.7, 11.9)       | 45.2                  | 45.2      |  |  |
| 9β                                                                         | 2.37, dd (13, 2)                    | 2.37, dd (13.9, 1.7)        | -                     | -         |  |  |
| 10                                                                         | -                                   | -                           | 90.2                  | 90.2      |  |  |
| 11                                                                         | -                                   | -                           | 133.0                 | 132.8     |  |  |
| 12                                                                         | -                                   | -                           | 167.6                 | 167.6     |  |  |
| 13a                                                                        | 6.28, d (3.5)                       | 6.28, d (3.5)               | 124.7                 | 124.9     |  |  |
| 13b                                                                        | 5.57, d (3)                         | 5.56, d (3.1)               | -                     | -         |  |  |
| 14                                                                         | 1.53 s                              | 1.54, s                     | 21.2                  | 21.2      |  |  |
| 15a                                                                        | 6.26, dd (2, 1)                     | 6.25, dd (2.3, 0.9)         | 123.1                 | 123.3     |  |  |
| 15b                                                                        | 6.01, m                             | 6.01, m                     | -                     | -         |  |  |
| 1'                                                                         | -                                   | -                           | 166.8                 | 166.8     |  |  |
| 2'                                                                         | _                                   | -                           | 135.4                 | 135.3     |  |  |
| 3'a                                                                        | 6.01. m                             | 6.01. m                     | 126.6                 | 126.7     |  |  |
| 3'b                                                                        | 5.56. br s                          | 5.55. m                     | -                     | -         |  |  |
| 4'                                                                         | 1.83. br s                          | 1.83. dd (1.6. 1)           | 17.9                  | 18.0      |  |  |
|                                                                            |                                     |                             | -                     |           |  |  |
| 2D NMR correlations                                                        |                                     |                             |                       |           |  |  |
|                                                                            | <sup>1</sup> H- <sup>1</sup> H COSY | НМВС                        |                       |           |  |  |
| 15                                                                         | Me<br>o<br>Ha<br>Hb<br>O<br>O<br>Ha |                             |                       |           |  |  |
|                                                                            | Г Сн                                | ОН                          |                       |           |  |  |

Table S14. Comparison of natural and synthetic 5-epi-isogoyazensolide (15) (CDCl<sub>3</sub>)

 <sup>&</sup>lt;sup>15</sup> Bohlmann, F., Zdero, C., Robinson, H., King, R. M. *Phytochemistry*, **1981**, *20*, 731-734.
 <sup>16</sup> Lopes, J. L. C. *J. Braz. Chem. Soc.* **1995**, *6*, 307-311. In this manuscript the chemical shift for protons 11 and 2' were wrongly assigned and they should have been swapped.

| $\begin{array}{c} \begin{array}{c} 14 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ |                                       |                      |                                                                                        |                       |  |  |  |
|--------------------------------------------------------------------------------------|---------------------------------------|----------------------|----------------------------------------------------------------------------------------|-----------------------|--|--|--|
|                                                                                      | 111 11                                | lagitinin F (16)     | 120 1                                                                                  | MD                    |  |  |  |
|                                                                                      | H N                                   | MR<br>Constituentia  |                                                                                        | MK<br>Countly at it a |  |  |  |
|                                                                                      | Naturai<br>(200 Mila)                 | Synthetic            | Authentic sample                                                                       | Synthetic             |  |  |  |
| 1                                                                                    | [300 MHZ]                             |                      |                                                                                        | 127.0                 |  |  |  |
| 1                                                                                    | 6 21 d (6)                            | 5.81, (u, 5.5)       | 127.9                                                                                  | 127.9                 |  |  |  |
| 2                                                                                    | 0.31, 0 (0)                           | 0.33, (u, 3.7)       | 139.0<br>100 E                                                                         | 139.0                 |  |  |  |
| 3                                                                                    | -                                     | -                    | 100.5                                                                                  | 100.5                 |  |  |  |
| 5                                                                                    | 5 69 m                                | 5 68 m               | 137.5                                                                                  | 137.5                 |  |  |  |
| 5                                                                                    | 5 90 dd (5 3)                         | 5.00, III            | 74.7                                                                                   | 74.7                  |  |  |  |
| 7                                                                                    | 3.42  ddd (2.5, 2, 1)                 | 3.42 m               | 48.0                                                                                   | 48.0                  |  |  |  |
| 8                                                                                    | 5.92, uuu (2.3, 2, 1)<br>5.08 t (5.4) | 5.92, m              | 76.6                                                                                   | 76.6                  |  |  |  |
| 90<br>90                                                                             | 2 36 dd (15 4)                        | 2 36 dd (162 39)     | 43.9                                                                                   | 43.9                  |  |  |  |
| 9ß                                                                                   | 2.28 dd (15, 5)                       | 2.30, dd (16.2, 3.3) | -                                                                                      | -                     |  |  |  |
| 10                                                                                   | -                                     | -                    | 87.2                                                                                   | 87.2                  |  |  |  |
| 11                                                                                   | _                                     | -                    | 139.0                                                                                  | 139.0                 |  |  |  |
| 12                                                                                   | -                                     | -                    | 169.7                                                                                  | 169.7                 |  |  |  |
| 13a                                                                                  | 6.30, d (2.5)                         | 6.35, d (2.9)        | 124.3                                                                                  | 124.3                 |  |  |  |
| 13b                                                                                  | 5.69, d (2)                           | 5.67, d (2.5)        | -                                                                                      | -                     |  |  |  |
| 14                                                                                   | 1.41, s                               | 1.40, s              | 31.8                                                                                   | 31.8                  |  |  |  |
| 15                                                                                   | 1.93, t (1.5)                         | 1.93, t (1.5)        | 20.8                                                                                   | 20.8                  |  |  |  |
| 1'                                                                                   | -                                     | -                    | 175.9                                                                                  | 175.9                 |  |  |  |
| 2'                                                                                   | 2.49, hept (7.2)                      | 2.50, hept (7)       | 34.4                                                                                   | 34.4                  |  |  |  |
| 3'                                                                                   | 1.11, d (7.2)                         | 1.11, d (7)          | 19.1                                                                                   | 19.1                  |  |  |  |
| 4'                                                                                   | 1.13, d (7.2)                         | 1.13, d (7)          | 18.9                                                                                   | 18.9                  |  |  |  |
|                                                                                      |                                       |                      |                                                                                        |                       |  |  |  |
| 2D NMR correlations                                                                  |                                       |                      |                                                                                        |                       |  |  |  |
|                                                                                      | <sup>1</sup> H- <sup>1</sup> H COSY   | НМВС                 | NOE                                                                                    | SY                    |  |  |  |
| 16                                                                                   |                                       | Me<br>Ho<br>Ho       | HO<br>Me<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO |                       |  |  |  |

Table S15. Comparison of natural and synthetic tagitinin F (16) (CDCl<sub>3</sub>)<sup>17</sup>

<sup>&</sup>lt;sup>17</sup> Fernandes, V. H. C. Viera, N. B. Zanini, L. B. L. Silva, A. F. Salem, P. P. O. Soares, M. G. Nicacio, K. J. de Paula, A. C. C. Virtuoso, L. S. Oliveira, T. B. Silva, E. O. Dias, D. F. Chagas-Paula, D. A. *Photochem. Photobiol.* **2020**, *96*, 14-20.

| $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$ |                                                       |                      |                       |                   |                     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|-----------------------|-------------------|---------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 1H NMR               |                       | <sup>13</sup> C N | <sup>13</sup> C NMR |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Natural <sup>17</sup> Natural <sup>18</sup> Synthetic |                      | Natural <sup>18</sup> | Synthetic         |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (500 MHz)                                             | (270 MHz)            | (500 MHz)             | (68 MHz)          | (125 MHz)           |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.94, (d, 17.1)                                       | 6.94, (d, 17)        | 6.91, (d, 17.1)       | 160.49            | 159.88              |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.26, (d, 17.1)                                       | 6.26, (d, 17)        | 6.24, (d, 17.1)       | 129.57            | 129.72              |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                     | -                    | -                     | 196.85            | 196.57              |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                     | -                    | -                     | 138.84            | 138.96              |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.87, like d (9)                                      | 5.88, br d (10)      | 5.87, br d (9.5)      | 137.14            | 137.15              |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.41, like d (9)                                      | 5.42, br d (10)      | 5.39, br d (9.1)      | 76.05             | 75.93               |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.54, m                                               | 3.55, m              | 3.53, m               | 47.05             | 47.06               |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.37, m                                               | 5.33, m              | 5.36, m               | 74.11             | 73.73               |  |  |
| 9α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.49                                                  | ~2.4                 | 2.46                  | 48.37             | 48.47               |  |  |
| 9β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.02                                                  | ~2                   | 2.01, dd (14.4, 4.5)  | -                 | -                   |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                     | -                    | -                     | 71.91             | 72.18               |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                     | -                    | -                     | 136.11            | 136.00              |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                     | -                    | -                     | 169.75            | 169.58              |  |  |
| 13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.34, d (1.5)                                         | 6.36, d (2)          | 6.36, d (1.8)         | 124.43            | 124.49              |  |  |
| 13b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.81, d (1.5)                                         | 5.81, d (2)          | 5.80, d (1.7)         | -                 | -                   |  |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53, s                                               | 1.56                 | 1.54, s               | 28.88             | 29.16               |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.95, like s                                          | 1.97, br             | 1.96, br s            | 19.65             | 19.69               |  |  |
| 1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                     | -                    | -                     | 176.18            | 176.06              |  |  |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.42, m                                               | 2.44, m              | 2.43, m               | 34.06             | 34.03               |  |  |
| 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07, d (4.5)                                         | 1.10, d (7.1)        | 1.08, d (7)           | 18.80             | 18.81               |  |  |
| 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.05, d (4.5)                                         | 1.08, d (7.1)        | 1.06, d (7)           | 18.64             | 18.62               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                      |                       |                   |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2D NMR correlations                                   |                      |                       |                   |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> H- <sup>1</sup> H COSY                   | HMBC                 | NOESY                 |                   |                     |  |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Me OHO                                                | Me OH<br>Me OH<br>Me | 0<br>HO<br>Me         |                   |                     |  |  |

# Table S16. Comparison of natural and synthetic tagitinin C (17) (CDCl<sub>3</sub>)

<sup>&</sup>lt;sup>18</sup> Baruah, N. C., Sharma, R. P., Madhusudanan, K. P., Thyagarajan, G., Herz, W., Murari, R. *J. Org. Chem*, **1979**, *44*, 1831-1835.

### f) Experimental procedures for Scheme 1



Figure S4. Synthesis of 20a from commercially available 3-butyn-1-ol (S4-1).

Vinyl iodide **24** was prepared from commercially available 3-butyn-1-ol using a carboalumination /iodination process.<sup>19</sup> The reaction can be ran in a decagram scale and the product can be used in the next step without further purification.



To a 0 °C solution of alcohol **24** (~132 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (250 mL) Dess–Martin periodinane (DMP, 56 g, 132 mmol) was slowly added in portions. The mixture was stirred at room temperature for 3 hours, till TLC analysis showed disappearance of starting material (aldehyde, Rf = 0.60, Pentane/Ethyl acetate = 5/1). Then, the mixture was cooled down again to 0 °C and a catalytic amount of *p*-TsOH•H<sub>2</sub>O (1.0 g) was added, followed by addition of CH(OMe)<sub>3</sub> (21.6 mL, 198 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 30 minutes. the mixture was then quenched with saturated aqueous NH<sub>4</sub>Cl and Na<sub>2</sub>SO<sub>3</sub>(v/v = 1:1, 500 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 500 mL). The combined organic layers were washed with brine (500 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 30/1) to provide the **S4-3** as yellow oil (26.4 g, 78%).

Data of vinyl iodide **S4-3**: yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.02 (m, 1H,  $H_1$ ), 4.47 (t, J = 5.7 Hz, 1H,  $H_4$ ), 3.32 (s, 6H, -*OMe*), 2.50 (dd, J = 5.7, 1.0 Hz, 2H,  $H_3$ ), 1.88 (d, J = 1.1 Hz, 3H,  $H_5$ ) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta\delta$  143.4 ( $C_2$ ), 102.9 ( $C_4$ H), 77.8 ( $C_1$ H), 53.1 (-*OMe*), 42.5 ( $C_3$ H<sub>2</sub>), 24.6 ( $C_5$ H<sub>3</sub>) ppm; IR (film, cm<sup>-1</sup>) 2931, 1729, 1118, 1072; TLC: Rf = 0.40, Pentane/Ethyl acetate = 25/1).

<sup>&</sup>lt;sup>19</sup> Prasad, K. R., Pawar, A. B. Org Lett., **2011**, *13*, 4252-4255.



To a stirred solution of vinyl iodide **S4-3** (20.8 g, 81 mmol) in THF/*i*-Pr<sub>2</sub>NH (150 mL/50 mL) was added trimethylsilyl acetylene (13.5 mL, 97.5 mmol) at 0 °C. Then Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (2.8 g, 4.05 mmol) and CuI (1.54 g, 8.1 mmol) were added at the same temperature. The reaction mixture was allowed to reach room temperature and stirred for 1 hour till TLC analysis showed disappearance of starting material. Then, pentane (800 mL) was added to the reaction mixture, stirred for 30 minutes, the mixture was filterred and the solution washed with saturated aqueous NH<sub>4</sub>Cl (200 mL). The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 100 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $50/1 \sim 25/1$ ) to provide the **25** as light-yellow oil (13.3 g, 72%).

Data of vinyl iodide 25: light-yellow oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.38 (m, 1H, *H*<sub>3</sub>), 4.47 (t, *J* = 5.7 Hz, 1H, *H*<sub>6</sub>), 3.30 (s, 6H, *-OMe*), 2.37 (d, *J* = 5.8 Hz, 2H, *H*<sub>5</sub>), 1.94 (d, *J* = 0.8 Hz, 3H, *H*<sub>7</sub>), 0.18 (s, 9H, *-TMS*) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.9 (*C*<sub>4</sub>), 107.9 (*C*<sub>6</sub>H), 103.2 (*C*<sub>2</sub>), 103.1 (*C*<sub>3</sub>H), 97.6 (*C*<sub>1</sub>), 52.9 (-OMe), 41.8 (*C*<sub>5</sub>H<sub>2</sub>), 20.2 (*C*<sub>7</sub>H<sub>3</sub>), 0.2 (*-TMS*) ppm; IR (film, cm<sup>-1</sup>) 2957, 2135, 1249, 1120, 1064, 838, 509; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>12</sub>H<sub>23</sub>O<sub>2</sub>Si: 227.1467, found: 227.1250; TLC: Rf = 0.30 (Pentane/Ethyl acetate = 25/1).



A 500 mL round bottom flask equipped with a magnetic stir bar was charged with K<sub>2</sub>OsO<sub>2</sub>(OH)<sub>2</sub>•2H<sub>2</sub>O (320 mg, 0.9 mmol), (DHQD)<sub>2</sub>Pyr (1.2 g, 1.36 mmol), K<sub>3</sub>Fe(CN)<sub>6</sub> (44.6 g, 136 mmol), K<sub>2</sub>CO<sub>3</sub> (18.8 g, 136 mmol) and t-BuOH/H<sub>2</sub>O (100 mL/100 mL). The biphasic mixture was stirred at room temperature for 30 minutes, then MeSO<sub>2</sub>NH<sub>2</sub> (4.8 g, 50.5 mmol) was added and the mixture was stirred for another 30 minutes. Envne 25 (10.2 g, 45 mmol) was added to the AD-mix- $\beta$  mixture and stirred at room temperature for 8 hours. The reaction was followed by NMR analysis till disappearance of the starting material. The reaction slurry was filterred and the filtrate was extrated with  $CH_2Cl_2$  (4 × 100 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated in *vacuo* and then used directly for silvl protection without further purification. The crude product was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (300 mL) and imidazole (7.7 g, 113 mmol) was added. Then TBDPSCl (21 mL, 81 mmol) was added dropwise together with a catalytic amount of DMAP (100 mg). The reaction mixture was then stirred at room temperature for 8 hours or till the TLC analysis showed disappearance of starting material. Then, the mixture was guenched with water (100 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 200 mL). The combined organic layers were washed with brine (500 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated in vacuo. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $15/1 \sim 5/1$ ) to provide the **26** as a colorless oil (18 g, 80%).

The enantiomers were found not to be separated by chiral HPLC using various columns under different conditions. The *ee* value was confirmed after TMS deprotection.

Data of alcohol 26: Colorless oil;

 $[\alpha]_{D}^{20}$  -53.0 (c 1.0, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.74-7.68 (m, 4H, *-TBDPS*), 7.45-7.32 (m, 6H, *-TBDPS*), 4.69 (t, *J* = 5.6 Hz, 1H, *H*<sub>6</sub>), 4.18 (s, 1H, *H*<sub>3</sub>), 3.29 (s, 3H, *-OMe*), 3.28 (s, 3H, *-OMe*), 2.05 (dd, *J* = 14.4, 5.2 Hz, 1H, *H*<sub>5</sub>), 1.88 (dd, *J* = 14.8, 6 Hz, 1H, *H*<sub>5</sub>), 1.31 (s, 3H, *H*<sub>7</sub>), 1.07 (s, 9H, *-TBDPS*), -0.01 (s, 9H, *-TMS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 136.4 (*TBDPS*), 136.3 (*TBDPS*), 133.7 (*TBDPS*), 133.0 (*TBDPS*), 130.0 (*TBDPS*), 129.7 (*TBDPS*), 127.7 (*TBDPS*), 127.4 (*TBDPS*), 104.4 (*C*<sub>2</sub>), 102.4 (*C*<sub>6</sub>H), 92.1 (*C*<sub>1</sub>), 73.8 (*C*<sub>4</sub>), 71.7 (*C*<sub>3</sub>H), 53.1 (-*OMe*), 53.0 (-*OMe*), 39.5 (*C*<sub>5</sub>H<sub>2</sub>), 27.2 (*TBDPS*), 23.6 (*C*<sub>7</sub>H<sub>3</sub>), 19.6 (*TBDPS*), -0.3 (*TMS*) ppm;

IR (film, cm<sup>-1</sup>) 2957, 1719, 1428, 1250, 1111, 843, 701;

HRMS(ESI)  $[M + Na]^+$  calculated for  $[C_{28}H_{42}NaO_4Si_2]^+$ : 521.2514, found: 521.2520; TLC: Rf = 0.50 (Pentane/Ethyl acetate = 10/1).



To a stirred solution of TMS alkyne **26** (18 g, 36 mmol) in MeCN/H<sub>2</sub>O (90 mL/5 mL) was added DBU (8.1 mL, 54 mmol) at room temperature. The reaction mixture was stirred at for 4 hours or till the TLC analysis showed disappearance of starting material. The reaction mixture was concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $20/1 \sim 3/1$ ) to provide the alkyne **20a** as colorless oil (13.3 g, 87%).

Chiral HPLC analysis of **20a**: chiral stationary column: AD-H, mobile phase: *n*-hexane/*i*-PrOH = 99:1, 1.0 mL/min, 210 nm, 30 °C,  $t_R$  (major) = 12.80 min,  $t_R$  (minor) = 11.05 minutes. The result indicated 91% *ee*. See **Supplementary Section k** for details.

Data of alkyne 20a: colorless oil;

 $[\alpha]_{D}^{20}$  -39.8 (c 0.19, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.79-7.67 (m, 4H, *-TBDPS*), 7.46-7.33 (m, 6H, *-TBDPS*), 4.66 (t, *J* = 5.7 Hz, 1H, *H*<sub>6</sub>), 4.22 (d, *J* = 2.2 Hz, 1H, *H*<sub>3</sub>), 3.28 (s, 3H, *-OMe*), 3.27 (s, 3H, *-OMe*), 3.07 (s, 1H, *-OH*), 2.26 (d, *J* = 2.2 Hz, 1H, *H*<sub>1</sub>), 2.06 (dd, *J* = 14.4, 6 Hz, 1H, *H*<sub>5</sub>), 1.89 (dd, *J* = 14.5, 5.5 Hz, 1H, *H*<sub>5</sub>), 1.31 (s, 3H, *H*<sub>7</sub>), 1.10 (d, *J* = 2.9 Hz, 9H, *-TBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 136.4 (*TBDPS*), 136.3 (*TBDPS*), 133.3 (*TBDPS*), 132.9 (*TBDPS*), 130.1 (*TBDPS*), 129.9 (*TBDPS*), 127.8 (*TBDPS*), 127.4 (*TBDPS*), 102.3 (*C*<sub>6</sub>H), 82.6 (*C*<sub>2</sub>), 75.1 (*C*<sub>1</sub>), 73.8 (*C*<sub>10</sub>), 71.0 (*C*<sub>3</sub>H), 53.2 (-*OMe*), 52.9 (-*OMe*), 39.3 (*C*<sub>5</sub>H<sub>2</sub>), 27.2 (*TBDPS*), 23.6 (*C*<sub>7</sub>H<sub>3</sub>) ppm;

IR (film, cm<sup>-1</sup>) 3501, 2933, 1427, 1107, 1092, 700;

HRMS(ESI)  $[M + Na]^+$  calculated for  $[C_{25}H_{34}NaO_4Si]^+$ : 449.2119, found: 449.2124; TLC: Rf = 0.50 (Pentane/Ethyl acetate = 7/1).

### Figure S5. Synthesis of 27 from 2-butyn-1-ol (S5-1)



Aldehyde **27** was prepared from commercially available 2-butyn-1-ol (**S5-1**) in 2 steps using a carboalumination / iodination then modified DMP oxidation process. All spectroscopic and spectrometric analyses were in agreements with the literature accordingly for allylic alcohol (Z)-3-iodobut-2-en-1-ol (**S5-2**)<sup>20</sup> and aldehyde **27**.<sup>21</sup>

Modified DMP oxidation: To a stirred solution of crude allylic alcohol **S5-2** (~ 42 g, 212 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (400 mL) was added DMP (90 g, 212 mmol) in portions at 0 °C. The reaction was monitored by TLC until no starting material remained (2 hours). Then pentane (1.2 L) was added to the reaction and stirred at rom temperature for 30 minutes. The white precipitate was filtered off and the resulting colorless solution was concentrated *in vacuo* to give a yellow to brown oil **27** (~ 42 g) which was used directly for Barbier reaction without any further purification.

#### Figure S6. Synthesis of 28



Allylic bromide **28** is known compound and was prepared in 2 steps including Baylis– Hillman reaction <sup>22</sup> and bromination <sup>23</sup> from triethyl phosphonoacetate (**S6-1**). All spectroscopic and spectrometric analyses were in agreements with the literature accordingly.



A 2.5 L round bottom flask equipped with a magnetic stir bar was charged with aldehyde **27** (82 g, 418 mmol), allylic bromide **28** (121 g, 627 mmol), THF (800 mL) and NH<sub>4</sub>Cl saturated solution (160 mL). The yellow bi-phasic mixture turned colorless and was cooled down to 0 °C. Then Zn (54 g, 836 mmol) was added in small portions within 30 minutes (caution the reaction is very exothermic). The reaction mixture was stirred at 0 °C for 20 minutes or till the TLC analysis showed disappearance of the starting material. The reaction mixture was filterred, the filtrate was concentrated *in vacuo* and redissolved

<sup>&</sup>lt;sup>20</sup> Dakoji, S.; Li, D.; Agnihotri, G.; Zhou, H.; Liu, H. J. Am. Chem. Soc. **2001**, 123, 9749-9759.

<sup>&</sup>lt;sup>21</sup> Meyer, C., Marek, I., Normant, J. F. *Synlett.* **1993**, *6*, 386-388.

<sup>&</sup>lt;sup>22</sup> Patil, S., Chen, L., Tanko, J. M. *Eur. J. Org. Chem.* **2014**, *3*, 502-505.

<sup>&</sup>lt;sup>23</sup> Li, Y., Zhang, J., Li, D., Chen, Y. *Org. Lett.* **2018**, *20*, 3296-3299.

in CH<sub>2</sub>Cl<sub>2</sub> (800 mL). The organic layer was washed with water (200 mL) and brine (200 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated *in vacuo* and used directly for cyclization without further purification. The crude product was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (500 mL) and a catalytic amount *p*-TsOH•H<sub>2</sub>O (1.0 g) was added. The reaction mixture was stirred at room temperature for 12 hours or till the TLC analysis showed disappearance of starting material. Then the mixture was washed with *sat. aq.* NaHCO<sub>3</sub> (100 mL), brine (100 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $20/1 \sim 5/1$ ) to provide the **29** as light-yellow oil (70.6 g, 64%).

Data of lactone 29: light-yellow oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.25-6.20 (m, 1H, *H*<sub>8</sub>), 5.71 (dt, *J* = 7.6, 1.8 Hz, 1H, *H*<sub>5</sub>), 5.65 (q, *J* = 2.2 Hz, 1H, *H*<sub>8</sub>), 5.04 (dt, *J* = 9.8, 6.8 Hz, 1H, *H*<sub>4</sub>), 3.25 (ddt, *J* = 17.1, 7.7, 2.3 Hz, 1H, *H*<sub>3</sub>), 2.64 (ddtd, *J* = 17.2, 6.2, 3.0, 1.3 Hz, 1H, *H*<sub>3</sub>), 2.54 (d, *J* = 1.7 Hz, 3H, *H*<sub>7</sub>) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 170.0 (*C*<sub>1</sub>), 133.8 (*C*<sub>5</sub>H), 133.8 (*C*<sub>2</sub>), 122.6 (*C*<sub>8</sub>H<sub>2</sub>), 104.3 (*C*<sub>6</sub>),

81.3 (*C*<sub>4</sub>H), 33.8 (*C*<sub>7</sub>H<sub>3</sub>), 33.6(*C*<sub>3</sub>H<sub>2</sub>) ppm; <sup>13</sup>C NMR of C<sub>2</sub> overlaps with C<sub>5</sub>;

IR (film, cm<sup>-1</sup>) 1765, 1242, 1116, 1016;

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>8</sub>H<sub>10</sub>IO<sub>2</sub>: 264.9725, found: 264.9709; TLC: Rf = 0.60 (Pentane/Ethyl acetate = 5/1).



To a stirred solution of lactone **29** (22 g, 83 mmol) in dioxane (500 mL) was added SeO<sub>2</sub> (50 g, 450 mmol) in 3 portions at 95 °C within 2 hours. The reaction mixture was stirred at the same temperature for another hour and cooled down to room temperature. Then dioxane was evaporated and Et<sub>2</sub>O (800 mL) was added, stirred for 30 min, filtered and the solution was washed with saturated aqueous NaHCO<sub>3</sub> (100 mL), diluted Na<sub>2</sub>S (50 mL) and brine (100 mL). The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 1/1$ ) to provide the **21** as light-yellow oil (9.8 g, 42%).

Lactone **21** was obtained as a mixture of inseparable 1.8/1 diastereomers (determined by <sup>1</sup>H NMR). The structures were fully elucidated based on 2D NMR spectroscopic analyses, which indicated *trans* as the major product.

Data of lactone **21**: Light yellow oil; IR (film, cm<sup>-1</sup>) 3420, 1753, 1250, 1129, 973; HRMS(ESI) [M + H]<sup>+</sup> calculated for  $[C_8H_{10}IO_3]^+$ : 280.9669, found: 280.9675; TLC: Rf = 0.50 (Pentane/Ethyl acetate = 1/1); **Major-***trans*: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.44 (d, *J* = 2.3 Hz, 1H, *H*<sub>8</sub>), 6.00 (d, *J* = 2.1 Hz, 1H, *H*<sub>8</sub>), 5.65 (dq, *J* = 8.0, 1.5 Hz, 1H, *H*<sub>5</sub>), 4.89 (ddd, *J* = 8.1, 4.5, 0.7 Hz, 1H, *H*<sub>4</sub>), 4.67 (ddt, *J* = 6.5, 4.4, 2.2 Hz, 1H), 2.89 (d, *J* = 6.1 Hz, 1H, *-OH*), 2.59 (dd, *J* = 1.6, 0.6 Hz, 3H, *H*<sub>7</sub>) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 168.5 (*C*<sub>1</sub>), 137.7 (*C*<sub>2</sub>), 131.3 (*C*<sub>5</sub>H), 126.6 (*C*<sub>8</sub>H<sub>2</sub>), 106.9 (*C*<sub>6</sub>), 88.7 (*C*<sub>4</sub>H), 73.7 (*C*<sub>3</sub>H), 34.2 (*C*<sub>7</sub>H<sub>3</sub>) ppm; <sup>13</sup>C NMR of C<sub>2</sub> of cis and trans are overlaped; **Minor**-*cis*: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.45 (d, *J* = 1.7 Hz, 1H, *H*<sub>8</sub>), 6.04 (d, *J* = 1.5 Hz, 1H, *H*<sub>8</sub>), 5.81 (dq, *J* = 7.5, 1.5 Hz, 1H, *H*<sub>5</sub>), 5.06 (ddd, *J* = 7.5, 5.7, 0.8 Hz, 1H, *H*<sub>4</sub>), 5.03-4.97 (m, 1H, *H*<sub>3</sub>), 2.63 (dd, *J* = 1.6, 0.6 Hz, 3H, *H*<sub>7</sub>), 2.50 (d, *J* = 4.8 Hz, 1H, -OH). ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 168.9 (*C*<sub>1</sub>), 137.7 (*C*<sub>2</sub>), 128.8 (*C*<sub>5</sub>H), 127.5 (*C*<sub>8</sub>H<sub>2</sub>), 107.2 (*C*<sub>6</sub>), 86.4 (*C*<sub>4</sub>H), 69.1 (*C*<sub>3</sub>H), 34.3 (*C*<sub>7</sub>H<sub>3</sub>) ppm; <sup>13</sup>C NMR of C<sub>2</sub> of cis and trans are overlaped.



To a stirred solution at room temperature and under inert atmosphere of N<sub>2</sub> of alkyne **20a** (8.0 g, 18.8 mmol) and vinyl iodide **21** (8.0 g, 28.6 mmol) in DMF/NEt<sub>3</sub> (60 mL/10 mL) was added PPh<sub>3</sub>(1.1 g, 4.2 mmol) followed by Pd<sub>2</sub>dba<sub>3</sub> (3.6 g, mmol) and CuI (0.6 g, mmol). The resulted mixture was stirred for 3 hours or till the TLC analysis showed disappearance of starting material. The reaction was then quenched by addition of *sat. aq.* NH<sub>4</sub>Cl (100 mL) and extracted with ethyl acetate (3 × 200 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 1/2) to provide enyne **21-1** as yellow oil (4.3 g, 40%). The reaction can be run from milligrams to a eight grams scale with yields variying from 40% ~ 84% depending on the scale.

Enyne **21-1** was obtained as a complicated mixture of diastereomers and that could not be seperated by convencional chromatographic techniques.

### Data of enyne **21-1**: yellow oil;

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.75-7.69 (m, 4H), 7.50-7.31 (m, 6H), 6.39-6.37 (m, 1H), 6.02-5.80 (m, 1H), 5.59-5.54 (m, 0.88H), 5.26 (t, *J* = 9.3 Hz, 0.13H), 5.08-4.77 (m, 1H), 4.75 – 4.61 (m, 1.27H), 4.56 (dd, *J* = 6.2, 4.5 Hz, 0.23H), 4.48-4.46 (m, 0.56H), 4.37 (dd, *J* = 16.1, 4.2 Hz, 1H), 4.00 (dd, *J* = 20.7, 6.8 Hz, 0.44H), 3.32-3.26 (m, 6H), 2.45 (d, *J* = 4.9 Hz, 0.24H), 2.31 (d, *J* = 4.8 Hz, 0.27H), 2.22-1.85 (m, 2.5H), 1.73-1.62 (m, 2.5H), 1.39-1.29 (m, 3H), 1.14-1.05 (m, 9H) ppm;

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 175.2, 168.7, 136.2, 136.2, 136.1, 133.4, 132.6, 130.3, 129.9, 129.7, 129.6, 127.9, 127.6, 126.1, 102.8, 102.3, 94.6, 80.9, 80.5, 74.4, 74.2, 71.6, 53.7, 53.5, 53.1, 52.8, 39.4, 27.1, 27.0, 24.1, 22.9, 22.3, 19.6 ppm;

IR (film, cm<sup>-1</sup>) 3414, 2929, 2213, 1969, 1769, 1428, 1113, 824, 704;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>33</sub>H<sub>42</sub>NaO<sub>7</sub>Si: 601.2596, found: 601.2598; TLC: Rf = 0.30 (Pentane/Ethyl acetate = 1/1).



A 100 mL round bottom flask equipped with a magnetic stir bar was charged with enyne **21-1** (1.7 g, 2.9 mmol) and Et<sub>2</sub>O (30 mL). The reaction mixture was cooled down to -78 °C and PBr<sub>3</sub> (0.7 mL, 7.35 mmol) was added. The temperature was allowed to rise to -20

°C and stirred for 3 hours or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with water (5.0 mL) and extracted with Et<sub>2</sub>O ( $3 \times 50$  mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $5/1 \sim 3/1$ ) to provide bromolactone **19a** as colorless oil (0.98 g, 56%) as a 1:1 mixture of inseperable diastereomers.

### Data of bromolactone 19a: colorless oil;

IR (film, cm<sup>-1</sup>) 3482, 2933, 1764, 1428, 1110, 1077, 1040, 703;

HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>31</sub>H<sub>36</sub>BrO<sub>5</sub>Si: 595.1510, found: 595.1516;

TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 2/1);

#### **Diastereomer I**:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.90 (m, 1H, *H*<sub>8</sub>), 7.75-7.67 (m, 4H, *TBDPS*), 7.49-7.35 (m, 6H, *TBDPS*), 7.00 (q, *J* = 1.4 Hz, 1H, *H*<sub>7</sub>), 5.24-5.16 (m, 2H, *H*<sub>5</sub>+*H*<sub>6</sub>), 4.47 (s, 1H, *H*<sub>1</sub>), 4.02-4.05 (m, 2H, *H*<sub>13</sub>), 2.77 (dd, *J* = 15.8, 2 Hz, 1H, *H*<sub>9</sub>), 2.69 (dd, *J* = 15.7, 2.8 Hz, 1H, *H*<sub>9</sub>), 1.67 (d, *J* = 0.8 Hz, 3H, *H*<sub>15</sub>), 1.47 (s, 3H, *H*<sub>14</sub>), 1.06 (s, 9H, *TBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 201.81 (*C*<sub>8</sub>), 170.97 (*C*<sub>12</sub>), 151.03 (*C*<sub>7</sub>H), 136.13 (*TBDPS*), 135.98 (*TBDPS*), 133.12 (*TBDPS*), 131.65 (*TBDPS*), 130.75 (*C*<sub>11</sub>), 130.62 (*TBDPS*), 130.11 (*TBDPS*), 129.48 (*C*<sub>5</sub>H), 128.19 (*TBDPS*), 127.73 (*TBDPS*), 124.56 (*C*<sub>4</sub>), 94.20 (*C*<sub>2</sub>), 85.16 (*C*<sub>3</sub>), 79.64 (*C*<sub>6</sub>H), 74.71 (*C*<sub>10</sub>), 71.43 (*C*<sub>1</sub>H), 50.80 (*C*<sub>9</sub>H<sub>2</sub>), 26.94 (*TBDPS*), 23.66 (*C*<sub>14</sub>H<sub>3</sub>), 22.77 (*C*<sub>15</sub>H<sub>3</sub>), 20.83 (*C*<sub>13</sub>H<sub>2</sub>), 19.66 (*TBDPS*) ppm;

### **Diastereomer II**:

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.88 (m, 1H, *H*<sub>8</sub>), 7.75-7.67 (m, 4H, *TBDPS*), 7.49-7.35 (m, 6H, *TBDPS*), 6.65 (d, *J* = 1.3 Hz, 1H, *H*<sub>7</sub>), 5.24-5.16 (m, 2H, *H*<sub>5</sub>+*H*<sub>6</sub>), 4.47 (s, 1H, *H*<sub>1</sub>), 4.02-4.05 (m, 2H, *H*<sub>13</sub>), 2.76 (dd, *J* = 15.7, 2 Hz, 1H, *H*<sub>9</sub>), 2.66 (dd, *J* = 15.7, 2.8 Hz, 1H, *H*<sub>9</sub>), 1.65 (d, *J* = 1.4 Hz, 3H, *H*<sub>15</sub>), 1.46 (s, 3H, *H*<sub>14</sub>), 1.07 (s, 9H, *TBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 201.8 (*C*<sub>8</sub>), 170.95 (*C*<sub>12</sub>), 150.84 (*C*<sub>7</sub>H), 136.03 (*TBDPS*), 135.91 (*TBDPS*), 132.91 (*TBDPS*), 132.05 (*TBDPS*), 130.87 (*C*<sub>11</sub>), 130.50 (*TBDPS*), 130.22 (*TBDPS*), 129.54 (*C*<sub>5</sub>H), 128.11 (*TBDPS*), 127.74 (*TBDPS*), 124.31 (*C*<sub>4</sub>), 94.36 (*C*<sub>2</sub>), 85.07 (*C*<sub>3</sub>), 79.64 (*C*<sub>6</sub>H), 74.80 (*C*<sub>10</sub>), 71.44 (*C*<sub>1</sub>H), 50.78 (*C*<sub>9</sub>H<sub>2</sub>), 27.00 (*TBDPS*), 23.71 (*C*<sub>14</sub>H<sub>3</sub>), 22.81 (*C*<sub>15</sub>H<sub>3</sub>), 20.97 (*C*<sub>13</sub>H<sub>2</sub>),19.61 (*TBDPS*) ppm;



A 50 mL round bottom flask equipped with a magnetic stir bar was charged with bromolactone **19a** (1.03 g, 1.73 mmol) and DMF (10 mL). The reaction mixture was cooled down to 0 °C and CrCl<sub>2</sub> (532 mg, 4.3 mmol) was added. The temperature was allowed to rise to room temperature and stirred for 1 hour or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NH<sub>4</sub>Cl (20 mL) and extracted with ethyl acetate (3 × 50 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $3/1 \sim 1/3$ ) to provide **18a** as a waxy solid (272 mg, 30%) and **30** as a light yellow solid (270 mg, 30%).

The structures of **18a** and **30** were fully elucidated based on 2D NMR spectroscopic analyses. The absolute configuration of **30** was determined by X-ray diffraction. Single crystals of **30** suitable for X-ray crystallographic analysis were obtained by a single recrystallization at room temperature by slow evaporation using *n*-hexanes/CH<sub>2</sub>Cl<sub>2</sub> as solvent mixture. See **Supplementary Section m** for detail.

Data of **18a**: waxy solid;

 $[\alpha]_{D}^{20}$  -130.2 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.69 (ddd, *J* = 10.3, 8.1, 1.5 Hz, 4H, *-OTBDPS*), 7.47-7.31 (m, 6H, *-OTBDPS*), 6.36 (br s, 1H, *H*<sub>13</sub>), 5.86 (m, 1H, *H*<sub>5</sub>), 5.73 (br s, 1H, *H*<sub>13</sub>), 5.02 (dt, *J* = 3.7, 1.9 Hz, 1H, *H*<sub>6</sub>), 4.15 (s, 1H, *H*<sub>1</sub>), 3.92 (br s, 1H, *H*<sub>7</sub>), 3.88 (m, 1H, *H*<sub>8</sub>), 2.72 (br d, *J* = 15.3 Hz, 1H, *H*<sub>9</sub>), 2.07 (dd, *J* = 15.2, 6.1 Hz, 1H, *H*<sub>9</sub>), 1.61 (t, *J* = 1.8 Hz, 3H, *H*<sub>15</sub>), 1.41 (s, 3H, *H*<sub>14</sub>), 1.11 (s, 9H, *-OTBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$  170.3 (*C*<sub>12</sub>), 139.6 (*C*<sub>5</sub>H), 136.4 (*TBDPS*), 136.1 (*TBDPS*), 135.8 (*C*<sub>11</sub>), 133.2 (*TBDPS*), 133.0 (*TBDPS*), 130.13 (*TBDPS*), 130.05 (*TBDPS*), 127.8 (*TBDPS*), 127.5 (*TBDPS*), 125.7 (*C*<sub>13</sub>H<sub>2</sub>), 120.3 (*C*<sub>4</sub>), 99.4 (*C*<sub>2</sub>), 84.7 (*C*<sub>3</sub>), 79.5 (*C*<sub>6</sub>H), 77.5 (*C*<sub>10</sub>), 71.9 (*C*<sub>1</sub>H), 71.1 (*C*<sub>8</sub>H), 50.7 (*C*<sub>7</sub>H), 31.7 (*C*<sub>14</sub>H<sub>3</sub>), 27.2 (*TBDPS*), 20.9 (*C*<sub>15</sub>H<sub>3</sub>), 19.5 (*TBDPS*) ppm; Signal of C<sub>2</sub>/C<sub>3</sub>/C<sub>9</sub> could not be detected on <sup>13</sup>C NMR because of the conformational changes, the chemical shift of C<sub>2</sub> and C<sub>3</sub> were confirmed by HMBC, but the chemical shift of C<sub>8</sub> could not be confirmed by HMBC;

IR (film, cm<sup>-1</sup>) 3475, 2963, 1765, 1429, 1269, 1112, 823, 743, 703, 547; HRMS(ESI)  $[M + H]^+$  calculated for C<sub>31</sub>H<sub>37</sub>O<sub>5</sub>Si: 517.2417, found: 517.2410; TLC: Rf = 0.40 (Pentane/Ethyl acetate = 2/1).

Data of **30**: light yellow solid, m.p. =  $124.4 - 125.8 \circ C$ ;  $[\alpha]_{p}^{20} - 86.6$  (c 1.0, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69-7.65 (m, 4H, -*OTBDPS*), 7.34-7.45 (m, 6H, -*OTBDPS*), 6.44 (d, *J* = 3.3 Hz, 1H, *H*<sub>13</sub>) 5.94 (dt, *J* = 2.6, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.76 (d, *J* = 2.8 Hz, 1H, *H*<sub>13</sub>), 4.91 (dt, *J* = 6.8, 2.3 Hz, 1H, *H*<sub>6</sub>), 4.61-4.42 (m, 1H, *H*<sub>8</sub>), 4.23 (s, 1H, *H*<sub>1</sub>), 3.96-3.76 (m, 1H, *H*<sub>7</sub>), 2.54 (dd, *J* = 15.0, 7.6 Hz, 1H, *H*<sub>9</sub>), 1.91 (dd, *J* = 15.0, 3.0 Hz, 1H, *H*<sub>9</sub>), 1.58 (t, *J* = 1.8 Hz, 3H, *H*<sub>15</sub>), 1.44 (s, 3H, *H*<sub>14</sub>), 1.09 (s, 9H, -*OTBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)δ 169.5 (*C*<sub>12</sub>), 136.5 (*C*<sub>5</sub>H), 136.2 (*TBDPS*), 136.1 (*TBDPS*), 134.9 (*C*<sub>11</sub>), 133.2 (*TBDPS*), 132.6 (*TBDPS*), 130.3 (*TBDPS*), 130.1 (*TBDPS*), 128.0 (*TBDPS*), 127.6 (*TBDPS*), 123.3 (*C*<sub>13</sub>H<sub>2</sub>), 118.7 (*C*<sub>4</sub>), 95.9 (*C*<sub>2</sub>), 87.1 (*C*<sub>3</sub>), 80.3 (*C*<sub>6</sub>H), 75.8 (*C*<sub>10</sub>), 70.3 (*C*<sub>1</sub>H), 67.9 (*C*<sub>8</sub>H), 49.0 (*C*<sub>7</sub>H), 46.0 (*C*<sub>9</sub>H<sub>2</sub>), 27.2 (*C*<sub>14</sub>H<sub>3</sub>), 27.2 (*TBDPS*), 22.2 (*C*<sub>15</sub>H<sub>3</sub>), 19.6 (*TBDPS*) ppm; <sup>13</sup>C NMR of C<sub>14</sub> is overlap with TBDPS, the chemical shift is confirmed by HMBC.

IR (film, cm<sup>-1</sup>) 3475, 2963, 1765, 1429, 1269, 1112, 823, 743, 703, 547; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>31</sub>H<sub>36</sub>NaO<sub>5</sub>Si: 539.2236, found: 539.2230; TLC: Rf = 0.05 (Pentane/Ethyl acetate = 2/1).



To a solution of TBDPS-protected alcohol **30** (50 mg, 0.097 mmol) in an Eppendorf safelock tube 1 drop of THF followed by hydrogen fluoride pyridine (hydrogen fluoride ~70%, 0.2 mL) were added. The reaction mixture was left on a shaker at room temperature for 40 minutes. Then, CH<sub>2</sub>CL<sub>2</sub> (2.0 mL) was added and the reaction was quenched carefully with *sat. aq.* NaHCO<sub>3</sub> (caution the mixture bubbles out while quenching) until the evolution of gas stopped. The mixture was extracted with ethyl acetate (5 × 10 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $1/1 \sim$ 1/3) to provide **30-1** as a white powder (18.7 mg, 69%).

Data of **30-1**: white powder, m.p. = 64 - 66 °C;

 $[\alpha]_{D}^{20}$  +58.9 (c 1.0, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, methanol-d<sup>4</sup>)  $\delta$  <sup>1</sup>H NMR (400 MHz, methanol-d<sup>4</sup>)  $\delta$  6.30 (d, *J* = 3.3 Hz, 1H, *H*<sub>13</sub>), 6.08 (dq, *J* = 3.1, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.79 (d, *J* = 2.8 Hz, 1H, *H*<sub>13</sub>), 5.04 (dp, *J* = 6.9, 2.2 Hz, 1H, *H*<sub>6</sub>), 4.73 (ddd, *J* = 7.0, 2.5, 1.2 Hz, 1H, *H*<sub>8</sub>), 4.11 (ddd, *J* = 7.1, 3.6, 1.2 Hz, 1H, *H*<sub>7</sub>), 4.07 (s, 1H, , *H*<sub>1</sub>), 2.55 (dd, *J* = 15.2, 6.9 Hz, 1H, *H*<sub>9</sub>), 1.89 (t, *J* = 1.8 Hz, 3H, *H*<sub>15</sub>), 1.82 (ddd, *J* = 15.2, 2.6, 1.0 Hz, 1H, *H*<sub>9</sub>), 1.34 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, methanol-d<sup>4</sup>) δ <sup>13</sup>C NMR (101 MHz, methanol-d<sup>4</sup>) 172.1 (*C*<sub>12</sub>), 137.1 (*C*<sub>5</sub>H), 136.1 (*C*<sub>11</sub>), 124.1 (*C*<sub>13</sub>H<sub>2</sub>), 120.1 (*C*<sub>4</sub>), 98.5 (*C*<sub>2</sub>), 85.8 (*C*<sub>3</sub>), 82.2 (*C*<sub>6</sub>H), 75.7 (*C*<sub>10</sub>), 69.5 (*C*<sub>1</sub>H), 68.3 (*C*<sub>8</sub>H), 50.6 (*C*<sub>7</sub>H), 46.7 (*C*<sub>9</sub>H<sub>2</sub>), 27.7 (*C*<sub>14</sub>H<sub>3</sub>), 23.0 (*C*<sub>15</sub>H<sub>3</sub>) ppm; IR (film, cm<sup>-1</sup>) 3391, 2928, 1743, 1277, 140, 1022;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>15</sub>H<sub>18</sub>NaO<sub>5</sub>: 301.1068, found: 301.1052; TLC: Rf = 0.20 (Petroleum ether/Ethyl acetate = 1/2).



To a stirred solution of triol **30-1** (15 mg, 0.054 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL) was added MnO<sub>2</sub> (47 mg, 0.79 mmol). The reaction mixture was stirred at room temperature for 3 hours or till TLC analysis showed disappearance of starting material. Then, MnO<sub>2</sub> was filtered off and washed with CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL).  $tBu_3AuNTf_2$  (2.2 mg, 0.003 mmol) was added to the CH<sub>2</sub>Cl<sub>2</sub> solution and the mixture was stirred for 10 minutes or till the TLC analysis showed disappearance of starting material. The resulted solution was concentrated *in vacuo* and the residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $2/1 \sim 1/1$ ) to provide the **30-3** as waxy solid (5.6 mg, 38%).

Data of **30-2**: waxy solid;

 $[\alpha]_{D}^{20}$  +345.3 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.50 (d, *J* = 3.0 Hz, 1H, *H*<sub>13</sub>), 6.38 (dq, *J* = 4.6, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.94 (dd, *J* = 2.6, 0.5 Hz, 1H, *H*<sub>13</sub>), 5.05 (ddt, *J* = 6.0, 3.6, 1.8 Hz, 1H, *H*<sub>6</sub>), 4.24 (p, *J* = 4.9 Hz, 1H, *H*<sub>8</sub>), 3.54 (d, *J* = 1.4 Hz, 1H, *-OH*), 3.49 (ddt, *J* = 5.8, 4.9, 2.9 Hz, 1H, *H*<sub>7</sub>), 2.51 (ddd, *J* = 15.6, 4.8, 1.4 Hz, 1H, *H*<sub>9</sub>), 2.29 (dd, *J* = 15.5, 5.1 Hz, 1H, *H*<sub>9</sub>), 2.23 (d, *J* = 4.9 Hz, 1H, *-OH*), 1.99 (t, *J* = 1.7 Hz, 3H, *H*<sub>15</sub>), 1.50 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 190.5 (*C*<sub>1</sub>H), 169.2 (*C*<sub>12</sub>), 144.9 (*C*<sub>5</sub>H), 133.2 (*C*<sub>11</sub>), 127.1 (*C*<sub>13</sub>H<sub>2</sub>), 118.1 (*C*<sub>4</sub>), 102.2 (br, *C*<sub>3</sub>), 93.8 (*C*<sub>2</sub>), 81.2 (*C*<sub>10</sub>), 80.5 (*C*<sub>6</sub>H), 70.5 (*C*<sub>8</sub>H), 50.0 (*C*<sub>7</sub>H), 48.1 (br, *C*<sub>9</sub>H<sub>2</sub>), 26.7 (*C*<sub>14</sub>H<sub>3</sub>), 20.8 (*C*<sub>15</sub>H<sub>3</sub>)nppm;

IR (film, cm<sup>-1</sup>) 3450, 2925, 2184, 1763, 1671, 1326, 1278, 1135, 1077, 1010, 817;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>15</sub>H<sub>16</sub>NaO<sub>5</sub>: 299.0905, found: 299.0895;

TLC: Rf = 0.40 (Petroleum ether/Ethyl acetate = 1/2).

Data of **30-3**: waxy solid;

 $[\alpha]_{D}^{20}$  +249.9 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.52 (d, *J* = 2.7 Hz, 1H, *H*<sub>13</sub>), 6.09-5.98 (m, 1H, *H*<sub>5</sub>), 5.80 (d, *J* = 2.4 Hz, 1H, *H*<sub>13</sub>), 5.63 (m, 2H, *H*<sub>6</sub> + *H*<sub>2</sub>), 4.06 (td, *J* = 7.1, 3.5 Hz, 1H, *H*<sub>8</sub>), 2.85 (dq, *J* = 6.1, 2.8 Hz, 1H, *H*<sub>7</sub>), 2.29 (dd, *J* = 14.5, 2.4 Hz, 1H, *H*<sub>9</sub>), 2.17 (dd, *J* = 14.5, 9.7 Hz, 1H, *H*<sub>9</sub>), 2.04 (possible d, 1H, *-OH*), 2.03 (d, *J* = 2.0 Hz, 3H, *H*<sub>15</sub>), 1.56 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)δ 206.7 (*C*<sub>1</sub>), 183.5 (*C*<sub>3</sub>), 169.8 (*C*<sub>12</sub>), 140.0 (*C*<sub>5</sub>H), 133.4 (*C*<sub>11</sub>), 129.5 (*C*<sub>13</sub>H<sub>2</sub>), 127.6 (*C*<sub>4</sub>), 102.0 (*C*<sub>2</sub>), 86.3 (*C*<sub>10</sub>), 82.4 (*C*<sub>6</sub>H<sub>1</sub>), 71.1 (*C*<sub>8</sub>H<sub>1</sub>), 55.4 (*C*<sub>7</sub>H<sub>1</sub>), 45.0 (*C*<sub>9</sub>H<sub>2</sub>), 21.0 (*C*<sub>14</sub>H<sub>3</sub>), 18.2 (*C*<sub>15</sub>H<sub>3</sub>) ppm;

IR (film, cm<sup>-1</sup>) 3522, 1760, 1692, 1567, 1276, 1120, 995, 546;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>15</sub>H<sub>16</sub>NaO<sub>5</sub>: 299.0905, found: 299.0895;

TLC: Rf = 0.35 (Petroleum ether/Ethyl acetate = 1/2).



To a stirred solution of alcohol **30-3** (5.6 mg, 0.02 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (50  $\mu$ L, 0.36 mmol) and methylacrlic anhydride (25  $\mu$ L, 0.17 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for approximately 3 hours or till the TLC analysis showed disappearance of the starting material. Then, the reaction was quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filterred and

concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $4/1 \sim 5/2$ ) to provide the **32** as a waxy solid (2.5 mg, 36%).

Data of **32**: waxy solid;

 $[\alpha]_{D}^{20}$  +327.9 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.25 (d, *J* = 2.6 Hz, 1H, *H*<sub>13</sub>), 6.05 (dt, *J* = 2.6, 1.4 Hz, 2H, *H*<sub>5</sub> + *H*<sub>3</sub>'), 5.73 (dp, *J* = 4.6, 2.2 Hz, 1H, *H*<sub>6</sub>), 5.64 (s, 1H, *H*<sub>2</sub>), 5.57 (m, 1H, *H*<sub>3</sub>'), 5.47 (d, *J* = 2.3 Hz, 1H, *H*<sub>13</sub>), 5.03 (ddd, *J* = 11.3, 4.8, 2.3 Hz, 1H, *H*<sub>8</sub>), 2.89 (dq, *J* = 6.5, 2.5 Hz, 1H, *H*<sub>7</sub>), 2.38 (dd, *J* = 14.0, 11.3 Hz, 1H, *H*<sub>9</sub>), 2.25 (dd, *J* = 14.1, 2.3 Hz, 1H, *H*<sub>9</sub>), 2.04 (t, *J* = 1.9 Hz, 3H, *H*<sub>15</sub>), 1.87 (dd, *J* = 1.6, 1.0 Hz, 3H, *H*<sub>4</sub>'), 1.58 (s, 3H *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)δ 206.3 (*C*<sub>1</sub>), 183.6 (*C*<sub>3</sub>), 169.1 (*C*<sub>12</sub>), 166.9 (*C*<sub>1</sub>'), 140.0 (*C*<sub>5</sub>H), 135.9 (*C*<sub>2</sub>'), 133.9 (*C*<sub>11</sub>), 127.3 (*C*<sub>4</sub>), 126.6 (*C*<sub>3</sub>'H<sub>2</sub>), 126.3 (*C*<sub>13</sub>H<sub>2</sub>), 102.1 (*C*<sub>2</sub>), 85.6 (*C*<sub>10</sub>), 82.8 (*C*<sub>6</sub>H<sub>1</sub>), 73.8 (*C*<sub>8</sub>H<sub>1</sub>), 54.0 (*C*<sub>7</sub>H<sub>1</sub>), 41.6 (*C*<sub>9</sub>H<sub>2</sub>), 21.3 (*C*<sub>14</sub>H<sub>3</sub>), 18.6 (*C*<sub>15</sub>H<sub>3</sub>), 18.2 (*C*<sub>4</sub>'H<sub>3</sub>) ppm; IR (film, cm<sup>-1</sup>) 1768, 1706, 1635, 1570, 1303, 1158, 1125, 1020, 996;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>NaO<sub>6</sub>: 367.1151, found: 367.1158;

TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 1/2).



To a solution of TBDPS-protected alcohol **18a** (130 mg, 0.25 mmol) in an Eppendorf safelock tube was added 1 drop of THF followed by hydrogen fluoride pyridine (hydrogen fluoride ~70%, 0.3 mL). The reaction mixture was left on a shaker at room temperature for 40 minutes. Then  $CH_2Cl_2$  (2.0 mL) was added and the reaction was quenched carefully with *sat. aq.* NaHCO<sub>3</sub> (caution the mixture bubbles out while quenching) until the evolution of gas stopped. The mixture was extracted with ethyl acetate (5 × 10 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filterred and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 2/1 ~ 1/2) to provide the **31** as a waxy solid (25 mg, 36%).

Data of **31**: waxy solid;

 $[\alpha]_{D}^{20}$  -183.3 (c 1.0, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.40 (d, *J* = 1.8 Hz, 1H, *H*<sub>13</sub>), 5.97 (dt, *J* = 3.6, 1.8 Hz, 1H, *H*<sub>5</sub>), 5.78 (dd, *J* = 1.6, 0.7 Hz, 1H, *H*<sub>13</sub>), 5.12 (dt, *J* = 3.8, 2.0 Hz, 1H, *H*<sub>6</sub>), 4.21 (d, *J* = 4.1 Hz, 1H, *H*<sub>1</sub>), 4.02 (br, d, *J* = 9.1 Hz, 1H, *H*<sub>7</sub>), 3.86 (br s, 1H, *H*<sub>8</sub>), 3.23 (br s, 1H, *-OH*), 2.60 (br d, *J* = 15.7 Hz, 1H, *H*<sub>9</sub>), 2.12 (d, *J* = 4.4 Hz, 1H, *C*<sub>1</sub>-*OH*), 2.06 (dd, *J* = 15.5, 6.5 Hz, 1H, *H*<sub>9</sub>), 1.83 (t, *J* = 1.8 Hz, 3H, *H*<sub>15</sub>), 1.49 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$  170.2 (*C*<sub>12</sub>), 140.5 (*C*<sub>5</sub>H), 135.8 (*C*<sub>11</sub>), 126.0 (*C*<sub>13</sub>H<sub>2</sub>), 120.2 (*C*<sub>4</sub>), 99.3 (*C*<sub>2</sub>), 84.4 (*C*<sub>3</sub>), 79.3 (*C*<sub>6</sub>H), 76.9 (*C*<sub>10</sub>), 71.0 (*C*<sub>8</sub>H), 70.5 (*C*<sub>1</sub>H), 50.7 (br, *C*<sub>7</sub>H), 31.3 (br, *C*<sub>14</sub>H<sub>3</sub>), 21.0 (*C*<sub>15</sub>H<sub>3</sub>) ppm; Signal of C<sub>2</sub>/C<sub>3</sub> could not be detected on <sup>13</sup>C NMR because of the conformational changes, the chemical shift of C<sub>2</sub> and C<sub>3</sub> were confirmed by HMBC;

IR (film, cm<sup>-1</sup>) 3403, 2958, 2350, 1746, 1277, 1153, 1019, 818, 533;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>15</sub>H<sub>18</sub>NaO<sub>5</sub>: 301.1068, found: 301.1052;

TLC: Rf = 0.30 (Petroleum ether/Ethyl acetate = 1/2).



To a stirred solution of triol **31** (22 mg, 0.079 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added MnO<sub>2</sub> (69 mg, 0.79 mmol). The reaction mixture was stirred at room temperature for 2 hours or till TLC analysis showed disappearance of starting material. Then, MnO<sub>2</sub> was filtered off and washed with CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL).  $tBu_3AuNTf_2$  (3.3 mg, 0.004 mmol) was added to the CH<sub>2</sub>Cl<sub>2</sub> solution and stirred for 10 minutes or till the TLC analysis showed disappearance of starting material. The resulted solution was concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 2/1) to provide the **2** as white solid (17.6 mg, 81%).

The absolute configuration of **2** was determined by X-ray diffraction measurements. Single crystals of **2** suitable for X-ray crystallographic analysis were obtained by a single recrystallization by slow evaporation at room temperature using *n*-hexanes/  $CH_2Cl_2$  as a solvent mixture. See **Supplementary Section m** for detail.

Data of **31-1**: waxy solid;

 $[\alpha]_{D}^{20}$  -376.9 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.45 (d, *J* = 2.5 Hz, 1H, *H*<sub>13</sub>), 6.37 (dt, *J* = 3.0, 1.5 Hz, 1H, *H*<sub>5</sub>), 5.85 (d, *J* = 2.2 Hz, 1H, *H*<sub>13</sub>), 5.15 (dp, *J* = 4.6, 2.3 Hz, 1H, *H*<sub>6</sub>), 4.22 (br s, 1H, *H*<sub>8</sub>), 4.00 (br s, 1H, *H*<sub>7</sub>), 3.61 (br s, 1H, *-OH*), 2.45-2.43 (m, 2H, *H*<sub>9</sub>), 1.97 (like t, *J* = 1.9 Hz, 3H, *H*<sub>15</sub>), 1.51 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) $\delta$  <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  189.1 (*C*<sub>1</sub>), 169.1 (*C*<sub>12</sub>), 145.8 (br, *C*<sub>5</sub>H), 134.3 (*C*<sub>11</sub>), 125.7 (br, *C*<sub>13</sub>H<sub>2</sub>), 117.6 (*C*<sub>4</sub>), 98.5 (*C*<sub>3</sub>), 93.7 (br, *C*<sub>2</sub>), 80.6 (*C*<sub>10</sub>), 78.9 (br, *C*<sub>6</sub>H), 70.5 (*C*<sub>8</sub>H), 50.2 (*C*<sub>7</sub>H), 42.1 (*C*<sub>9</sub>H<sub>2</sub>), 27.4 (br, *C*<sub>14</sub>H<sub>3</sub>), 21.10 (br, *C*<sub>15</sub>H<sub>3</sub>) ppm; Signal of C<sub>9</sub> could not be detected on <sup>13</sup>C NMR because of the conformational changes, the chemical shift was confirmed by HMBC;

IR (film, cm<sup>-1</sup>) 3443, 2927, 2183, 1751, 1675, 1278, 1136, 1014; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>17</sub>O<sub>5</sub>: 277.1068, found: 277.1076; TLC: Rf = 0.20 (Petroleum ether/Ethyl acetate = 3/1).

Data of **2**: white solid; m.p. = 210 - 211 °C;  $[\alpha]_{D}^{20}$  -50.4 (c 0.25, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Table S1**; IR (film, cm<sup>-1</sup>) 3454, 1765, 1701, 1577, 1289, 1135, 1001, 815; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>17</sub>O<sub>5</sub>: 277.1068, found: 277.1076; TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 1/1).


To a stirred solution of alcohol **2** (4.0 mg, 0.014 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (50 µL, 0.36 mmol) and methylacrlic anhydride (25 µL, 0.17 mmol) followed by a trace of DMAP. The reaction mixture was then stirred at room temperature for 30 minutes or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 5/1$ ) to provide the **5** as a waxy solid (3.9 mg, 93%).

Data of **3**: waxy solid;

 $[\alpha]_{D}^{20}$  -38.5 (c 0.20, CHCl<sub>3</sub>); lit.  $[\alpha]_{D}^{24}$  -38 (c 0.76, CHCl<sub>3</sub>) (*Phytochemishy*, **1976**, *15*, 1775-1776.);

<sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Table S4**;

IR (film, cm<sup>-1</sup>) 2925, 2854, 1769, 1707, 1588, 1292, 1138, 1027, 520; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>NaO<sub>6</sub>: 367.1151, found: 367.1158; TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 3/1).



To a stirred solution of alcohol **2** (2.0 mg, 0.007 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (50  $\mu$ L, 0.36 mmol) and angelic anhydride (25  $\mu$ L, 0.14 mmol) followed by a trace of DMAP. The reaction mixture was then stirred at room temperature for 30 hours or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 5/1$ ) to provide the **4** as a waxy solid (1.1 mg, 45%).

We observed partial isomerization from angelate to tiglate (angelate/tiglate = 11/1 as determined by crude <sup>1</sup>H NMR) and a little amount of **5** was isolated from this reaction.

Data of **4**: waxy solid;  $[\alpha]_{D}^{20}$  -50.0 (c 0.035, CHCl<sub>3</sub>); lit.  $[\alpha]_{D}^{24}$  -56.9 (c 0.26, CHCl<sub>3</sub>) (*Phytochemishy*, **1980**, *19*, 2381-2385.); <sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S5**; IR (film, cm<sup>-1</sup>) 1769, 1709, 1589, 1291, 1234, 1138, 1030, 527; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>23</sub>O<sub>6</sub>: 359.1495, found: 359.1517; TLC: Rf = 0.55 (Petroleum ether/Ethyl acetate = 3/1).



To a stirred solution of alcohol **2** (2 mg, 0.007 mmol) in THF (1 mL) was added NEt<sub>3</sub> (50  $\mu$ L, 0.36 mmol) and tiglic anhydride (25  $\mu$ L, 0.14 mmol). Then trace DMAP was added. The reaction mixture was stirred at room temperature for 90 min or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 5/1) to provide the **5** as a waxy solid (1.5 mg, 60%).

Data of 5: waxy solid;

 $[\alpha]_{D}^{20}$  -49.5 (c 0.020, CHCl<sub>3</sub>); lit.  $[\alpha]_{D}^{24}$  -54.3 (c 2.0, CHCl<sub>3</sub>) (*Phytochemishy*, **1980**, 19, 2663-2668.);

<sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S6**;

IR (film, cm<sup>-1</sup>) 1769, 1706, 1589, 1291, 1274, 1137, 1029;

HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>23</sub>O<sub>6</sub>: 359.1495, found: 359.1478;

TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 3/1).



To a stirred solution of alcohol **2** (2.0 mg, 0.007 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (50  $\mu$ L, 0.36 mmol) and isobutyric anhydride (25  $\mu$ L, 0.15 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 90 minutes or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 5/1) to provide the **6** as a waxy solid (1.6 mg, 64%).

Data of **6**: waxy solid;  $[\alpha]_{p}^{20}$  -88.0 (c 0.025, CHCl<sub>3</sub>); lit.  $[\alpha]_{p}^{24}$  -158 (c 0.54, CHCl<sub>3</sub>) (*Phytochemishy*, **1982**, *21*, 1669-1673.); <sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S7**; IR (film, cm<sup>-1</sup>) 1770, 1709, 1588, 1291, 1139, 1029; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>23</sub>O<sub>6</sub>: 347.1495, found: 347.1512; TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 3/1).



The reaction was conducted following a previously reported procedure.<sup>24</sup>

A solution of 15-deoxygoyazensolide (3) (1.0 mg, 0.0029 mmol) in THF (0.2 mL) and commercially available Stryker's reagent (3.0 mg, 0.0015 mmol), were mixed together forming a homogeneous solution that was stirred at room temperature for 2 hours in a glove box under an inert N<sub>2</sub> atmosphere. The reaction was then quenched with *sat. aq.* NH<sub>4</sub>Cl (1.0 mL), extracted with ethyl acetate (3 × 5.0 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filterred and concentrated *in vacuo*. The residue was purified by preparative TLC (Pentane/Ethyl acetate = 3/1) to provide **14** as a waxy solid (0.4 mg, 40%).

Data of **14**: waxy solid;

<sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S13**; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>22</sub>NaO<sub>6</sub>: 369.1314, found: 369.1323; TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 1/1).



A 10 mL round bottom flask equipped with a magnetic stir bar was charged with alcohol 18a (40 mg, 0.078 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL), followed by addition of DMP (50 mg, 0.12 mmol). The reaction was stirred for 30 minutes or till the TLC analysis showed disappearance of starting material. The reaction was then quenched with diluted Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (2.0 mL) and extracted with  $CH_2Cl_2$  (3 × 10 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo* to provide **18a-1** as a waxy solid. The crude product was used directly as starting material for the Evans-Saksena reduction without further purification. A 10 mL round bottom flask equipped with a magnetic stir bar was charged with **18a-1**, MeCN (2.0 mL) and AcOH (2.0 mL). Then, the mixture was cooled down to 0 °C, Me<sub>4</sub>NBH(OAc)<sub>3</sub> (102 mg, 0.39 mmol) was added in portions and the reaction was stirred for 3 hours or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with sat. aq. NaHCO<sub>3</sub> (15 mL, caution the mixture bubbles out while quenching) until the evolution of gas stopped and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 10 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 2/1) to give alcohol **33** as a waxy solid (27 mg, 30%).

Data of **18a-1**: yellow oil;  $[\alpha]_{D}^{20}$  -120.9 (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70-7.67 (m, 4H, -*OTBDPS*), 7.45-7.36 (m, 6H, -*OTBDPS*), 6.28 (d, *J* = 3.5 Hz, 1H, *H*<sub>13</sub>), 5.97 (dq, *J* = 3.3, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.57 (d, *J* = 3.1 Hz, 1H, *H*<sub>13</sub>), 5.55-5.50 (m, 1H, *H*<sub>6</sub>), 4.42-4.39 (m, 1H, *H*<sub>7</sub>), 4.40 (s, 1H, *H*<sub>1</sub>), 2.93 (d, *J* = 13.7 Hz, 1H, *H*<sub>9</sub>), 2.68 (d, *J* = 13.7 Hz, 1H, *H*<sub>9</sub>), 1.58 (t, *J* = 1.8 Hz, 3H, *H*<sub>15</sub>), 1.51 (s, 3H, *H*<sub>14</sub>), 1.10 (s, 9H, -*OTBDPS*) ppm;

<sup>&</sup>lt;sup>24</sup> Sass, D. C., Heleno, V. C. G., Cavalcante, S., da Silva Barbosa, J., Soares, A. C. F., Constantino, M. G. *J. Org. Chem.* **2012**, *77*, 9374-9378.

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 203.1 (*C*<sub>8</sub>), 167.37 (*C*<sub>12</sub>), 136.3 (*TBDPS*), 136.1 (*TBDPS*), 134.9 (*C*<sub>11</sub>), 134.7 (*C*<sub>5</sub>H), 132.8 (*TBDPS*), 132.5 (*TBDPS*), 130.3 (*TBDPS*), 130.1 (*TBDPS*), 128.0 (*TBDPS*), 127.6 (*TBDPS*), 122.8 (*C*<sub>13</sub>H<sub>2</sub>), 119.5 (*C*<sub>4</sub>), 97.0 (*C*<sub>2</sub>), 86.9 (*C*<sub>3</sub>), 79.6 (*C*<sub>10</sub>), 77.8 (*C*<sub>6</sub>H), 71.8 (*C*<sub>1</sub>H), 59.0 (*C*<sub>7</sub>H), 48.2 (*C*<sub>9</sub>H<sub>2</sub>), 27.1 (*TBDPS*), 24.3 (*C*<sub>14</sub>H<sub>3</sub>), 21.6 (*C*<sub>15</sub>H<sub>3</sub>), 19.5 (*TBDPS*) ppm;

IR (film, cm<sup>-1</sup>) 1767, 1703, 1288, 1110, 1041, 703;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>31</sub>H<sub>34</sub>NaO<sub>5</sub>Si: 537.2067, found: 537.2073;

TLC: Rf = 0.20 (Petroleum ether/Ethyl acetate = 5/1).

Data of **33**: waxy solid;

 $[\alpha]_{D}^{20}$  -198 (c 0.53, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65-7.68 (m, 4H, *-OTBDPS*), 7.33-7.45 (m, 6H, *-OTBDPS*), 6.31 (d, *J* = 2.9 Hz, 1H, *H*<sub>13</sub>) 5.96 (m, 1H, *H*<sub>13</sub>), 5.95 (m, 1H, *H*<sub>5</sub>), 5.14 (br t, *J* = 7 Hz, 1H, *H*<sub>6</sub>), 4.63 (br s, 1H, *H*<sub>8</sub>), 4.01 (s, 1H, *H*<sub>1</sub>), 3.32 (br s, 1H, *H*<sub>7</sub>), 2.61 (br d, *J* = 15.6 Hz, 1H, *H*<sub>9</sub>), 2.13 (br s, 1H, *-OH*), 1.75 (br s, 1H, *-OH*), 1.73 (dd, *J* = 15.6, 6.3 Hz, *H*<sub>9</sub>), 1.64 (t, *J* = 1.5 Hz, 3H, *H*<sub>15</sub>), 1.39 (s, 3H, *H*<sub>14</sub>), 1.08 (s, 9H, *-OTBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  170.6 (*C*<sub>12</sub>), 138.8 (*C*<sub>5</sub>H), 136.3 (*C*<sub>11</sub>), 136.3 (*TBDPS*), 136.1 (*TBDPS*), 133.2 (*TBDPS*), 132.9 (*TBDPS*), 130.2 (*TBDPS*), 130.1 (*TBDPS*), 127.9 (*TBDPS*), 127.5 (*TBDPS*), 123.4 (*C*<sub>13</sub>H<sub>2</sub>), 121.4 (*C*<sub>4</sub>), 98.4 (*C*<sub>2</sub>), 86.1 (*C*<sub>3</sub>), 78.1 (*C*<sub>6</sub>H), 76.3 (*C*<sub>10</sub>), 72.0 (*C*<sub>1</sub>H), 70.1 (*C*<sub>8</sub>H), 52.0 (*C*<sub>7</sub>H), 39.3 (*C*<sub>9</sub>H<sub>2</sub>), 30.4 (*C*<sub>14</sub>H<sub>3</sub>), 27.2 (*TBDPS*), 20.8 (*C*<sub>15</sub>H<sub>3</sub>), 19.5 (*TBDPS*) ppm; The signal of C<sub>8</sub> could not be detected on <sup>13</sup>C NMR because of the conformational changes, the chemical shift was confirmed by HSQC. <sup>13</sup>C NMR of C<sub>11</sub> overlaps with TBDPS, the chemical shift was confirmed by HMBC;

IR (film, cm<sup>-1</sup>) 3475, 2933, 1753, 1428, 1111, 703;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>31</sub>H<sub>36</sub>NaO<sub>5</sub>Si: 539.2236, found: 539.2230;

TLC: Rf = 0.30 (Petroleum ether/Ethyl acetate = 2/1).



To a solution of TBDPS-protected alcohol **33** (27.6 mg, 0.1 mmol) in an Eppendorf safelock tube was added 1 drop of THF followed by hydrogen fluoride pyridine (hydrogen fluoride ~70%, 0.1 mL). The mixture was left on shaker at room temperature for 40 minutes. Then CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL) was added to the reaction followed by addition of *sat. aq.* NaHCO<sub>3</sub> for quenching (caution the mixture bubbles out while quenching) until the evolution of gas stopped. The mixture was extracted with ethyl acetate (5 × 10 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filterred and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $2/1 \sim 1/2$ ) to provide the **33-1** as waxy solid (12.8 mg, 86%).

Data of 33-1: waxy solid;

### $[\alpha]_{D}^{20}$ -205 (c 1.0, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, acetone-d<sup>6</sup>)  $\delta$  6.07 (dd, *J* = 2.5, 1.1 Hz, 1H, *H*<sub>13</sub>), 5.99 (br s, 1H, *H*<sub>5</sub>), 5.74 (br s, 1H, *H*<sub>13</sub>), 5.35 (br s, 1H, *H*<sub>6</sub>), 4.71 (d, *J* = 6.2 Hz, 1H, *H*<sub>8</sub>), 4.49 (br s, 1H, *-OH*), 4.02 (t, *J* = 3.1 Hz, 2H, *H*<sub>1</sub>+-*OH*), 3.74 (br d, *J* = 4.5 Hz, 1H, *H*<sub>7</sub>), 3.70 (br s, *-OH*), 2.69 (br s, *H*<sub>9</sub>), 1.80 (t, *J* = 1.6 Hz, 3H, *H*<sub>15</sub>), 1.63 (dd, *J* = 15.1, 4.7 Hz, 1H, *H*<sub>9</sub>), 1.41 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, acetone-d<sup>6</sup>)  $\delta$  170.8 (*C*<sub>12</sub>), 141.0 (br, *C*<sub>5</sub>H), 121.0 (*C*<sub>13</sub>H<sub>2</sub>), 121.0 (*C*<sub>4</sub>), 101.6 (*C*<sub>2</sub>), 84.0 (br, *C*<sub>3</sub>), 77.7 (br, *C*<sub>6</sub>H), 75.3 (*C*<sub>10</sub>), 71.3 (*C*<sub>1</sub>H), 71.3 (*C*<sub>8</sub>H), 52.0 (br, *C*<sub>7</sub>H), 40.4 (*C*<sub>9</sub>H<sub>2</sub>), 30.4 (*C*<sub>14</sub>H<sub>3</sub>), 21.0 (*C*<sub>15</sub>H<sub>3</sub>) ppm; signal of C<sub>3</sub>/C<sub>5</sub>/C<sub>11</sub> could not be detected on <sup>13</sup>C NMR because of the conformational changes, the chemical shift of C<sub>3</sub> was confirmed by HMQC. The chemical shift of C<sub>5</sub> was confirmed by HSQC. <sup>13</sup>C NMR of C<sub>11</sub> could not be assigned;

IR (film, cm<sup>-1</sup>) 3427, 2930, 1747, 1272, 1143, 1021, 977;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>15</sub>H<sub>18</sub>NaO<sub>5</sub>: 301.1068, found: 301.1052; TLC: Rf = 0.20 (Petroleum ether/Ethyl acetate = 1/2).



To a stirred solution of triol **33-1** (11.2 mg, 0.04 mmol) in  $CH_2Cl_2$  (1.0 mL) was added  $MnO_2$  (35 mg, 0.4 mmol). The reaction mixture was stirred at room temperature for 2 hours or till the TLC analysis showed disappearance of starting material. Then  $MnO_2$  was filtered off and washed with  $CH_2Cl_2$  (1.0 mL).  $tBu_3AuNTf_2$  (1.7 mg, 0.002 mmol) was added to the  $CH_2Cl_2$  solution and stirred for 10 minutes till the TLC analysis showed disappearance of starting material. The resulted solution was concentrated *in vacuo* and the residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 1/1) to provide the **7** as waxy solid (9.8 mg, 79%).

## Data of **33-2**: waxy solid;

# $[\alpha]_{D}^{20}$ -215.6 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.47 (dq, *J* = 6.1, 1.6 Hz, 1H, *H*<sub>5</sub>), 6.37 (dd, *J* = 3.3, 1.0 Hz, 1H, *H*<sub>13</sub>), 6.23 (dd, *J* = 2.9, 1.0 Hz, 1H, *H*<sub>13</sub>), 5.27 (ddq, *J* = 8.8, 6.0, 1.3 Hz, 1H, *H*<sub>6</sub>), 4.71 (ddd, *J* = 7.0, 4.4, 2.3 Hz, 1H, *H*<sub>8</sub>), 3.47 (ddt, *J* = 9.1, 4.4, 3.1 Hz, 1H, *H*<sub>7</sub>), 3.12 (br s, 1H, *-OH*), 2.78 (br s, 1H, *-OH*), 2.58 (dd, *J* = 15.9, 2.2 Hz, 1H, *H*<sub>9</sub>), 2.10 (dd, *J* = 15.8, 7.3 Hz, 1H, *H*<sub>9</sub>), 1.98 (t, *J* = 1.5 Hz, 3H, *H*<sub>15</sub>), 1.40 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 190.5 (*C*<sub>1</sub>), 169.5 (*C*<sub>12</sub>), 146.5 (*C*<sub>5</sub>H), 134.6 (*C*<sub>11</sub>), 125.4 (*C*<sub>13</sub>H<sub>2</sub>), 120.4 (*C*<sub>4</sub>), 102.0 (*C*<sub>3</sub>), 95.4 (*C*<sub>2</sub>), 79.7 (*C*<sub>10</sub>), 78.1 (*C*<sub>6</sub>H), 69.1 (*C*<sub>8</sub>H), 50.6 (*C*<sub>7</sub>H), 40.6 (*C*<sub>9</sub>H<sub>2</sub>), 28.2 (*C*<sub>14</sub>H<sub>3</sub>), 20.5 (*C*<sub>15</sub>H<sub>3</sub>) ppm;

IR (film, cm<sup>-1</sup>) 3480, 2179, 1765, 1671, 1323, 1274, 1239, 1127, 1026, 986, 555; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>15</sub>H<sub>17</sub>NaO<sub>5</sub>: 299.0905, found: 299.0895; TLC: Rf = 0.40 (Petroleum ether/Ethyl acetate = 3/1).

Data of **7**: waxy solid;  $[\alpha]_{p}^{20}$  -142.7 (c 0.15, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S1**; IR (film, cm<sup>-1</sup>) 3430, 2924, 1761, 1704, 1589, 1280, 1143, 611; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>15</sub>H<sub>16</sub>NaO<sub>5</sub>: 299.0905, found: 299.0895; TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 1/1).



To a stirred solution of alcohol **7** (1.5 mg, 0.005 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (25  $\mu$ L, 0.18 mmol) and methacrylic anhydride (13  $\mu$ L, 0.09 mmol) followed by a trace of DMAP. The reaction mixture was then stirred at room temperature for 3 hours or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 3/1) to provide the calaxin **8** as a waxy solid (1.1 mg, 59%).

Data of calaxin **8**: waxy solid;  $[\alpha]_{D}^{20}$  -63.2 (c 0.05, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S8**; IR (film, cm<sup>-1</sup>) 2362, 2343, 1771, 1707, 1593, 1291, 1151, 617; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>NaO<sub>6</sub>: 367.1151, found: 367.1158; TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alcohol **7** (1.5 mg, 0.005 mmol) in PhMe (1.0 mL) was added angelic 2,4,6-trichlorobenzoic anhydride (**Ang-TCB**, 4.6 mg, 0.015 mmol) and DMAP (1.8 mg, 0.016 mmol). The reaction mixture was stirred at room temperature for 6 hours or till the TLC analysis showed disappearance of starting material. Then, the reaction was filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 3/1$ ) to provide compound **9** as a waxy solid (<0.1 mg, ~5%) together with 8-*epi*-atripliciolide-tiglate **10** (0.8 mg, 40%).

We observed major isomerization from angelate to tiglate (angelate/tiglate = 1/8 as determined by crude <sup>1</sup>H NMR). Unfortunately, the material obtained was not enough for full characterization, but <sup>1</sup>H NMR data comparison showed unequivocally the compound to be natural product **9**. See **Table S9** for detail.

Data of **9**: waxy solid; HRMS(ESI)  $[M + H]^+$  calculated for C<sub>20</sub>H<sub>23</sub>O<sub>6</sub>: 359.1495, found: 359.1517; TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alcohol **7** (1.5 mg, 0.005 mmol) in PhMe (1.0 mL) was added tiglic 2,4,6-trichlorobenzoic anhydride (**Tig-TCB**, 4.6 mg, 0.015 mmol) and DMAP (1.8 mg, 0.016 mmol). The reaction mixture was stirred at room temperature for 24 hours till the TLC analysis showed disappearance of the starting material. Then the reaction was filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 3/1$ ) to provide 8-*epi*-atripliciolide-tiglate **10** (0.5 mg, 31%) as a waxy solid.

Data of 8-*epi*-atripliciolide-tiglate **10**: waxy solid;  $[\alpha]_{D}^{20}$  -204.4 (c 0.025, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Table S10**; IR (film, cm<sup>-1</sup>) 1767, 1710, 1594, 1291, 1127, 1080, 593; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>23</sub>O<sub>6</sub>: 359.1495, found: 359.1478; TLC: Rf = 0.55 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alcohol **7** (1.5 mg, 0.005 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (25  $\mu$ L, 0.18 mmol) and isobutyric anhydride (13  $\mu$ L, 0.08 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 6 hours till the TLC analysis showed disappearance of the starting material. The reaction was then quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 3/1) to provide the **11** as awaxy solid (1.6 mg, 89%).

Data of **11**: waxy solid;  $[\alpha]_{D}^{20}$  -132.1 (c 0.10, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S11**; IR (film, cm<sup>-1</sup>) 1770, 1706, 1592, 1290, 1144; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>22</sub>NaO<sub>6</sub>: 369.1323, found: 369.1314; TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alcohol **7** (1.0 mg, 0.0036 mmol) in THF (0.5 mL) was added NEt<sub>3</sub> (15  $\mu$ L, 0.11 mmol) and isovaleric anhydride (10  $\mu$ L, 0.05 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 4 hours till the TLC analysis showed disappearance of the starting material. The reaction was then quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 2/1) to provide the **12** as awaxy solid (0.9 mg, 69%).

Data of **12**: waxy solid;

 $[\alpha]_{D}^{20}$  -51.8 (c 0.045, CHCl<sub>3</sub>); lit.  $[\alpha]_{D}^{24}$  -41 (c 0.8, CHCl<sub>3</sub>) (*Phytochemishy*, **1978**, 17, 471-474.);

<sup>1</sup>H NMR and <sup>13</sup>C NMR data, see Table S12;

IR (film, cm<sup>-1</sup>) 2960, 1770, 1739, 1709, 1595, 1291, 1162, 1130, 1005, 815; HRMS(ESI) [M + H]<sup>+</sup> calculated for  $C_{20}H_{25}O_6$ : 361.1651, found: 361.1625; TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alcohol **7** (1.4 mg, 0.0051 mmol) in THF (0.5 mL) was added NEt<sub>3</sub> (15 µL, 0.11 mmol) and (±)-2-methylbutyric anhydride (10 µL, 0.05 mmol)followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 12 hours till the TLC analysis showed disappearance of the starting material. The reaction was then quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 2/1$ ) to provide the (*R+S*)-**13** as a waxy solid and a mixture 1:1 of inseparable diastereomers (1.4 mg, 78%).

Data of (*R*+*S*)-**13**: waxy solid; <sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Supplementary Section d**; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>20</sub>H<sub>24</sub>NaO<sub>6</sub>: 383.1471, found: 383.1475; TLC: Rf = 0.70 (Petroleum ether/Ethyl acetate = 2/1).



The same procedure for synthesis of (R+S)-**13** was used and 1.2 mg of 8-e*pi*-atripliciolide-2'-(*S*)-MeBu (**13**) were obtained from 1.0 mg of **7**, representing a yield of 92%.

Data of 8-e*pi*-atripliciolide-2'-(*S*)-MeBu **13**: waxy solid;  $[\alpha]_{D}^{20}$  -47.3 (c 0.06, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Supplementary Section d**; IR (film, cm<sup>-1</sup>) 2912, 2193, 1982, 1595, 1263, 1132, 1023, 800; TLC: Rf = 0.70 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alcohol **33** (11 mg, 0.021 mmol) in THF (2.0 mL) was added NEt<sub>3</sub> (18 µL, 0.13 mmol) and isobutyric anhydride (11 µL, 0.06 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 2 hours till the TLC analysis showed disappearance of the starting material. The reaction was then quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (3 × 10 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $5/1 \sim 2/1$ ) to provide **34** as a white solid (12 mg, 96%).

The absolute configuration of **34** was determined by X-ray diffraction measurements. Single crystals of **34** suitable for X-ray crystallographic analysis were obtained by a single recrystallization by slow evaporation at room temperature using *n*-hexanes/CH<sub>2</sub>Cl<sub>2</sub> as a solvent mixture. See **Supplementary Section m** for detail.

Data of 53: white solid, m.p. 154-156 °C;

 $[\alpha]_{D}^{20}$  -669.7 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.73-7.57 (m, 4H, -*OTBDPS*), 7.53-7.32 (m, 6H, -*OTBDPS*), 6.25 (d, *J* = 2.2 Hz, 1H, *H*<sub>13</sub>) 5.88 (dq, *J* = 3.3, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.72 (br s, 1H, *H*<sub>13</sub>), 5.39 (br s, 2H, *H*<sub>6</sub> + *H*<sub>8</sub>), 4.01 (s, 1H, *H*<sub>1</sub>), 3.68 (br s, 1H, *H*<sub>7</sub>), 2.81 (dd, *J* = 15.0, 9.7 Hz, 1H, *H*<sub>9</sub>), 2.49 (hept, *J* = 7.0 Hz, 1H, *H*<sub>2</sub>), 1.72 (dd, *J* = 15.1, 3.9 Hz, 1H, *H*<sub>9</sub>), 1.63 (t, *J* = 1.7 Hz, 3H, *H*<sub>15</sub>), 1.42 (s, 3H, *H*<sub>14</sub>), 1.13 (d, *J* = 7.0 Hz, 3H, *H*<sub>3'/4'</sub>), 1.11 (d, *J* = 7.0 Hz, 3H, *H*<sub>3'/4'</sub>), 1.09 (s, 9H, -*OTBDPS*) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 176.5 (*C*<sub>1</sub><sup>2</sup>), 170.5 (*C*<sub>12</sub>), 140.4 (br, *C*<sub>5</sub>H), 137.2 (br *C*<sub>11</sub>), 136.4 (*TBDPS*), 136.1 (*TBDPS*), 133.2 (*TBDPS*), 132.9 (*TBDPS*), 130.2 (*TBDPS*), 130.1 (*TBDPS*), 127.9 (*TBDPS*), 127.5 (*TBDPS*), 123.4 (*C*<sub>13</sub>H<sub>2</sub>), 120.4 (br, *C*<sub>4</sub>), 98.8 (*C*<sub>2</sub>), 85.2 (br, *C*<sub>3</sub>), 77.0 (*C*<sub>6</sub>H), 75.4 (*C*<sub>10</sub>), 75.4 (*C*<sub>8</sub>H), 72.6 (*C*<sub>1</sub>H), 49.3 (br, *C*<sub>7</sub>H), 36.0 (*C*<sub>9</sub>H<sub>2</sub>), 34.3 (*C*<sub>2</sub>'H), 30.2 (*C*<sub>14</sub>H<sub>3</sub>), 27.2 (*TBDPS*), 20.9 (*C*<sub>15</sub>H<sub>3</sub>), 19.5 (*TBDPS*), 18.9 (*C*<sub>3</sub>'H<sub>3</sub>), 18.8 (*C*<sub>4</sub>'H<sub>3</sub>) ppm; <sup>13</sup>C NMR

signal of C<sub>3</sub> C<sub>4</sub> C<sub>5</sub> C<sub>7</sub> C<sub>11</sub> are broad because of the conformational changes. <sup>13</sup>C NMR of C<sub>8</sub> and C<sub>10</sub> overlap, and C<sub>8</sub> most likely has very weak signal. <sup>1</sup>H NMR of H-6 and H-8 overlap and makes the NOESY hard to detect. There is a correlation between H-5 and H-7; IR (film, cm<sup>-1</sup>) 3475, 2933, 1753, 1428, 1111, 703;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>35</sub>H<sub>42</sub>NaO<sub>6</sub>Si: 609.2661, found: 609.2648; TLC: Rf = 0.85 (Petroleum ether/Ethyl acetate = 1/1).



To a solution of TBDPS-protected alcohol 34 (13.6 mg, 0.023 mmol) in an Eppendorf safelock tube was added hydrogen fluoride pyridine (hydrogen fluoride  $\sim$ 70%, 0.1 mL). The reaction mixture was left on a shaker at room temperature for 40 minutes. Then CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL) was added to the reaction mixture and followed by addition of sat. aq. NaHCO<sub>3</sub> for quenching (caution the mixture bubbles out while quenching) until the evolution of gas stopped. The mixture was extracted with ethyl acetate (3 × 10 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was used for acetylation without further purification. To a solution of crude propargyl alcohol **34-1** in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added NEt<sub>3</sub> (16 µL, 0.12 mmol) and acetic anhydride (4.3 µL, 0.046 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 5 hours or till the TLC analysis showed disappearance of starting material. The reaction was then quenched with sat. aq. NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 10 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 4/1) to provide **35** as waxy solid (7.7 mg, 75%).

Data of propargyl alcohol 34-1: waxy solid;

### $[\alpha]_{D}^{20}$ -301.2 (c 0.06, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.28 (d, *J* = 2.3 Hz, 1H, *H*<sub>13</sub>), 6.02 (dq, *J* = 4.7, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.77 (d, *J* = 2.1 Hz, 1H, *H*<sub>13</sub>), 5.48 (br s, 2H, *H*<sub>6</sub> + *H*<sub>8</sub>), 4.09 (d, *J* = 4.1 Hz, 1H, *H*<sub>1</sub>), 3.73 (br s, 1H, *H*<sub>7</sub>), 2.65 (dd, *J* = 15.2, 8.9 Hz, 1H, *H*<sub>9</sub>), 2.49 (hept, *J* = 7.0 Hz, 1H, *H*<sub>2</sub>), 2.00 (d, *J* = 4.2 Hz, 1H, *-OH*), 1.85 (t, *J* = 1.7 Hz, 3H, *H*<sub>15</sub>), 1.73 (dd, *J* = 15.1, 4.2 Hz, 1H, *H*<sub>9</sub>), 1.49 (s, 3H, *H*<sub>14</sub>), 1.12 (d, *J* = 6.1 Hz, 3H, *H*<sub>3'/4'</sub>), 1.11 (d, *J* = 6.2 Hz, 3H, *H*<sub>3'/4'</sub>) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  176.5 (*C*<sub>1</sub>'), 170.3 (*C*<sub>12</sub>), 141.0 (br, *C*<sub>5</sub>H), 136.9 (br, *C*<sub>11</sub>), 123.5 (*C*<sub>13</sub>H<sub>2</sub>), 120.4 (br, *C*<sub>4</sub>), 98.4 (*C*<sub>2</sub>), 85.1 (br, *C*<sub>3</sub>), 77.1 (*C*<sub>6</sub>H), 74.8 (*C*<sub>10</sub>), 74.8 (*C*<sub>8</sub>H), 71.0 (*C*<sub>1</sub>H), 49.4 (*C*<sub>7</sub>H), 35.8 (*C*<sub>9</sub>H<sub>2</sub>), 34.3 (*C*<sub>2</sub>'H), 29.6 (*C*<sub>14</sub>H<sub>3</sub>), 21.0 (*C*<sub>15</sub>H<sub>3</sub>), 18.9 (*C*<sub>3</sub>'H<sub>3</sub>), 18.8 (*C*<sub>4</sub>'H<sub>3</sub>) ppm; <sup>13</sup>C NMR signal of C<sub>3</sub> C<sub>4</sub> C<sub>5</sub> C<sub>11</sub> are broad because of the conformational changes. <sup>13</sup>C NMR of C<sub>8</sub> and C<sub>10</sub> overlap, and C<sub>8</sub> most likely has very weak signal. <sup>1</sup>H NMR of H-6 and H-8 overlap and makes the NOESY hard to be detected;

IR (film, cm<sup>-1</sup>) 3441, 2977, 1752, 1270, 1200, 1147, 1008;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>24</sub>NaO<sub>6</sub>: 371.1472, found: 371.1471;

TLC: Rf = 0.20 (Petroleum ether/Ethyl acetate = 3/1).

Data of **35**: waxy solid;

 $[\alpha]_{D}^{20}$  -219.7 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.28 (d, *J* = 2.3 Hz, 1H, *H*<sub>13</sub>), 6.04 (dq, *J* = 4.7, 1.6 Hz, 1H, *H*<sub>5</sub>), 5.78 (d, *J* = 2.1 Hz, 1H, *H*<sub>13</sub>), 5.48 (br s, 2H, *H*<sub>6</sub> + *H*<sub>8</sub>), 5.08 (s, 1H, *H*<sub>1</sub>), 3.74 (br s, 1H, *H*<sub>7</sub>), 2.67 (dd, *J* = 15.1, 8.9 Hz, 1H, *H*<sub>9</sub>), 2.49 (hept, *J* = 7.0 Hz, 1H, *H*<sub>2</sub>'), 2.12 (s, 3H, *-OAc*), 1.84 (t, *J* = 1.7 Hz, 3H, *H*<sub>15</sub>), 1.79 (dd, *J* = 15.1, 4.2 Hz, 1H, *H*<sub>9</sub>), 1.42 (s, 3H, *H*<sub>14</sub>), 1.12 (like t, *J* = 7.0, 6H, *H*<sub>3'</sub> + *H*<sub>4'</sub>) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  176.5 (*C*<sub>1</sub>'), 170.3 (*C*<sub>12</sub>), 169.6 (*OAc*), 141.5 (br, *C*<sub>5</sub>H), 136.9 (br, *C*<sub>11</sub>), 123.6 (*C*<sub>13</sub>H<sub>2</sub>), 120.4 (br, *C*<sub>4</sub>), 95.3 (*C*<sub>2</sub>), 85.0 (br, *C*<sub>3</sub>), 77.0 (*C*<sub>6</sub>H), 74.5 (*C*<sub>8</sub>H), 74.0 (*C*<sub>10</sub>), 71.2 (*C*<sub>1</sub>H), 49.4 (*C*<sub>7</sub>H), 36.8 (*C*<sub>9</sub>H<sub>2</sub>), 34.3 (*C*<sub>2</sub>'H), 29.6 (*C*<sub>14</sub>H<sub>3</sub>), 21.0 (*OAc*), 20.9 (*C*<sub>15</sub>H<sub>3</sub>), 18.9 (*C*<sub>3</sub>'H<sub>3</sub>), 18.8 (*C*<sub>4</sub>'H<sub>3</sub>) ppm; <sup>13</sup>C NMR signal of C<sub>3</sub> C<sub>4</sub> C<sub>5</sub> C<sub>8</sub> C<sub>11</sub> are broad and C8 disappears because of the conformational changes. <sup>13</sup>C NMR of C<sub>8</sub> can be detected by weak HSQC. <sup>1</sup>H NMR of H-6 and H-8 overlap and what makes the NOESY correlation hard to be detected;

IR (film, cm<sup>-1</sup>) 2926, 2230, 1743, 1223, 1006;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>21</sub>H<sub>26</sub>NaO<sub>7</sub>: 413.1579, found: 413.1576;

TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 3/1).



To a solution of **35** (3.0 mg, 0.0077 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added  $tBu_3AuNTf_2$  (0.3 mg, 0.0004 mmol) and stirred for 24 hours or till the TLC analysis showed disappearance of the starting material. The resulted solution was concentrated *in vacuo*. The residue was purified on NEt<sub>3</sub> pre-treated silica gel chromatography (Pentane/Ethyl acetate =  $5/1\sim3/1$ ) to provide the **36** as a waxy solid (1.9 mg, 63%).

The low isolated yield of **36** may result from the instability under acidic conditions.

#### Data of **36**: waxy solid;

 $[\alpha]_{D}^{20}$  -333.8 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.28 (d, *J* = 2.6 Hz, 1H, *H*<sub>13</sub>), 5.85 (d, *J* = 1.4 Hz, 1H, *H*<sub>1</sub>), 5.73 (dq, *J* = 3.6, 1.7 Hz, 1H, *H*<sub>5</sub>), 5.62 (d, *J* = 2.3 Hz, 1H, *H*<sub>13</sub>), 5.56 (dt, *J* = 11.5, 4.5 Hz, 1H, *H*<sub>8</sub>), 5.37 (dq, *J* = 4.0, 2.0 Hz, 1H, *H*<sub>6</sub>), 4.99 (d, *J* = 1.4 Hz, 1H, *H*<sub>2</sub>), 3.94 (tt, *J* = 4.1, 2.4 Hz, 1H, *H*<sub>7</sub>), 2.84 (dd, *J* = 14.6, 11.5 Hz, 1H, *H*<sub>9</sub>), 2.44 (hept, *J* = 7.0 Hz, 1H, *H*<sub>2</sub>'), 2.08 (s, 3H, *-OAc*), 1.88 (t, *J* = 1.8 Hz, 3H, *H*<sub>15</sub>), 1.65 (s, 3H, *H*<sub>14</sub>), 1.62 (dd, *J* = 14.6, 4.7 Hz, 1H, *H*<sub>9</sub>), 1.07 (d, *J* = 6.9 Hz, 3H, *H*<sub>3</sub>'), 1.05 (d, *J* = 7.0 Hz, 3H, *H*<sub>4</sub>') ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 176.3 (*C*<sub>1</sub><sup>'</sup>), 170.7 (*OAc*), 169.9 (*C*<sub>12</sub>), 157.7 (*C*<sub>3</sub>), 136.0 (*C*<sub>11</sub>), 133.1 (*C*<sub>5</sub>H), 130.6 (*C*<sub>4</sub>), 123.3 (*C*<sub>13</sub>H<sub>2</sub>), 100.8 (*C*<sub>2</sub>), 87.9 (*C*<sub>10</sub>), 84.9 (*C*<sub>1</sub>H), 75.6 (*C*<sub>6</sub>H), 71.6 (*C*<sub>8</sub>H), 50.0 (*C*<sub>7</sub>H), 34.2 (*C*<sub>2</sub>'H), 32.1 (*C*<sub>9</sub>H<sub>2</sub>), 22.8 (*C*<sub>14</sub>H<sub>3</sub>), 21.5 (*C*<sub>15</sub>H<sub>3</sub>), 21.1 (*OAc*), 19.2 (*C*<sub>3</sub>'H<sub>3</sub>), 18.8 (*C*<sub>4</sub>'H<sub>3</sub>) ppm;

IR (film, cm<sup>-1</sup>) 2924, 1768, 1738, 1462, 1375, 1281, 1230, 1135, 1034, 1004; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>21</sub>H<sub>27</sub>O<sub>7</sub>: 391.1729, found: 391.1757; TLC: Rf = 0.60 (Petroleum ether/Ethyl acetate = 3/1).



To a solution of **35** (1.9 mg, 0.0049 mmol) in  $CH_2Cl_2$  (0.5 mL) was added  $tBu_3AuNTf_2$  (0.2 mg, 0.00024 mmol) and stirred for 2 hours till the TLC analysis showed disappearance of the starting material. Then silica gel (cat. 2.0 mg) was added to the solution and stirred at same temperature for 5 hours. The residue was directly purified on silica gel chromatography (Pentane/Ethyl acetate = 2/1) to provide the tagitinine F (**16**) as a waxy solid (1.7 mg, *quant.*).

Data of tagitinine F 16: waxy solid;

[α]<sup>20</sup><sub>D</sub> -117.8 (c 0.075, MeOH); lit. [α]<sup>24</sup><sub>D</sub> -12.5 (c 0.1, MeOH) (*Photochem. Photobiol.*, **2020**, 96, 14-20.);

<sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Table S15**;

IR (film, cm<sup>-1</sup>) 3453, 2972, 2927, 1759, 1736, 1280, 1148, 1099, 1063, 1021, 982; HRMS(ESI) [M + Na]<sup>+</sup> calculated for  $C_{19}H_{24}NaO_6$ : 371.1472, found: 371.1471; TLC: Rf = 0.55 (Petroleum ether/Ethyl acetate = 1/1).



To a solution of **35** (2.0 mg, 0.0051 mmol) in CDCl<sub>3</sub> (0.5 mL) in NMR tube was added  $tBu_3AuNTf_2$  (0.2 mg, 0.00024 mmol) and left on a shaker for 2 hours till the crude <sup>1</sup>H NMR analysis showed disappearance of the starting material and formation of **36**. Then TFA (1  $\mu$ L, 0.013 mmol) was added to the solution and the tube was left on shaker at same temperature for 3 hours. Crude <sup>1</sup>H NMR showed formation tagitinine F **16**. The residue was treated with silica (cat. 2.0 mg) and left of shaker for another 12 hours. The crude <sup>1</sup>H NMR showed disappearance of tagitinine F. The resulted mixture was directly purified on silica gel chromatography (Pentane/Ethyl acetate =  $5/1 \sim 2/1$ ) to provide the tagitinine C **17** as awaxy solid (0.3 mg, 17%) together with other compounds. Similar reaction with CH<sub>2</sub>Cl<sub>2</sub> as solvent was repeated and same result was obtained.



#### Figure S7. Reaction pathway-crude <sup>1</sup>H NMR monitoring.

When **35** (wll-ug13-81) is treated with  $tBu_3AuNTf_2$ , cyclization happens fast to give **36** (wll-ug13-84-30min). This reaction is accomplished within 2 hours depending on the amount of the catalyst. When the cyclized product **36** is treated with TFA and the transformation to tagitinine F **16** happens gradually (wll-ug13-84-+TFA/wll-ug13-84-+TFA-360min), which indicating that TFA plays a similar function as silica gel. Addition of silica gel induces yet a different reaction. Directing monitoring by <sup>1</sup>H NMR gives no signals because all the compounds are adsorbed by the silica gel. A Simple filtration followed by a wash with ethyl acetate followed by concentration shows the unequivocal formation of tagitinine C **17** together with two other compounds (wll-ug13-84-CR), in a ratio of **20**: compound 1 : compound 2 = 1:2:1.

Figure S8. Proposed mechanism.



When **35** is treated with the gold catalyst, the alkyne could be activated inducing the cyclization between C10-OH and alkyne-C3 giving **36**. Then reaction would be slower than when C1 is a ketone. Compound **36** is not stable and a [3,3]-Sigmatropic oxorearrangement/ Hemiacetal ester/H<sub>2</sub>O exchange could give rise to tagitinine F **16**. Tautomerizaation then could generate the enone **ring opened 16**. Tagitinine C **17** could derive from a Z/E isomerization of the 1,2-double bond. The cocktail of TFA and silica would be necessary for this reaction. A control experiment was also conducted where TFA itself lead to no transformation without silica gel under various conditions (heat, light, etc).

Data of tagitinine C **17**: waxy solid;  $[\alpha]_{D}^{20}$  -268.8 (c 0.07, MeOH); lit.  $[\alpha]_{D}^{24}$  -23.5 (c 0.1, MeOH) (*Photochem. Photobiol.*, **2020**, 96, 14-20.); <sup>1</sup>H NMR and <sup>13</sup>C NMR data see **Table S16**; IR (film, cm<sup>-1</sup>) 3480, 2974, 2927, 1768, 1736, 1656, 1121, 993; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>24</sub>NaO<sub>6</sub>: 371.1472, found: 371.1471; TLC: Rf = 0.50 (Petroleum ether/Ethyl acetate = 1/1).

## g) Experimental procedures for Scheme 2



Figure S9. Synthesis of 5-epi-isogoyazensolide (15) from 37 and 20a.

Lactone **S9-6** is a known compound and was prepared in 5 steps from **37** as previously reported.<sup>25</sup>



To a stirred solution of lactone **S9-6** (1.7 g, 4.8 mmol), NaH<sub>2</sub>PO<sub>4</sub> (2.5 g, 20.8 mmol) and silica (5.0 g) in dioxane (50 mL) was added SeO<sub>2</sub> (2.5 g, 22.5 mmol) in 3 portions at 95 °C within 2 hours. The reaction mixture was stirred for 1 more hour and then cooled down to room temperature. Then dioxane was evaporated and Et<sub>2</sub>O (200 mL) was added, the mixture was stirred for 30 minutes, filtered and the solution was washed with saturated aqueous NaHCO<sub>3</sub> (100 mL), diluted Na<sub>2</sub>S (10 mL) and brine (50 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified

<sup>&</sup>lt;sup>25</sup> Kutsumura, N., Kiriseko, A., Saito, T. *Heterocycles*, **2012**, *86*, 1367-1378.

on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 1/1$ ) to provide **22** as lightyellow oil (1.36 g, 77 %), which gradually became solid in the fridge.

The structure of lactone **22** was fully elucidated based on 2D NMR spectroscopic analyses, indicating a *trans* product. See **Supplementary Section l** for detail information.

Data of lactone 22: yellow oil to waxy solid;

 $[\alpha]_{D}^{20}$  +43.3 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.21 (m, 2H, *H*<sub>11</sub>), 6.89 (m, 2H, *H*<sub>12</sub>), 6.41 (d, *J* = 2.3 Hz, 1H, *H*<sub>8</sub>), 6.12 (dd, *J* = 2.1, 1.0 Hz, 1H, *H*<sub>7</sub>), 5.93 (d, *J* = 1.9 Hz, 1H, *H*<sub>8</sub>), 5.90 (dd, *J* = 2.0, 0.6 Hz, 1H, *H*<sub>7</sub>), 4.68 (d, *J* = 11.7 Hz, 1H, *H*<sub>9</sub>), 4.60 (ddt, *J* = 5.8, 4.1, 2.1 Hz, 1H, *H*<sub>3</sub>), 4.53 (t, *J* = 3.7 Hz, 1H, *H*<sub>4</sub>), 4.30 (d, *J* = 11.7 Hz, 1H, *H*<sub>9</sub>), 4.04 (ddd, *J* = 3.7, 1.1, 0.5 Hz, 1H, *H*<sub>5</sub>), 3.82 (s, 3H, *H*<sub>14</sub>), 2.09 (d, *J* = 6.1 Hz, 1H, -*OH*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.2 (*C*<sub>1</sub>), 159.8 (*C*<sub>13</sub>), 138.4 (*C*<sub>2</sub>), 130.1 (*C*<sub>11</sub>H), 128.6 (*C*<sub>10</sub>), 127.3 (*C*<sub>6</sub>), 125.9 (*C*<sub>8</sub>H<sub>2</sub>), 121.4 (*C*<sub>7</sub>H<sub>2</sub>), 114.2 (*C*<sub>12</sub>H), 83.5 (*C*<sub>4</sub>H), 80.8 (*C*<sub>5</sub>H), 71.0 (*C*<sub>9</sub>H<sub>2</sub>), 70.1 (*C*<sub>3</sub>H), 55.5 (*C*<sub>14</sub>H<sub>3</sub>) ppm;

IR (film, cm<sup>-1</sup>) 3453, 1770, 1613, 1514, 1251, 1033, 818;

TLC: Rf = 0.40 (Petroleum ether/Ethyl acetate = 2/1).



To a stirred solution of alkyne **20a** (51 mg, 0.12 mmol) and vinyl bromide **22** (40 mg, 0.11 mmol) in DMF/NEt<sub>3</sub> (3.0 mL/1 mL) was added Pd<sub>2</sub>dba<sub>3</sub> (20 mg, 0.022 mmol) and CuI (2 mg, 0.011 mmol). The mixture was then stirred for 2 hours or till TLC analysis showed disappearance of the starting material. The reaction was quenched by addition of *sat. aq.* NH<sub>4</sub>Cl (10 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $5/1 \sim 1/1$ ) to provide enyne **S9**-**7** as a yellow oil (39 mg, 50%).

### Data of enyne **S9-7**: yellow oil;

 $[\alpha]_{D}^{20}$  -40.2 (c 0.5, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75-7.73 (m, 4H, TBDPS), 7.44-7.33 (m, 6H, TBDPS), 7.19 (like d, *J* = 8.6 Hz, 2H, PMB), 6.87 (like d, *J* = 8.7 Hz, 2H, PMB), 6.32 (d, *J* = 2.6 Hz, 1H, *H*<sub>7</sub>), 5.81 (d, *J* = 2.1 Hz, 1H, *H*<sub>7</sub>), 5.53 (br t, *J* = 1.3 Hz, 1H, *H*<sub>15</sub>), 5.40 (br s, 1H, *H*<sub>15</sub>), 4.65 (dd, *J* = 6.5, 4.6 Hz, 1H, *H*<sub>8</sub>), 4.53 (d, *J* = 11.6 Hz, 1H, PMB), 4.49 (br s, 1H, *H*<sub>7</sub>), 4.35 (s, 1H, *H*<sub>1</sub>), 4.25-4.14 (m, 2H, *PMB* + *H*<sub>6</sub>), 3.81 (s, 3H, PMB), 3.71 (br d, *J* = 5.4 Hz, 1H, *H*<sub>5</sub>), 3.26 (s, 3H, C<sub>8</sub>-OMe), 3.25 (s, 3H, C<sub>8</sub>-OMe), 2.11 (dd, *J* = 14.6, 6.6 Hz, 1H, *H*<sub>9</sub>), 1.91 (dd, *J* = 14.6, 4.6 Hz, 1H, *H*<sub>7</sub>), 1.34 (s, 3H, *H*<sub>14</sub>), 1.09 (s, 9H, TBDPS) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.2 (*C*<sub>12</sub>), 159.6 (PMB-*C*), 138.6 (*C*<sub>11</sub>), 136.3 (*TBDPS*), 136.2 (*TBDPS*), 133.5 (*TBDPS*), 132.6 (*TBDPS*), 130.2 (*TBDPS*), 129.9 (*TBDPS*), 129.7 (PMB-*C*H), 129.3 (PMB-*C*), 127.9 (*TBDPS*), 127.6 (*TBDPS*), 126.0 (*C*<sub>15</sub>H<sub>2</sub>), 125.8 (*C*<sub>4</sub>), 125.0 (*C*<sub>13</sub>H<sub>2</sub>), 114.0 (PMB-*C*H), 102.4 (*C*<sub>8</sub>H), 90.9 (*C*<sub>2</sub>), 85.0 (*C*<sub>6</sub>H), 84.7(*C*<sub>3</sub>), 79.5 (*C*<sub>5</sub>H), 74.3 (*C*<sub>10</sub>), 71.4 (*C*<sub>1</sub>H), 70.6 (PMB-*C*H<sub>2</sub>), 69.5 (*C*<sub>7</sub>H), 55.5 (PMB-*C*H<sub>3</sub>), 53.6 (*C*<sub>8</sub>-OMe), 52.8 (*C*<sub>8</sub>-OMe), 39.4 (*C*<sub>9</sub>H<sub>2</sub>), 27.1 (*TBDPS*), 24.0 (*C*<sub>14</sub>H<sub>3</sub>), 19.6 (*TBDPS*) ppm;

IR (film, cm<sup>-1</sup>) 3434, 2935, 2860, 1768, 1613, 1514, 1450, 1112, 821, 705;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>41</sub>H<sub>50</sub>NaO<sub>9</sub>Si: 737.3122, found: 737.3108; TLC: Rf = 0.10 (Pentane/Ethyl acetate = 2/1).



A 10 mL round bottom flask equipped with a magnetic stir bar was charged with enyne **S9-7** (30 mg, 0.042 mmol) and Et<sub>2</sub>O (3.0 mL). The reaction was cooled down to -30 °C and PBr<sub>3</sub> (7  $\mu$ L, 0.084 mmol) was added. The mixture was stirred for 5 hours or till the LC-MS analysis showed disappearance of the starting material. Then the reaction was quenched with water (5.0 mL) and extracted with Et<sub>2</sub>O (3 × 10 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $3/1 \sim 1/1$ ) to provide bromolactone **S9-8** as a colorless oil (15 mg, 49%).

Data of bromolactone S9-8: colorless oil;

 $[\alpha]_{D}^{20}$  -59.2 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.85 (t, *J* = 2.5 Hz, 1H, *H*<sub>9</sub>), 7.78 – 7.66 (m, 4H, *TBDPS*), 7.45 – 7.35 (m, 6H, *TBDPS*), 7.18 (like d, *J* = 8.6 Hz, 2H, *PMB*), 6.98 (m, 1H, *H*<sub>7</sub>), 6.87 (like d, *J* = 8.5 Hz, 2H, *PMB*), 5.42 (br s, 1H, *H*<sub>15</sub>), 5.30 (br s, 1H, *H*<sub>15</sub>), 4.72 (dd, *J* = 5.8, 1.6 Hz, 1H, *H*<sub>6</sub>), 4.50 (d, *J* = 11.5 Hz, 1H, *PMB*), 4.38 (s, 1H, *H*<sub>1</sub>), 4.21 (d, *J* = 11.5 Hz, 1H, *PMB*), 3.93 (dt, *J* = 6.8, 1.4 Hz, 2H, *H*<sub>13</sub>), 3.81 (s, 3H, *PMB*), 3.73 (d, *J* = 5.7 Hz, 1H, *H*<sub>5</sub>), 2.78 – 2.70 (m, 1H, *H*<sub>9</sub>), 2.66 (dd, *J* = 15.6, 2.9 Hz, 1H, *H*<sub>9</sub>), 1.44 (s, 3H, *H*<sub>14</sub>), 1.07 (s, 9H, *TBDPS*) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 202.1 (*C*<sub>8</sub>H), 170.6 (*C*<sub>12</sub>), 159.7 (PMB-*C*), 149.7 (*C*<sub>7</sub>H), 136.2 (*TBDPS*), 136.0 (*TBDPS*), 133.3 (*TBDPS*), 132.0 (*TBDPS* + *C*<sub>11</sub>), 130.5 (*TBDPS*), 130.0 (*TBDPS*), 129.8 (PMB-*C*H), 128.9 (PMB-*C*), 128.1 (*TBDPS*), 127.6 (*TBDPS*), 127.0 (*C*<sub>15</sub>H<sub>2</sub>), 125.8 (*C*<sub>4</sub>), 114.1 (PMB-*C*H), 90.4 (*C*<sub>2</sub>), 85.2 (*C*<sub>3</sub>), 81.5 (*C*<sub>6</sub>H), 80.0 (*C*<sub>5</sub>H), 74.8 (*C*<sub>10</sub>), 71.6 (*C*<sub>1</sub>H), 70.8 (PMB-*C*H<sub>2</sub>), 55.5 (PMB-*C*H<sub>3</sub>), 50.7 (*C*<sub>9</sub>H<sub>2</sub>), 27.0 (*TBDPS*), 23.7 (*C*<sub>14</sub>H<sub>3</sub>), 20.9 (*C*<sub>13</sub>H<sub>2</sub>), 19.6 (*TBDPS*) ppm;

IR (film, cm<sup>-1</sup>) 3457, 2942, 2314, 1977, 1768, 1513, 1248, 1108, 823, 705; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>39</sub>H<sub>43</sub>BrNaO<sub>7</sub>Si: 753.1859, found: 753.1861; TLC: Rf = 0.50 (Pentane/Ethyl acetate = 2/1).



A 10 mL round bottom flask equipped with a magnetic stir bar was charged with bromolactone **S9-8** (15 mg, 0.02 mmol) and DMF (1.0 mL). The reaction mixture was cooled down to -30 °C and CrCl<sub>2</sub> (6.2 mg, 0.5 mmol) was added. The temperature was allowed to rise to room temperature and stirred for 30 minutes or till the TLC analysis showed disappearance of starting material. Then, the reaction was quenched with *sat. aq.* NH<sub>4</sub>Cl (5.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was

purified on silica gel chromatography (Pentane/Ethyl acetate = 2/1) to provide **S9-9** as a waxy solid (6.7 mg, 50%).

### Data of **S9-9**: waxy solid;

 $[\alpha]_{D}^{20}$  -93.2 (c 0.04, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.72 – 7.68 (m, 4H, *TBDPS*), 7.43 – 7.34 (m, 6H, *TBDPS*), 7.29 (likd d, J = 8.6 Hz, 2H, PMB), 6.87 (d, J = 8.7 Hz, 2H, PMB), 6.40 (d, J = 2.6 Hz, 1H, H<sub>13</sub>), 5.78  $(d, J = 2.3 \text{ Hz}, 1\text{H}, H_{13}), 5.75 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 5.32 (t, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, 1\text{H}, H_{15}), 4.58 (d, J = 1.8 \text{ Hz}, H_{$ 11.2 Hz, 1H, PMB), 4.52 (d, I = 11.1 Hz, 1H, PMB), 4.40 – 4.36 (m, 2H,  $H_6 + H_8$ ), 4.11 (s, 1H,  $H_1$ , 4.05 (br s, 1H,  $H_7$ ), 3.82 – 3.81 (m, 1H,  $H_5$ ), 3.80 (s, 3H, PMB), 2.38 (dd, J = 14.8, 3.4 Hz, 1H, H<sub>9</sub>), 1.97 (dd, J = 14.9, 9.2 Hz, 1H, H<sub>9</sub>), 1.38 (s, 3H, H<sub>14</sub>), 1.10 (s, 9H, TBDPS) ppm; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 169.9 (*C*<sub>12</sub>), 159.5 (PMB-*C*), 136.4 (*TBDPS*), 136.2 (*TBDPS*), 135.0 (C11), 133.0 (TBDPS), 132.6 (TBDPS), 130.3 (TBDPS), 130.1 (TBDPS), 129.8 (PMB-CH), 129.7(PMB-C), 128.0 (TBDPS), 127.7 (TBDPS), 125.9 (C4), 125.2 (C15H2), 124.5 (C13H2), 114.0 (PMB-CH), 94.1 (C2), 85.9 (C3), 84.1 (C6H), 81.7 (C5H), 76.6 (C10), 73.0 (PMB-*C*H<sub>2</sub>), 71.2 (*C*<sub>1</sub>H), 70.3 (*C*<sub>8</sub>H), 55.4 (PMB-*C*H<sub>3</sub>), 47.8 (*C*<sub>7</sub>H), 42.5 (*C*<sub>9</sub>H<sub>2</sub>, br), 29.2 (*C*<sub>14</sub>H<sub>3</sub>, br), 27.2 (TBDPS), 19.5 (TBDPS) ppm; the signal of C<sub>9</sub>/C<sub>14</sub> are broad on <sup>13</sup>C NMR because of the conformational changes, the chemical shift were confirmed by HMBC; IR (film, cm<sup>-1</sup>) 3429, 2944, 1984, 1900, 1758, 1516, 1250, 1108, 826, 706; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>39</sub>H<sub>45</sub>O<sub>7</sub>Si: 653.2935, found: 653.2936; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



To a stirred solution of alcohol **S9-9** (2.5 mg, 0.004 mmol) in THF (1.0 mL) was added NEt<sub>3</sub> (50  $\mu$ L, 0.36 mmol) and methacrylic anhydride (25  $\mu$ L, 0.17 mmol) followed by a trace of DMAP. The reaction mixture was stirred at room temperature for 24 minutes or till the TLC analysis showed disappearance of starting material. The reaction was then quenched with *sat. aq.* NaHCO<sub>3</sub> (2.0 mL), the mixture was extracted with ethyl acetate (2 × 5.0 mL), the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 10/1 ~ 5/1) to provide the **S9-10** as a waxy solid (1.7 mg, 59%).

#### Data of **S9-10**: waxy solid;

 $[\alpha]_{D}^{20}$  -95.8 (c 0.10, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.80 – 7.74 (m, 4H, *TBDPS*), 7.48 – 7.34 (m, 6H, *TBDPS*), 7.28 (like d, *J* = 8.7 Hz, 2H, *PMB*), 6.85 (d, *J* = 8.7 Hz, 2H, *PMB*), 6.40 (d, *J* = 3.0 Hz, 1H, *H*<sub>13</sub>), 5.99 (m, 1H, *H*<sub>3</sub>), 5.93 (dd, *J* = 10.3, 3.9 Hz, 1H, *H*<sub>8</sub>), 5.86 (d, *J* = 2.5 Hz, 1H, *H*<sub>13</sub>), 5.83 (t, *J* = 1.9 Hz, 1H, *H*<sub>15</sub>), 5.52 (t, *J* = 1.6 Hz, 1H, *H*<sub>3</sub>'), 5.23 (t, *J* = 1.9 Hz, 1H, *H*<sub>15</sub>), 4.62 (d, *J* = 11.0 Hz, 1H, *PMB*), 4.50 (d, *J* = 11.1 Hz, 1H, *PMB*), 4.41 – 4.35 (m, 1H, *H*<sub>7</sub>), 4.21 (dd, *J* = 9.3, 5.5 Hz, 1H, *H*<sub>6</sub>), 4.09 (s, 1H, *H*<sub>1</sub>), 3.85 – 3.80 (m, 1H, *H*<sub>5</sub>), 3.79 (s, 3H, *PMB*), 2.36 (dd, *J* = 14.6, 4.0 Hz, 1H, *H*<sub>9</sub>), 2.02 – 1.98 (m, 1H, *H*<sub>9</sub>), 1.87 (t, *J* = 0.9 Hz, 3H, *H*<sub>4</sub>'), 1.36 (s, 3H, *H*<sub>14</sub>), 1.12 (s, 9H, *TBDPS*) ppm;

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 169.9 (*C*<sub>12</sub>), 166.2 (*C*<sub>1'</sub>), 159.5 (PMB-*C*), 136.5 (*TBDPS*), 136.3 (*TBDPS*), 136.2 (*C*<sub>2'</sub>), 134.6 (*C*<sub>11</sub>), 132.9 (*TBDPS*), 132.5 (*TBDPS*), 130.3 (*TBDPS*), 130.0

(*TBDPS*), 129.74 (PMB-*C*H), 129.70 (PMB-*C*), 128.0 (*TBDPS*), 127.6 (*TBDPS*), 126.3 (*C*<sub>3</sub><sup>-</sup>), 125.5 (*C*<sub>4</sub>), 124.7 (*C*<sub>15</sub>H<sub>2</sub>), 123.9 (*C*<sub>13</sub>H<sub>2</sub>), 114.0 (PMB-*C*H), 94.1 (*C*<sub>2</sub>), 86.8 (*C*<sub>3</sub>), 84.2 (*C*<sub>6</sub>H), 81.6 (*C*<sub>5</sub>H), 76.2 (*C*<sub>10</sub>), 73.6 (PMB-*C*H<sub>2</sub>), 72.3 (*C*<sub>8</sub>H), 70.8 (*C*<sub>1</sub>H), 55.4 (PMB-*C*H<sub>3</sub>), 46.2 (*C*<sub>7</sub>H), 40.6 (*C*<sub>9</sub>H<sub>2</sub>), 28.3 (*C*<sub>14</sub>H<sub>3</sub>, br), 27.1 (*TBDPS*), 19.5 (*TBDPS*), 18.4 (*C*<sub>4</sub><sup>-</sup>) ppm; IR (film, cm<sup>-1</sup>) 3444, 2923, 2178, 1936, 1108; HBMS(FSI) [M + Nalt calculated for C valueNaSiOn 742 2016, found, 742 2002;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>43</sub>H<sub>48</sub>NaSiO<sub>8</sub>: 743.3016, found: 743.2993; TLC: Rf = 0.70 (Petroleum ether/Ethyl acetate = 2/1).



AcOH (1.4  $\mu$ L, 0.024 mmol) and TBAF (1M solution in THF, 24  $\mu$ L, 0.024 mmol) were mixed and stirred in THF (0.1 mL) at room temperature for 30 minutes and the resulting mixture was added to a stirred solution of **S9-10** (1.7 mg, 0.0024 mmol) in THF (0.5 mL). The reaction was then stirred at room temperature for further 48 hours, until the TLC analysis showed disappearance of the starting material. The reaction was diluted with ethyl acetate (25 mL) and washed with brine (5.0 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on preparative TLC (Pentane/Ethyl acetate = 1/1) to provide the **S9-11** as a waxy solid (1.0 mg, 86%).

Data of lactone S9-11: waxy solid;

 $[\alpha]_{D}^{20}$  -35.4 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (like d, *J* = 8.7 Hz, 2H, *PMB*), 6.87 (d, *J* = 8.7 Hz, 2H, *PMB*), 6.44 (d, *J* = 2.9 Hz, 1H, *H*<sub>13</sub>), 6.00 - 5.98 (m, 2H, *H*<sub>3'</sub> + *H*<sub>15</sub>), 5.91 (d, *J* = 2.5 Hz, 1H, *H*<sub>13</sub>), 5.78 (dd, *J* = 10.7, 3.5 Hz, 1H, *H*<sub>8</sub>), 5.70 (t, *J* = 1.8 Hz, 1H, *H*<sub>15</sub>), 5.55 (p, *J* = 1.6 Hz, 1H, *H*<sub>3'</sub>), 4.68 (d, *J* = 11.1 Hz, 1H, *PMB*), 4.57 (d, *J* = 11.1 Hz, 1H, *PMB*), 4.40 (dt, *J* = 5.8, 2.8 Hz, 1H, *H*<sub>7</sub>), 4.24 (br s, 1H, *H*<sub>1</sub>), 4.19 (dd, *J* = 9.1, 5.4 Hz, 1H, *H*<sub>6</sub>), 3.97 (dt, *J* = 9.3, 1.9 Hz, 1H, *H*<sub>5</sub>), 3.80 (s, 3H, *PMB*), 2.26 - 2.20 (m, 1H, *H*<sub>9</sub>), 2.12 - 2.06 (m, 1H, *H*<sub>9</sub>), 1.85 (t, *J* = 1.6, 1.0 Hz, 3H, *H*<sub>4'</sub>), 1.46 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 169.7 (*C*<sub>12</sub>), 166.9 (*C*<sub>1'</sub>), 159.6 (PMB-*C*), 135.8 (*C*<sub>2'</sub>), 134.4 (*C*<sub>11</sub>), 129.8 (PMB-*C*H), 129.6 (PMB-*C*), 126.9 (*C*<sub>3'</sub>), 125.7 (*C*<sub>4</sub>), 125.6 (*C*<sub>15</sub>H<sub>2</sub>), 124.1 (*C*<sub>13</sub>H<sub>2</sub>), 114.0 (PMB-*C*H), 93.7 (*C*<sub>2</sub>), 86.7 (*C*<sub>3</sub>), 84.1 (*C*<sub>6</sub>H), 81.6 (*C*<sub>5</sub>H), 75.6 (*C*<sub>10</sub>), 73.8 (PMB-*C*H<sub>2</sub>), 72.6 (*C*<sub>8</sub>H), 69.6 (*C*<sub>1</sub>H), 55.4 (PMB-*C*H<sub>3</sub>), 45.9 (*C*<sub>7</sub>H), 40.3 (*C*<sub>9</sub>H<sub>2</sub>), 28.1 (*C*<sub>14</sub>H<sub>3</sub>, br), 18.2 (*C*<sub>4'</sub>) ppm;

IR (film, cm<sup>-1</sup>) 3497, 2934, 2455, 1744, 1513, 1254, 1113, 1045, 826; HRMS(ESI) [M + Na]<sup>+</sup> calculated for  $C_{27}H_{30}O_8Na$ : 505.1838, found: 505.1802; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



To a stirred solution of **S9-11** (1.0 mg, 0.0021 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added MnO<sub>2</sub> (2.7 mg, 0.031 mmol) and the solution was stirred at room temperature for 2 hours, or till the TLC analysis showed disappearance of the starting material. The reaction was

filterred and a trace of  $tBu_3PAuNTf_2$  was added to the solution and stirred for 10 minutes till the the TLC analysis showed disappearance of the starting material. The resulted solution was concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 5/1) to provide **S9-12** as a white solid (0.9 mg, 90%).

Data of lactone **S9-12**: waxy solid;

 $[\alpha]_{D}^{20}$  +5.05 (c 0.04, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (like d, *J* = 8.6 Hz, 2H, PMB), 6.89 (like d, *J* = 8.6 Hz, 2H, PMB), 6.27 (d, *J* = 3.4 Hz, 1H, *H*<sub>13</sub>), 6.20 (dd, *J* = 2.1, 1.0 Hz, 1H, *H*<sub>15</sub>), 5.99 (p, *J* = 1.2 Hz, 1H, *H*<sub>3</sub>), 5.97 (dd, *J* = 2.1, 1.0 Hz, 1H, *H*<sub>15</sub>), 5.95 (s, 1H, *H*<sub>2</sub>), 5.53 (p, *J* = 1.5 Hz, 1H, *H*<sub>3</sub>), 5.52 (d, *J* = 3.0 Hz, 1H, *H*<sub>13</sub>), 4.85 (d, *J* = 11.1 Hz, 1H, PMB), 4.67 (dd, *J* = 9.4, 5.8 Hz, 1H, *H*<sub>6</sub>), 4.59 (d, *J* = 11.1 Hz, 1H, PMB), 4.40 – 4.35 (m, 2H, *H*<sub>8</sub> + *H*<sub>5</sub>), 3.81 (s, 3H, PMB), 3.62 (dt, *J* = 6.3, 3.0 Hz, 1H, *H*<sub>7</sub>), 2.52 – 2.47 (m, 1H, *H*<sub>9</sub>), 2.35 (dd, *J* = 13.8, 1.8 Hz, 1H, *H*<sub>9</sub>), 1.82 (dd, *J* = 1.6, 1.0 Hz, 3H, *H*<sub>4</sub>), 1.52 (s, 3H, *H*<sub>14</sub>) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 204.1 (*C*<sub>1</sub>), 185.1 (*C*<sub>3</sub>), 168.7 (*C*<sub>12</sub>), 166.7 (*C*<sub>1'</sub>), 159.6 (PMB-*C*), 137.4 (*C*<sub>4</sub>), 135.5 (*C*<sub>2'</sub>), 133.1 (*C*<sub>11</sub>), 129.9 (PMB-*C*H), 129.6 (PMB-*C*), 126.7 (*C*<sub>3'</sub>), 124.3 (*C*<sub>13</sub>H<sub>2</sub>), 123.9 (*C*<sub>15</sub>H<sub>2</sub>), 114.1 (PMB-*C*H), 106.9 (*C*<sub>2</sub>H), 90.5 (*C*<sub>10</sub>), 85.6 (*C*<sub>6</sub>H), 80.8 (*C*<sub>5</sub>H), 74.8 (PMB-*C*H<sub>2</sub>), 70.8 (*C*<sub>8</sub>H), 55.5 (PMB-*C*H<sub>3</sub>), 51.9 (*C*<sub>7</sub>H), 45.5 (*C*<sub>9</sub>H<sub>2</sub>), 21.2 (*C*<sub>14</sub>H<sub>3</sub>), 18.1 (*C*<sub>4</sub>H<sub>3</sub>) ppm;

IR (film, cm<sup>-1</sup>) 3498, 2170, 1769, 1713, 1250, 1159, 1040, 813; HRMS(ESI) [M + Na]<sup>+</sup> calculated for  $C_{27}H_{28}O_8Na$ : 503.1682, found: 503.1685; TLC: Rf = 0.5 (Pentane/Ethyl acetate = 2.5/1).



To a stirred solution of **S9-12** (0.9 mg, 0.0019 mmol) in  $CH_2Cl_2/H_2O$  (1.0 mL/ 4 drops) was added DDQ (1.3 mg, 0.0057 mmol) and the mixture was stirred at room temperature for 24 hours till the TLC analysis showed disappearance of the starting material. The reaction mixture was then quenched by saturated aqueous NaHCO<sub>3</sub> (1.0 mL) and extracted with  $CH_2Cl_2$  (2 × 10 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated *in vacuo* and purified on silica gel chromatography (Pentane/Ethyl acetate =  $5/1 \sim 2/1$ ) to provide **15** as a waxy solid(0.5 mg, 74%).

Data of **15**: waxy solid;  $[\alpha]_{D}^{20}$  -18 (c 0.04, CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR data, see **Table S14**; IR (film, cm<sup>-1</sup>) 3678, 2921, 1988, 1711, 1261, 1144, 819; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>NaO<sub>7</sub>: 383.1107, found: 383.1115; TLC: Rf = 0.20 (Petroleum ether/Ethyl acetate = 3/1). Figure S10. Synthesis of 20b from 25-1.



Compound **25-1** can also be obtained after SAD from **25**. To a mixture of compound **25-1** (13.4 g, 51.5 mmol), acetic anhydride (5.84 mL, 61.85 mmol) and DMAP (628 mg, 5.15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (200 mL) was added dropwise Et<sub>3</sub>N (17.8 mL, 129 mmol) at 0 °C. then the mixture was allowed to warm to room temperature and stirred 1 hour. After the reaction was diluted with CH<sub>2</sub>Cl<sub>2</sub> (200 mL) and washed with HCl 0.1 M (100 mL), followed by H<sub>2</sub>O (100 mL) and Brine (100 mL). The organic layer was then dried over sodium sulfate, the solvent was removed and a pale-yellow oil was obtained **S10-1** (15.5 g, yield 99%).

Data of **S10-1**: pale-yellow oil;

 $[\alpha]_{D}^{20}$  -34 (c 0.3, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.42 (s, 1H), 4.73 (dd, *J* = 6.4, 5.3 Hz,1H), 3.40 (d, *J* = 9.9 Hz, 6H), 2.15 (s, 3H), 2.09 (dd, *J* = 14.6, 5.3 Hz, 1H), 1.91 (dd, *J* = 14.6, 6.5 Hz, 1H), 0.19 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.9, 102.3, 100.4, 92.0, 72.7, 69.7, 53.5, 53.2, 39.8, 23.0, 21.0, -0.2 ppm;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for  $C_{14}H_{26}O_5Si$ : 325.1550, found: 325.1437; TLC: Rf = 0.35 (Pentane/Ethyl acetate = 2/1).



To a solution of **S10-1** (15.5 g, 51.5 mmol) in THF (170 mL) was added dropwise TBAF (51.5 mL, 1M in THF, 51.5 mmol) at 0 °C. The reaction mixture was then stirred for 15 minutes and quenched with saturated NH<sub>4</sub>Cl (50 mL), then diluted with Et<sub>2</sub>O (200 mL) and washed with HCl 0.1M (100 mL) H<sub>2</sub>O (100 mL) and Brine (100 mL). The Organic layer was extracted and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed and the residue was purifiyed by chromatography on silica gel (pentane/ethyl acetate 7/3) to give a pale-yellow oil **20b** (9.75 g, yield 82%).

Data of **20b**: pale-yellow oil; [α]<sub>D</sub><sup>20</sup> -19.4 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.38 (d, *J* = 2.2 Hz, 1H), 4.74 (t, *J* = 5.8 Hz, 1H), 3.40 (d, *J* = 4.4 Hz, 6H), 2.50 (d, *J* = 2.2 Hz, 1H), 2.15 (s, 3H), 2.11 (dd, *J* = 14.6, 5.6 Hz, 1H), 1.93 (dd, *J* = 14.6, 6.0 Hz, 1H) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.8, 102.2, 79.0, 74.8, 72.5, 69.3, 53.4, 53.2, 39.5, 23.2, 20.9 ppm; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



Figure S11. Synthesis of Goyazensolide (1) and GOYA-1 from 38 and 20b.

38 was prepared from S11-1 according to the reported procedure.<sup>26</sup>



<sup>&</sup>lt;sup>26</sup> Koura, M., Yamaguchi, Y., Kurobuchi, S., Sumida, H., Watanabe, Y., Enomoto, T., Matsuda, T., Koshizawa, T., Matsumoto, Y., Shibuya, K. *Bioorg. Med. Chem.* **2016**, *24*, 3436-3446.

To a solution of **38** (38 g, 104 mmol) in THF (400 mL), was added vitride (53 mL, 3.5 M in toluene, 185 mmol) at 0 °C. The mixture was stirred at 0 °C for 15 minutes, and then  $Br_2$  (6.96 mL, 135 mmol) was added over 5 minutes. After 15 minutes, saturated aqueous  $Na_2S_2O_3$  (100 mL) and saturated aqueous Rochelle's salt (100 mL) were added at room temperature, and the mixture was stirred for 30 minutes. The mixture was then extracted with ethyl acetate (100 mL × 3), and the combined organic layers were washed with brine (200 mL), dried over MgSO<sub>4</sub>, and concentrated to give the crude alcohol as a colorless oil (28 g, 67%).

#### Data of **S11-2**: colorless oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.69 (dd, *J* = 7.9, 1.5 Hz, 4H), 7.44 (ddd, *J* = 18.9, 7.6, 6.1 Hz, 6H), 6.39 (tt, *J* = 6.1, 1.6 Hz, 1H), 4.34 (d, *J* = 6.1 Hz, 2H), 4.30 (d, *J* = 1.5 Hz, 2H), 1.11 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 135.5, 132.9, 129.9, 127.8, 126.8, 126.6, 68.0, 61.8, 26.7, 19.2 ppm;

TLC: Rf = 0.4 (Pentane/Ethyl acetate = 3/1).



To a solution of **S11-2** (25 g, 61.7 mmol) in  $CH_2Cl_2$  (300 mL) was added DMP (31.3 g, 74 mmol) in portions at 0 °C. The mixture was stirred at 0 °C for 15 minutes, and mixture allowed to warm to room temperature. After 30 minutes, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O3 (50 mL) and saturated aqueous NaHCO<sub>3</sub> (50 mL) were added at room temperature, and the mixture was stirred for 10 more minutes. The whole was extracted with Et<sub>2</sub>O (150 mL × 3), and the combined organic layers were washed with brine (200 mL) dried over MgSO<sub>4</sub>, and concentrated to give crude aldehyde as a paled yellow oil (20.3 g, yield 82%).

#### Data of S11-3: paled yellow oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.00 (d, *J* = 6.9 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 4H), 7.47 (dd, *J* = 15.8, 6.0 Hz, 6H), 6.93 (d, *J* = 6.9 Hz, 1H), 4.43 (s, 2H), 1.11 (s, 9H) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.5, 147.3, 135.1, 131.8, 129.9, 127.7, 125.2, 68.1, 26.4,

18.9 ppm;

TLC: Rf = 0.6 (Pentane/Ethyl acetate = 4/1).



To a mixture of **S11-3** (8.5 g, 21.2 mmol), allylic bromide **28** (6.13 g, 31.8 mmol) in THF/water (6/1, 140 ml) at 0 °C under a vigorous stirring was added Zn (2.48 g, 38.2 mmol) in portions. The mixture was allowed to warm to room temperature for 1 hour. The reaction mixture was then diluted with Et<sub>2</sub>O (200 mL) and water (150 mL). The organic phase was washed with Brine (100 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and volatiles were evaporated *in vacuo*. The crude was diluted in CH<sub>2</sub>Cl<sub>2</sub> (150 mL) and to the solution was added PTSA (0.86 g, 5.0 mmol). Then the mixture was stirred for 4 hours at room temperature. The reaction was then diluted with HCl (0.1M, 100 mL), the organic phase was then washed with H<sub>2</sub>O (100 mL) and Brine (100 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and the

solvent was removed *in vacuo*. Chromatography on silica gel (pentane/ethyl acetate 8/2) gave a pale-yellow oil (8.1 g, yield 81%).

#### Data of **S11-4**: pale-yellow oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (dd, *J* = 8.7, 3.8 Hz,4H), 7.50–7.39 (m, 6H), 6.36 (dt, *J* = 7.6, 1.7 Hz, 1H), 6.30 (t, *J* = 2.8 Hz, 1H), 5.70 (t, *J* = 2.5 Hz, 1H), 5.37 (dd, *J* = 14.6, 7.6 Hz, 1H), 4.36–4.24 (m, 2H), 3.30 (dd, *J* = 17.1, 7.9 Hz, 1H), 2.66 (dd, *J* = 17.1, 6.7 Hz, 1H), 1.10 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.0, 135.4, 135.4, 133.7, 132.7, 132.5, 130.0, 130.0, 128.9, 127.9, 127.8, 126.1, 122.5, 76.0, 67.8, 33.8, 26.7, 19.2;

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>24</sub>H<sub>27</sub>BrO<sub>3</sub>Si: 471.0913, found 471.1007; TLC: Rf = 0.5 (Pentane/Ethyl acetate = 4/1) ppm.



To a stirred solution of lactone **S11-4** (2,0 g, 4.2 mmol) in dioxane (20 mL) was added SeO<sub>2</sub> (2.8 g, 25.2 mmol) in 3 portions at 95 °C within 1.5 hours. After the addition, the reaction mixture was stirred at the same temperature for another 30 minutes and then cooled down to room temperature. Then dioxane was evaporated and Et<sub>2</sub>O (80 mL) was added, stirred for 30 minutes, filtered and the solution was washed with saturated aqueous NaHCO<sub>3</sub> (20 mL), diluted Na<sub>2</sub>S (10 mL) and brine (20 mL). The organic phase was dried over Na<sub>2</sub>SO<sub>4</sub>, then filterred and concentrated *in vacuo*. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate =  $10/1 \sim 1/1$ ) to provide **23** as a light yellow oil (860 mg, 42%).

#### Data of 23: light yellow oil;

Obtained as a mixture of diastereomers (dr = 2:1 as determined by <sup>1</sup>H NMR); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (td, J = 7.2, 1.5 Hz, 4H), 7.48–7.39 (m, 6H), 6.51 (d, J = 1.7 Hz, 0.33H), 6.49 (d, J = 2.4 Hz, 0.66H), 6.40 (dt, J = 7.6, 1.7 Hz, 0.33H), 6.26 (dt, J = 8.0, 1.7 Hz, 0.66H), 6.06 (d, J = 1.5 Hz, 0.33H), 6.02 (d, J = 2.1 Hz, 0.66H), 5.35 (dd, J = 7.5, 5.6 Hz, 0.33H), 5.14 (dd, J = 8.0, 4.7 Hz, 0.66H), 5.01 (dt, J = 5.6, 1.6 Hz, 0.33H), 4.63 (dt, J = 4.6, 2.3 Hz, 0.66H), 4.36 (d, J = 5.0 Hz, 0.66H), 4.34 (s, 1.32H), 1.10 (s, 9H) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.9, 137.4, 135.5, 132.7, 132.4, 131.0, 130.1, 130.0, 127.9, 126.1, 123.5, 121.1, 83.4, 81.0, 73.8, 69.1, 67.9, 26.7, 26.7, 19.2 ppm;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>24</sub>H<sub>27</sub>BrO<sub>4</sub>Si: 509.0862, found 509.0772; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 4/1).



To a stirred solution of alkyne **20b** (269 mg, 1.17 mmol) and vinyl bromide **23** (860 mg, 1.76 mmol) in DMF/Et<sub>3</sub>N (6.0 mL/2.0 mL) was added PPh<sub>3</sub> (60 mg, 0.23 mmol) at room temperature. under N<sub>2</sub>. Then Pd<sub>2</sub>dba<sub>3</sub> (109 mg, 0.12 mmol) and CuI (11 mg, 0.06 mmol)

were added to the reaction. The resulted mixture was stirred at the same temperature for 3 hours or till the TLC analysis showed disappearance of starting material. The reaction was quenched by *sat. aq.* NH<sub>4</sub>Cl (5.0 mL) and extracted with ethyl acetate (20 mL × 3). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filterred and concentrated *in vacuo*. The residue was purified on silica gel chromatography (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 1/1) to provide enyne **S11-5** as mixture of diastereomers as a yellow oil (402 mg, 54%).

#### Data of **S11-5**: yellow oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 (m, 4H), 7.42 (m, 6H), 6.47 (m, 1H), 6.22 (m, 1H), 6.01 (m, 1H), 5.51–5.33 (m, 1H), 5.30–4.97 (m, 1H), 4.77–4.55 (m, 2H), 4.23 (m, 2H), 3.45–3.24 (m, 6H), 2.18–1.98 (m, 4H), 1.96–1.79 (m, 1H), 1.33 (t, 3H), 1.08 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.2, 168.4, 137.9, 137.6, 135.5, 133.4, 133.0, 132.8, 132.8, 132.7, 132.7, 129.9, 129.8, 128.0, 127.8, 126.3, 126.1, 126.0, 126.0, 102.3, 102.1, 102.0, 92.4, 92.4, 84.0, 83.9, 81.6, 80.1, 74.1, 74.1, 72.8, 72.7, 72.7, 70.5, 70.4, 70.2, 69.8, 65.0, 64.7, 64.7, 53.6, 53.5, 53.4, 53.3, 53.2, 53.2, 39.4, 39.4, 39.3, 26.7, 26.7, 23.9, 23.8, 23.7, 20.9, 20.9, 19.2 ppm;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>35</sub>H<sub>44</sub>O<sub>9</sub>Si: 659.2755, found 659.2652; TLC: Rf = 0.3 (DCM/Ethyl acetate = 1/1).



To a solution of **S11-5** (402 mg, 0.63 mmol) in Et<sub>2</sub>O (20 mL) at -25 °C, was added dropwise a solution of PBr<sub>3</sub> (1.2 mL, 1M in Et<sub>2</sub>O). After 30 minutes, the mixture was quenched with cold H<sub>2</sub>O (1 mL) and allowed to warm to room temperature. Then the reaction was extracted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL), and the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. The residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 7/3 ~ 3/7) to give a yellow solid corresponding to **S11-6** as a mixture of inseparable 1:1 diasteroisomers (213 mg, yield 52%).

#### Data of **S11-6**: yellow solid;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.85 (t, *J* = 3.8 Hz, 1H), 7.71–7.60 (m, 4H), 7.52–7.37 (m, 7H), 7.35 (d, *J* = 1.2 Hz, 1H), 5.96 – 5.81 (m, 2H), 5.48 (d, *J* = 2.6 Hz, 1H), 4.21 (d, *J* = 0.7 Hz, 2H), 4.14 (d, *J* = 0.8 Hz, 2H), 2.70 (ddd, *J* = 29.0, 15.2, 9.3 Hz, 2H), 2.13 (s, 3H), 1.41 (s, 3H), 1.07 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 201.30, 201.28, 170.98, 170.95, 169.66, 169.64, 150.55, 135.68, 135.66, 135.63, 135.61, 132.85, 132.74, 131.53, 131.51, 130.18, 129.33, 129.32, 128.04, 127.88, 92.58, 92.52, 81.81, 81.79, 79.31, 79.28, 77.41, 77.16, 76.91, 73.45, 70.19, 70.17, 65.17, 50.65, 50.60, 26.91, 24.18, 24.16, 20.98, 20.96, 19.38 ppm;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>33</sub>H<sub>37</sub>BrO<sub>7</sub>Si: 675.1492, found 675.1390;

TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



A 10 mL round bottom flask equipped with a magnetic stir bar was charged with bromolactone **S11-6** (213 mg, 0.33 mmol) and DMF (10 mL). The reaction mixture was cooled down to -30 °C and CrCl<sub>2</sub> (405 mg, 3.3 mmol) was added. The temperature was allowed to rise to room temperature and stirred for 30 minutes till the TLC analysis showed disappearance of the starting material. Then the reaction was quenched with *sat. aq.* NH<sub>4</sub>Cl (50 mL) and extracted with ethyl acetate (3 × 25 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, then filtered and concentrated *in vacuo*. The residue was purified on silica gel chromatography (CH<sub>2</sub>Cl<sub>2</sub>/Ethyl acetate = 1/1) to provide **S11-7** as a yellow solid (72 mg, 38%).

Data of **S11-7**: yellow solid;

 $[\alpha]_{D}^{20}$  -108 (c 0.25, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (dd, *J* = 6.5, 5.0 Hz, 4H), 7.48–7.36 (m, 6H), 6.46 (s, 1H), 6.41 (s, 1H), 5.81 (s, 1H), 5.20 (s, 1H), 5.16 (s, 1H), 4.15 (s, 2H), 4.10 (s, 1H), 3.98 (s, 1H), 2.63 (d, *J* = 14.0 Hz, 1H), 2.16–2.09 (m, 4H), 1.42 (s, 3H), 1.07 (s, 9H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.7, 169.3, 139.2, 135.5, 135.5, 132.8, 132.8, 129.9, 129.9, 127.8, 125.7, 70.8, 70.4, 63.9, 29.7, 26.8, 20.8, 19.2 ppm; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>33</sub>H<sub>38</sub>O<sub>7</sub>Si: 597.2387, found 597.2284; TLC: Rf = 0.35 (DCM/Ethyl acetate = 1/1).



To a solution of **S11-7** (50 mg, 0.087 mmol), methlacrylic anhydride (20  $\mu$ L, 0.13 mmol) and DMAP (1.0 mg, 9.0  $\mu$ mol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) at 0 °C, was added dropwise a solution of Et<sub>3</sub>N (30  $\mu$ L, 0.22 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL). Mixture allowed to warm at room temperature and after 4 hours, HCl 0.1M (1.0 mL) was added. The whole was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL × 2), and the combined organic layers were washed with brine (1.0 mL), dried over MgSO<sub>4</sub>, and purified by silica gel chromatography (pentane/ethyl acetate = 6/4) to give a yellow oil (27.5 mg, yield 49%).

Data of **S11-8**: yellow oil;

 $[\alpha]_{D}^{20}$  -61 (c 0.15, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.67–7.64 (m, 4H), 7.45–7.38 (m, 6H), 6.50 (d, *J* = 2.4 Hz, 1H), 6.43 (d, *J* = 2.8 Hz, 1H), 6.04 (s, 1H), 5.86 (s, 1H), 5.84 (d, *J* = 2.3 Hz, 1H), 5.59 (s, 1H), 5.02 (dd, *J* = 5.1, 2.6 Hz, 1H), 4.53 (dd, *J* = 5.1, 2.5 Hz, 1H), 4.20–4.12 (m, 2H), 2.39 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.20 (t, *J* = 8.3 Hz, 4H), 1.91 (s, 3H), 1.39 (s, 3H), 1.09 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.7, 166.2, 138.5, 135.8, 135.5, 134.8, 132.8, 129.9, 127.8, 126.4, 124.0, 122.7, 95.9, 80.4, 74.7, 72.6, 69.4, 64.2, 46.2, 29.6, 26.8, 20.8, 19.2, 18.2 ppm; Traces of DCM (integration = 0.9), water (integration = 9.51) and grease (integration = 4.28), purity of the compound is 80.7%.

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>37</sub>H<sub>42</sub>O<sub>8</sub>Si: 643.2649, found 643.2888; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



To a solution of **S11-8** (27.5 mg, 0.043 mmol) in MeOH (2.0 mL) at 0 °C, was added dropwise a solution of K<sub>2</sub>CO<sub>3</sub> (27  $\mu$ L, 1M in H<sub>2</sub>0). The mixture was stirred 20 minutes at 0 °C and quenched with a cold mixture of CH<sub>2</sub>Cl<sub>2</sub>/H<sub>2</sub>0 (10mL). The reaction was then extracted with CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL), and the combined organic layers were washed with brine (5.0 mL), dried over MgSO<sub>4</sub>, concentrated and purified by PTLC (pentane/ethyl acetate = 1/1) to give propargyl alcohol **S11-9** as a yellow oil (24 mg, yield 92%).

Data of **S11-9**: yellow oil;

 $[\alpha]_{D}^{20}$  -48 (c 0.12, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 (dd, *J* = 7.9, 1.5 Hz, 4H), 7.47–7.37 (m, 6H), 6.46 (dd, *J* = 6.5, 2.6 Hz, 2H), 6.06 (s, 1H), 5.92 (d, *J* = 9.4 Hz, 1H), 5.86 (d, *J* = 2.5 Hz, 1H), 5.63–5.58 (m, 1H), 4.95 (dd, *J* = 5.6, 2.6 Hz, 1H), 4.43 (td, *J* = 4.6, 2.5 Hz, 1H), 4.26 (s, 1H), 4.23–4.16 (m, 2H), 4.14 (d, *J* = 7.1 Hz, 1H), 2.29 (dd, *J* = 15.0, 3.3 Hz, 1H), 2.19–2.10 (m, 1H), 1.90 (s, 3H), 1.45 (s, 3H), 1.09 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.4, 166.9, 137.7, 135.6, 135.5, 134.6, 132.8, 129.9, 127.8, 126.9, 123.8, 122.6, 98.7, 84.5, 80.3, 75.7, 72.5, 69.6, 64.4, 60.4, 53.4, 46.0, 39.8, 29.0, 26.8, 21.0, 19.2, 18.0, 14.2 ppm;

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>35</sub>H<sub>40</sub>O<sub>7</sub>Si: 601.2543, found 601.2622; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



To a stirred solution of **S11-9** (24 mg, 40  $\mu$ mol) in CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL) was added MnO<sub>2</sub> (35 mg, 0.4 mmol) and the solution was stirred at room temperature for 2 hours, till the TLC analysis showed disappearance of the starting material. The reaction was filterred and a trace of *t*Bu<sub>3</sub>PAuNTf<sub>2</sub> was added and the solution was stirred for 10 more minutes till the TLC analysis showed disappearance of the starting material. The resulted solution was concentrated *in vacuo* and the residue was purified on silica gel chromatography (Pentane/Ethyl acetate = 3/1) to provide the **S11-10** as a white solid (19 mg, 82%).

Data of **S11-11**: white solid; [α]<sup>20</sup><sub>D</sub> -36 (c 0.12, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.70–7.62 (m, 4H), 7.51–7.39 (m, 6H), 6.80 (q, *J* = 2.0 Hz, 1H), 6.49 (d, *J* = 3.3 Hz, 1H), 6.09 (s, 1H), 5.84 (t, *J* = 4.5 Hz, 1H), 5.81 (d, *J* = 2.9 Hz, 1H), 5.66– 5.59 (m, 1H), 5.28 (dq, *J* = 7.3, 2.5 Hz, 1H), 4.32–4.25 (m, 2H), 4.01 (dt, *J* = 6.0, 2.8 Hz, 1H), 2.51 (dd, *J* = 15.5, 5.7 Hz, 1H), 2.36 (dt, *J* = 6.4, 2.9 Hz, 1H), 1.92 (s, 3H), 1.47 (s, 3H), 1.10 (d, *J* = 6.4 Hz, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 190.0, 169.0, 167.0, 143.8, 136.1, 135.9, 133.5, 133.0, 130.7, 128.5, 127.7, 125.1, 121.4, 96.0, 94.4, 80.3, 80.2, 71.2, 64.8, 50.9, 44.4, 27.3, 25.6, 19.8, 18.7 ppm;

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>35</sub>H<sub>38</sub>O<sub>7</sub>Si: 599.2387, found 599.2465; TLC: Rf = 0.3 (Pentane/Ethyl acetate = 2/1).

Data of **S11-10**: white solid;

 $[\alpha]_{D}^{20}$  -2 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69–7.65 (m, 4H), 7.50–7.38 (m, 6H), 6.26 (d, *J* = 3.2 Hz, 1H), 6.14 (d, *J* = 2.9 Hz, 1H), 6.03 (s, 1H), 5.68 (s, 1H), 5.58–5.54 (m, 1H), 5.48 (d, *J* = 2.7 Hz, 1H), 5.30 (td, *J* = 5.0, 2.3 Hz, 1H), 4.53 (d, *J* = 11.8 Hz, 1H), 4.40 (dd, *J* = 34.3, 13.9 Hz, 2H), 3.77–3.72 (m, 1H), 2.49 (dd, *J* = 13.8, 11.8 Hz, 1H), 2.32 (d, *J* = 11.9 Hz, 1H), 1.85 (s, 3H), 1.51 (s, 3H), 1.09 (s, 9H) ppm;

 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  204.6, 184.7, 168.7, 166.7, 135.6, 135.5, 135.4, 134.3, 133.9, 133.3, 132.6, 130.1, 127.8, 127.8, 126.4, 124.3, 106.4, 89.6, 81.5, 73.1, 64.1, 50.8, 43.9, 29.6, 26.7, 20.6, 19.2, 17.9 ppm;

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>35</sub>H<sub>38</sub>O7Si: 599.2387, found 599.2450; TLC: Rf = 0.25 (Pentane/Ethyl acetate = 2/1).



To a solution of **S11-10** (17 mg, 0.029 mmol) in THF (2.0 mL) at 0 °C, was added dropwise a solution of HF·pyridine 70% (85  $\mu$ L) in THF (1.0 mL). The mixture was stirred 4 hours at 0 °C and quenched with saturated NaHCO<sub>3</sub> (2.0 mL). The quenched mixture was then extracted with Et<sub>2</sub>O (5.0 mL × 2), and the combined organic layers were washed with brine (5.0 mL), dried over MgSO<sub>4</sub>, and purified by PTLC (Pentane/Ethyl acetate = 2/8) to give (-)-Goyazensolide (8.5 mg, yield 82%).

Data of **1**: waxy solid;  $[\alpha]_{D}^{20}$  -19 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.30 (dt, *J* = 3.0, 1.5 Hz, 1H), 6.25 (d, *J* = 3.1 Hz, 1H), 6.03 (s, 1H), 5.82 (s, 1H), 5.59–5.54 (m, 1H), 5.49 (d, *J* = 2.7 Hz, 1H), 5.36 (dd, *J* = 4.9, 2.7 Hz, 1H), 4.57 (dt, *J* = 11.7, 2.2 Hz, 1H), 4.42 (dt, *J* = 3.1, 1.7 Hz, 2H), 3.82 (t, *J* = 5.3 Hz, 1H), 2.56– 2.48 (m, 1H), 1.85 (s, 3H), 1.56 (s, 3H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  204.6, 184.2, 166.8, 135.5, 135.3, 134.2, 133.1, 126.6, 124.6, 106.6, 89.8, 81.5, 73.2, 63.2, 50.9, 43.9, 20.7, 18.0 ppm; HRMS (ESI) [M + H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>20</sub>O<sub>7</sub>: 361.1209, found 361.1392;

TLC: Rf = 0.2 (DCM/Ethyl acetate = 1/2).



To a solution of **1** (5.0 mg, 14 µmol), pent-4-ynoyl chloride (2.4 mg, 21 µmol) and DMAP (0.17 mg, 0.0014 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.3 mL) at 0 °C, was added dropwise a solution of Et<sub>3</sub>N (6.0 µL, 42 µmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.1 mL). The mixture was allowed to warm to room temperature and after 4 hours, HCl (0.1M, 0.2 mL) was added. The solution was then extracted with CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL × 2), and the combined organic layers were washed with brine (1.0 mL), dried over MgSO<sub>4</sub>, and purified by PTLC (Pentane/Ethyl acetate = 1/1) to give a white solid (2.5 mg, yield 41%).

## Data of GOYA-1: white solid;

 $[\alpha]_{D}^{20}$  -13 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.39–6.34 (m, 1H), 6.26 (d, *J* = 3.1 Hz, 1H), 6.03 (s, 1H), 5.83 (s, 1H), 5.57 (s, 1H), 5.49 (d, *J* = 2.7 Hz, 1H), 5.35 (d, *J* = 1.9 Hz, 1H), 4.86 (s, 2H), 4.60 – 4.51 (m, 1H), 3.80 (d, *J* = 2.5 Hz, 1H), 2.63 (t, *J* = 6.8 Hz, 2H), 2.59–2.49 (m, 3H), 2.34 (dd, *J* = 13.9, 1.9 Hz, 1H), 2.02 (t, *J* = 2.6 Hz, 1H), 1.85 (s, 3H), 1.57 (d, *J* = 7.8 Hz, 3H) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  204.4, 183.0, 170.9, 168.4, 166.8, 138.7, 135.3, 132.9, 129.5, 126.6, 124.7, 106.8, 89.8, 82.0, 81.2, 73.2, 69.5, 63.6, 50.8, 43.9, 33.1, 20.6, 17.9, 14.3 ppm; HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>24</sub>H<sub>24</sub>O<sub>8</sub>: 441.1471, found 441.1394; TLC: Rf = 0.2 (Pentane/Ethyl acetate = 1/1).







A sealed solution of propargyl alcohol (1.2 g, 21.4 mmol), ethyl 2-(bromomethyl) acrylate **28** (5.8 g, 30 mmol), NaI (320 mg, 2.1 mmol) and Et<sub>3</sub>N (12 mL, 85.6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (80 mL) was heated overnight at 50 °C. The mixture was then diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and HCl (0.1M, 100 mL). The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL), and the combined organic layers were washed with brine (200 mL), dried over MgSO<sub>4</sub>, concentrated and purified by silica gel chromatography (Pentane/Ethyl acetate = 8/2) to give a pale yellow oil (2.8 g, yield 78%).

Data of **S12-1**: pale yellow oil;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.34 (s, 1H), 5.89 (s, 1H), 4.30 (s, 2H), 4.27 – 4.20 (m, 4H), 2.46 (t, *J* = 2.4 Hz, 1H), 1.31 (d, *J* = 7.1 Hz, 3H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.7, 136.7, 126.2, 79.3, 74.7, 67.9, 60.7, 57.8, 14.1 ppm; TLC: Rf = 0.4 (Pentane/Ethyl acetate = 4/1).



A solution of **S12-1** (500 mg, 2.98 mmol) in 6N HCl (5.0 mL) was heated at 65 °C overnight. The mixture was then diluted with H<sub>2</sub>0 (20 mL) and CH<sub>2</sub>Cl<sub>2</sub> (20 mL). The solution was then extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL × 2), and the combined organic layers were washed with brine (10 mL), dried over MgSO<sub>4</sub>, and concentrated to give crude acid **S12-2** as a brownish solid (308 mg, yield 74%).

Data of **S12-2**: brownish solid;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.49 (s, 1H), 6.04 (s, 1H), 4.31 (s, 2H), 4.24 (s, 2H), 2.48 (s, 1H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.9, 135.9, 129.0, 79.2, 74.9, 67.4, 57.9 ppm; TLC: Rf = 0.3 (Pentane/Ethyl acetate/AcOH = 1/1/0.01).



To a solution of **S12-2** (308 mg, 2.2 mmol) and Et<sub>3</sub>N (608  $\mu$ L, 4.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6.0 mL) at 0 °C, was added dropwise a solution of acyl chloride **S12-3** (644 mg, 2.64 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL). The mixture was then allowed to warm to room temperature and after 30 minutes, HCl (0.1M, 5.0 mL) was added. The solution was then extracted with CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL × 2) and the combined organic layers were washed with brine (5.0 mL), dried

over MgSO<sub>4</sub>, and purified by Isolera Biotage using SNAP Cartridge KP-C18-HS 12 g column (Water/acetonitrile 9/1 to 1/1) to give a yellow oil (153 mg, yield 53%).

Data of **39**: yellow oil, compound unstable on silica gel;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.50 (s, 1H), 6.19 (s, 1H), 4.35 (s, 2H), 4.26 (s, 2H), 2.48 (s, 1H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 161.0, 136.0, 130.3, 75.1, 67.2, 65.8, 58.0 ppm; HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>14</sub>H<sub>14</sub>O<sub>5</sub>: 285.0841, found 285.0836.



To a solution of **S11-7** (50 mg, 0.087 mmol), **39** (103 mg, 0.39 mmol) in DCE (1.0 mL) at 50 °C, was added dropwise a solution of DMAP (46 mg, 0.38 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.3 mL). The mixture was stirred 2 hours and then allowed to cool at room temperature. HCl (0.1M, 1.0 mL) was added and the mixture was extracted with  $CH_2Cl_2$  (5.0 mL × 2), the combined organic layers were washed with brine (5.0 mL), dried over MgSO<sub>4</sub>, the solvent was evaporated *in vacuo* and the serulting residue was purified by silica gel chromatography (Pentane/Ethyl acetate = 7/3) to give **S12-4** as a yellow oil (16 mg, yield 26%).

## Data of **S12-4**: yellow oil;

 $[\alpha]_{D}^{20}$  -57 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66–7.62 (m, 4H), 7.46–7.38 (m, 6H), 6.47 (dd, *J* = 3.3, 2.0 Hz, 2H), 6.42 (d, *J* = 2.3 Hz, 1H), 6.04 (d, *J* = 1.4 Hz, 1H), 5.90 (d, *J* = 1.2 Hz, 1H), 5.64 (s, 1H), 5.19 (s, 1H), 5.09 (s, 1H), 4.49 (d, *J* = 2.1 Hz, 1H), 4.36–4.30 (m, 2H), 4.25 (d, *J* = 2.4 Hz, 2H), 4.21 (dd, *J* = 5.0, 2.4 Hz, 2H), 2.49 (m, *J* = 3.5 Hz, 2H), 2.17 (m, 4H), 1.36 (s, 3H), 1.08 (s, 9H) ppm;

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.5, 168.4, 164.3, 138.7, 135.9, 135.5, 134.8, 132.8, 129.9, 128.8, 127.8, 127.7, 79.1, 78.9, 75.2, 74.9, 74.7, 72.8, 69.8, 68.2, 67.6, 64.0, 57.9, 57.7, 30.0, 29.7, 20.8, 19.2 ppm;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>40</sub>H<sub>44</sub>O<sub>9</sub>Si: 719.2755, found 719.2653; TLC: Rf = 0.3 (Pentane/Ethyl acetate = 2/1).



To a solution of **S12-4** (8.0 mg, 11  $\mu$ mol) in MeOH (1.0 mL) at 0 °C, was added dropwise a solution of K<sub>2</sub>CO<sub>3</sub> (0.6  $\mu$ L, 1M in H<sub>2</sub>O). The reaction was stirred for 20 minutes at 0 °C

and quenched with a cold mixture of  $CH_2Cl_2/H_20$  (1 mL/1mL). The solution was then extracted with  $CH_2Cl_2$  (2.0 mL) and the combined organic layers were washed with brine (1.0 mL) dried over MgSO<sub>4</sub>, concentrated and purified by PTLC (Pentane/Ethyl acetate = 1/1) to give propargyl alcohol **S12-5** as a pale-yellow oil (4.1 mg, yield 54%).

Data of **S12-5**: pale-yellow oil;

 $[\alpha]_{D}^{20}$  -51 (c 0.2, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (dd, *J* = 6.6, 1.3 Hz, 4H), 7.48–7.39 (m, 6H), 6.43 (d, *J* = 2.5 Hz, 2H), 6.33 (s, 1H), 5.92 (d, *J* = 1.1 Hz, 1H), 5.84 (d, *J* = 2.1 Hz, 1H), 5.77 (s, 1H), 5.02 (d, *J* = 2.1 Hz, 1H), 4.42 (s, 1H), 4.28 (s, 1H), 4.24 (s, 1H), 4.22–4.20 (m, 2H), 4.19 (d, *J* = 1.8 Hz, 1H), 4.17 (d, *J* = 2.3 Hz, 1H), 4.14 (d, *J* = 7.1 Hz, 1H), 2.49 (t, *J* = 2.3 Hz, 1H), 2.40 (d, *J* = 13.1 Hz, 1H), 2.15 (dd, *J* = 14.5, 10.5 Hz, 1H), 1.43 (s, 3H), 1.08 (s, 9H) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 171.1, 170.9, 169.4, 165.0, 137.9, 135.8, 135.5, 134.7, 132.8, 129.9, 129.3, 127.8, 124.4, 123.1, 79.8, 78.9, 75.7, 75.2, 72.7, 69.8, 68.0, 64.3, 60.4, 57.77, 53.4, 46.4, 31.9, 29.7, 29.3, 26.8, 22.7, 21.0, 19.2, 14.2, 14.2, 14.1 ppm;

HRMS(ESI)  $[M + Na]^+$  calculated for C<sub>38</sub>H<sub>42</sub>O<sub>8</sub>Si: 677.2649, found 677.2546; TLC: Rf = 0.3 (Pentane/Ethyl acetate = 1/1).



To a stirred solution of **S12-5** (4.1 mg, 6.26 $\mathbb{Z}\mu$ mol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added MnO<sub>2</sub> (5.0 mg, 63 µmol) and the solution was stirred at room temperature for 2 hours, till the TLC analysis showed disappearance of the starting material. The reaction was filterred and a trace of *t*Bu<sub>3</sub>PAuNTf<sub>2</sub> was added to the CH<sub>2</sub>Cl<sub>2</sub> solution and the mixture stirred for 10 more minutes till the TLC analysis showed disappearance of the starting material. The resulted reaction was then concentrated *in vacuo*, and the residue optained was purified on a PTLC (Pentane/Ethyl acetate = 3/1) to provide **S12-6** as a white solid (2.7 mg, 66%).

Data of S12-7: white solid;

 $[\alpha]_{D}^{20}$  -56 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.66 (ddd, *J* = 8.0, 2.5, 1.4 Hz, 4H), 7.50–7.39 (m, 6H), 6.78 (d, *J* = 2.3 Hz, 1H), 6.49 (d, *J* = 3.2 Hz, 1H), 6.32 (d, *J* = 0.9 Hz, 1H), 5.96 (d, *J* = 1.3 Hz, 1H), 5.82 (d, *J* = 2.8 Hz, 2H), 5.27 (dd, *J* = 6.6, 2.6 Hz, 1H), 4.28 (dd, *J* = 4.0, 2.1 Hz, 2H), 4.24 (d, *J* = 1.0 Hz, 2H), 4.23–4.19 (m, 2H), 4.03 (d, *J* = 5.1 Hz, 1H), 2.50 (dt, *J* = 4.7, 4.1 Hz, 2H), 2.42 – 2.37 (m, 1H), 1.47 (s, 3H), 1.10 (s, 9H) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 189.2, 168.3, 164.8, 143.2, 135.8, 135.5, 132.9, 132.4, 130.1, 128.7, 127.9, 124.7, 120.9, 95.3, 94.0, 79.0, 75.1, 70.9, 67.7, 64.1, 60.4, 57.8, 53.4, 50.1, 31.9, 29.7, 26.8, 25.2, 22.7, 21.0, 19.2, 14.1 ppm;

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>38</sub>H<sub>44</sub>O<sub>8</sub>Si: 675.2492, found 675.2390;

TLC: Rf = 0.35 (Pentane/Ethyl acetate = 2/1).

Data of **S12-6**: white solid;

 $[\alpha]_{D}^{20}$  -11 (c 0.1, CHCl<sub>3</sub>);

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.68–7.65 (m, 4H), 7.44–7.39 (m, 6H), 6.26 (dd, *J* = 3.7, 2.2 Hz, 2H), 6.15–6.12 (m, 1H), 5.91 (d, *J* = 1.3 Hz, 1H), 5.68 (s, 1H), 5.50 (d, *J* = 2.7 Hz, 1H), 5.28 (d, *J* = 2.3 Hz, 1H), 4.56 (d, *J* = 11.9 Hz, 1H), 4.46–4.33 (m, 2H), 4.18 (d, *J* = 2.6 Hz, 2H), 4.14 (d, *J* = 7.2 Hz, 2H), 3.75 (d, *J* = 2.6 Hz, 1H), 2.54–2.46 (m, 2H), 2.36–2.31 (m, 1H), 1.52 (s, 3H), 1.09 (s, 9H) ppm;

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 204.5, 168.6, 135.7, 135.6, 135.5, 134.3, 133.9, 132.6, 130.1, 127.9, 127.8, 124.7, 106.4, 89.5, 81.5, 74.9, 73.5, 67.4, 64.1, 60.4, 57.8, 50.8, 43.9, 31.9, 29.7, 29.3, 26.8, 22.7, 20.6, 19.2, 14.1 ppm;

HRMS(ESI)  $[M + H]^+$  calculated for C<sub>38</sub>H<sub>40</sub>O<sub>8</sub>Si: 653.2492, found 653.2570; TLC: Rf = 0.3 (Pentane/Ethyl acetate = 2/1).



To a solution of **S12-6** (2.3 mg, 3.5  $\mu$ mol) in THF (1.0 mL) at 0 °C, was added dropwise a solution of hydrogen fluoride pyridine (hydrogen fluoride ~70%, 10  $\mu$ L) in THF (0.2 mL). The mixture was stirred 4 hours at 0 °C and quenched with saturated NaHCO<sub>3</sub> (0.5 mL). The mixture was then extracted with Et<sub>2</sub>O (2.0 mL × 2), and the combined organic layers were washed with brine (1.0 mL), dried over MgSO<sub>4</sub>, and purified by PTLC (Pentane/Ethyl acetate = 2/8) to give **GOYA-2** (0.21 mg, yield 14.5%) as a waxy solid.

# Data of GOYA-2: waxy solid;

[α]<sup>20</sup> -14 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 6.30 (s, 1H), 6.23 (s, 2H), 5.91 (s, 1H), 5.82 (s, 1H), 5.51 (s, 1H), 5.35 (s, 1H), 4.63–4.40 (m, 3H), 4.24–4.12 (m, 4H), 3.83 (d, *J* = 2.4 Hz, 1H), 2.58–2.48 (m, 1H), 2.47 (t, *J* = 2.3 Hz, 1H), 2.37 (dd, *J* = 15.7, 8.7 Hz, 1H), 1.32 (s, 9H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 196.2, 184.1, 135.6, 132.8, 127.9, 124.9, 106.6, 89.6, 81.0, 75.0, 73.4, 63.1, 57.6, 50.8, 43.2, 31.8, 29.3, 22.7, 20.6, 13.9 ppm; Traces of water (integration = 135.65) and grease (integration = 75.65). Purity 19%. DMSO stock solutions have been prepared by weighting residues after high vacuum evaporation. HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>22</sub>O<sub>8</sub>: 414.1315, found 415.1394; TLC: Rf = 0.25 (CH<sub>2</sub>Cl<sub>2</sub>/Ethyl acetate = 1/1).

## h) Experimental procedures for Figure 2

## **General information**

**Biological materials**. All materials were purchased from Sigma Aldrich unless otherwise stated. DMEM/High glucose medium, F12-K media, phosphate buffered saline (PBS), MEM Non-Essential Amino Acids, Penicillin-Streptomycin (Pen/Strep) and Trypsin-EDTA were obtained from Life Technologies. Protein concentration was determined using a Q-Bit assay. HeLa cell line (Adenocarcinoma), PC3 cell line (Prostate; derived from metastatic site: bone), HT29 cell line (Colorectal adenocarcinoma), U2OS cell line (Metastatic: lung, other bones), SW620 cell line (Colorectal adenocarcinoma) obtained from ATCC. IPO5 (Sigma-Aldrich, HPA056548) antibody was purchased from Sigma Aldrich. Phospho-AKT (Ser 473) antibody was purchased from Cell signaling. Karyopherin  $\beta$ 1, Karyopherin  $\beta$ 2, IPO7, IPO8 and IPO12 antibodies were purchased from Santa Cruz biotechnology. UBA1, ACLY, RASAL2,  $\beta$ -actin, anti-rabbit and anti-rabbit Alexa Fluor 488 antibodies were purchased from ABCAM. Images were obtained by image stacking (Confocal microscope Zeiss LSM800). Fluorescence measured with ImageJ software.

**Cell culture and preparation of lysates**. HeLa, PC3, HT29, U2OS and SW620 cells were maintained in their corresponding media supplemented with 10% (v/v) fetal calf serum (FCS) and Penicillin-Streptomycin 1% (v/v). Cells were grown at 37 °C under 5% CO<sub>2</sub> atmosphere in a humidified incubator. Cells were allowed to grow to confluence and harvested by scraping, centrifuged at 4 °C and resuspended in PBS. Cells were then lysed by sonication in lysis buffer and protein concentration was determined using a Q-Bit assay.

Pull-down experiments. PC3 cells were seeded (350,000 cells/mL) on 10 cm dishes and grown to confluence for 2 days. The cells were harvested and lysates (3 mg/mL, 100 µL each) were prepared as described above. Lysates were treated with DMSO (1  $\mu$ L) or goyazensolide 10 µM (1 mM, 1 µL) for 30 minutes and then incubated with GOYA-2 10  $\mu$ M (1 mM, 1  $\mu$ L) for 30 minutes. Click reaction was achieved by addition of desthiobiotinylated Cy3-N<sub>3</sub> (20 µM, 50X stock in DMSO, Figure S13 for synthesis), TCEP (1 mM, 50X fresh stock in  $H_20$ ), TBTA (100  $\mu$ M, 16X stock in DMSO: *t*Butanol = 1:4), copper (II) sulfate (1 mM, 50X stock in H<sub>2</sub>0) and incubated for 1 hour at room temperature in the dark. Proteins were precipitated by adding 450 µL of cold MeOH, 117  $\mu$ L of cold CHCl<sub>3</sub> and 350  $\mu$ L of cold H<sub>2</sub>0, vortexed and centrifuged for 5 minutes at 14000 g (4 °C). The protein layer was isolated, dried and solubilized in 100 µL of 0.2% SDS in PBS via sonication. Tubes were centrifuged at 4,700 g for 5 minutes, and soluble fractions were transferred to new tubes. Streptavidin agarose beads (25 µL) were added and incubated for 2 hours. Supernatant was discarded and the beads were washed three times with PBS (100 µL). Then 10 µL of 2% SDS and 5 µL of Laemmli buffer were added to the beads and heated 5 minutes at 95°C. Proteins were separated using a 10% SDS-PAGE gel. Gels were visualized at 625 nm using a fluorescence scanner.

**In-Gel tryptic digestion.** The bands cutted from the SDS-PAGE were cut in smaller pieces and washed twice with a mixture of 50% NH<sub>4</sub>HCO<sub>3</sub> 50 mM in CH<sub>3</sub>CN, twice with 200  $\mu$ L CH<sub>3</sub>CN, then twice again with 200  $\mu$ L NH<sub>4</sub>HCO<sub>3</sub> 100 mM and finally twice with 200  $\mu$ L

CH<sub>3</sub>CN. The gel fragments were incubated then for 30 minutes at 37 °C with 30  $\mu$ L of DTT 10mM in H<sub>2</sub>0, followed by 30 minutes with 30  $\mu$ L iodoacetamide 30 mM in H<sub>2</sub>0. Gel pieces were washed again twice with CH<sub>3</sub>CN, followed by NH<sub>4</sub>HCO<sub>3</sub> 100 mM and finally twice with CH<sub>3</sub>CN. Then, the in-gel digestion started with 30  $\mu$ L of a mixture of Trypsin + Glu-C + Chymotrypsin (1.0  $\mu$ g each in 500  $\mu$ L of NH<sub>4</sub>HCO<sub>3</sub> 50 mM) at 37 °C for 18 hours. 50  $\mu$ L of NH<sub>4</sub>HCO<sub>3</sub> 50 mM were added to the digested mixture and incubate for 10 minutes at room temperature. The supernatant was removed and place into a microtube and the remaining gel fragments were incubated for 10minutes with 50  $\mu$ L of extraction *buffer 1* (20% CH<sub>3</sub>CN, 80% H<sub>2</sub>0, 1% formic acid). The supernatant was then collected and the fragments incubate for another 10 minutes with 50  $\mu$ L of extraction *buffer 2* (95% CH<sub>3</sub>CN, 5% H<sub>2</sub>0, 1% formic acid). The combined supernatants were lyophilized and summited to MS/MS analysis.

LC-MS/MS analysis. Peptides were resuspended in water with 2% MeCN, 0.1% formic acid (FA) and analyzed using an EASY-nLC 1000 nano-UHPLC coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific). Chromatography was performed on a 50 cm EASY-spray column (75µm i.d.), LC solvents were 0.1% formic acid in H<sub>2</sub>O (Buffer A) and 0.1% FA in MeCN (Buffer B), peptides were eluted into the mass spectrometer at a flow rate of 300 nL/min over a 30 minutes linear gradient (5-35% Buffer B) at 45 °C, data was acquired in a data-dependent mode, MS scans were acquired at 120000 resolution with an AGC-target of 20000 and 118 ms fill-time, and MS/MS-scans using HCD, CID and EThcD fragmentation were acquired in the Orbitrap on each selected precursor using an AGC-target of 20000 and a fill time of 200 ms.

**Mass spectrometry analysis.** MS data were analyzed using ProteomeDiscoverer 2.0 software (Thermo Scientific) and MSMS-spectra were grouped according by fragmentation technique and searched against the homo sapiens Uniprot database using the Sequest and MS-Amanda algorithms. Search against b- and y-ions was specified for HCD and CID spectra and against c- and z-ions for EThcD spectra. A search tolerance of 10 ppm was applied for the precursor and 0.05 Da for fragmen-ions. Oxidation of methionine and modification of cysteines by carbamidomethylation or by Goyazensolide or thiolated Goyazensolide were allowed as variable modifications.

## **Safety Statement**

No unexpected or unusually high safety hazards were encountered.

#### Figure S13. Synthesis of Desthiobiotinylated Cy3-N<sub>3</sub>.



To a solution of desthiobiotin **S13-1** (100 mg, 0.46 mmol), N-Boc-ethylenediamine **S13-2** (90 mg, 0.56 mmol), HATU (213 mg, 0.56 mmol) in DMF (4.0 mL) was added Et<sub>3</sub>N (190  $\mu$ L, 1.38 mmol) at 0 °C. The mixture was allowed to warm to room temperature stirred 10 more minutes, and then diluted with ethyl acetate (20 mL) and HCl 0.1N (10 mL). The solutions was extracted with ethyl acetate (10 mL × 3) and the combined organic layers were washed with brine (20 mL) dried over MgSO<sub>4</sub>, concentrated and purified by silicagel chromatography (CH<sub>2</sub>Cl<sub>2</sub>/ ethyl acetate = 8/2) to give the amide as a pale-yellow oil. The crude product was dissolved in dichloromethane (3.0 mL) and cooled down to 0 °C. Trifluoro acetic acid (0.3 mL) was added to the solution and the reaction was carried out for 2 hours at 0 °C. The solvents were evaporated to give **S13-3** as a yellow oil (137 mg, yield 81%).

To a solution of deprotected amine **S13-3** (137 mg, 0.37 mmol), (S)-6-azido-2-(tertbutoxycarbonylamino) hexanoic acid **S13-4** (121 mg, 0.44 mmol), HATU (167 mg, 0.44 mmol) in DMF (4.0 mL) was added Et<sub>3</sub>N (153  $\mu$ L, 1.11 mmol) at 0 °C. The mixture was allowed to warm to room temperature, stirred for 10 more minutes, and then was diluted with ethyl acetate (20 mL) and HCl 0.1N (10 mL). The solution was extracted with ethyl acetate (10 mL × 3), and the combined organic layers were washed with brine (20 mL), dried over MgSO<sub>4</sub>, concentrated and purified by silica-gel chromatography (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 7/3) to give the amide **S13-5** as a pale-yellow oil (188 mg, yield 71%).

HRMS(ESI) [M + Na]<sup>+</sup> calculated for C<sub>23</sub>H<sub>42</sub>O<sub>8</sub>N<sub>5</sub>: 511.3278, found 511.3366.

**\$13-5** (188 mg, 0.37 mmol) was dissolved in dichloromethane (3.0 mL) and cooled down to 0 °C. Trifluoro acetic acid (0.3 mL) was added to the solution and the reaction was carried out for 2 hours at 0 °C. The solvents were evaporated to give a yellow oil **\$13-6** (178 mg, yield 92%).
To a solution of **S13-6** (178 mg, 0.34 mmol), Cy3 **S13-7** (194 mg, 0.34 mmol), HATU (155 mg, 0.41 mmol) in DMF (5.0 mL) was added Et<sub>3</sub>N (141  $\mu$ L, 1.02 mmol) at 0 °C. The mixture was allowed to warm to room temperature and stirred 10 minutes. The mixture directly purified by reverse chromatography (H<sub>2</sub>0/acetonitrile 8/2) followed by lyophilization to give **Desthiobiotinylated Cy3-N**<sub>3</sub> as a pink powder (135 mg, yield 42%).

HRMS(ESI) [M + H]<sup>+</sup> calculated for C<sub>47</sub>H<sub>67</sub>N<sub>10</sub>O<sub>4</sub>: 835.5341, found 835.5364.

Figure S14. Competition experiment with GOYA-2 with different incubation time.



SW620 cell lysate was labeled with 10  $\mu$ M of **GOYA-2** in different incubation time followed by CuAAC reaction with **Cy3-N**<sub>3</sub>. The labeling experiment shows optimal conditions with 30 min of incubation.

Figure S15. Competition experiments with GOYA-2 with different cell lines.



The cell lysates were preincubate for 30 min with the indicated concentration of goyazensolide and then labelled with 10  $\mu$ M of **GOYA-2** followed by CuAAC reaction with **Cy3-N**<sub>3</sub>. The labelling/competition experiment showed the target is not cell-line specific. **Cy3-N**<sub>3</sub> = Cyanine3-azide.

# Table S17. Full protein list.

|    | Description                                                                                              | Coverage | Unique<br>Peptides | MW<br>[kDa] |
|----|----------------------------------------------------------------------------------------------------------|----------|--------------------|-------------|
| 1  | Importin-5 OS=Homo sapiens GN=IPO5 PE=1 SV=4                                                             | 40.65634 | 63                 | 123.55      |
| 2  | Pyruvate carboxylase, mitochondrial OS=Homo<br>sapiens GN=PC PE=1 SV=2                                   | 32.85229 | 52                 | 129.55      |
| 3  | Heterogeneous nuclear ribonucleoprotein U OS=Homo<br>sapiens GN=HNRNPU PE=1 SV=6                         | 28.84848 | 33                 | 90.528      |
| 4  | Acetyl-CoA carboxylase 1 OS=Homo sapiens GN=ACACA<br>PE=1 SV=2                                           | 10.99744 | 27                 | 265.39      |
| 5  | Keratin, type II cytoskeletal 1 OS=Homo sapiens<br>GN=KRT1 PE=1 SV=6                                     | 36.3354  | 26                 | 65.999      |
| 6  | Ubiquitin-like modifier-activating enzyme 1<br>OS=Homo sapiens GN=UBA1 PE=1 SV=3                         | 17.76938 | 19                 | 117.77      |
| 7  | AlaninetRNA ligase, cytoplasmic OS=Homo sapiens<br>GN=AARS PE=1 SV=2                                     | 17.56198 | 19                 | 106.74      |
| 8  | ATP-citrate synthase OS=Homo sapiens GN=ACLY<br>PE=1 SV=3                                                | 13.44233 | 18                 | 120.76      |
| 9  | Keratin, type I cytoskeletal 10 OS=Homo sapiens<br>GN=KRT10 PE=1 SV=6                                    | 28.42466 | 16                 | 58.792      |
| 10 | Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9<br>PE=1 SV=3                                      | 28.73194 | 15                 | 62.027      |
| 11 | Importin-7 OS=Homo sapiens GN=IPO7 PE=1 SV=1                                                             | 11.75337 | 11                 | 119.44      |
| 12 | iRT Kit Fusion                                                                                           | 89.55224 | 10                 | 14.157      |
| 13 | Ran-binding protein 6 OS=Homo sapiens GN=RANBP6<br>PE=1 SV=2                                             | 6.244344 | 10                 | 124.63      |
| 14 | Matrin-3 OS=Homo sapiens GN=MATR3 PE=1 SV=2                                                              | 10.27155 | 9                  | 94.565      |
| 15 | Heterogeneous nuclear ribonucleoprotein U-like protein<br>2 OS=Homo sapiens GN=HNRNPUL2 PE=1 SV=1        | 9.638554 | 9                  | 85.052      |
| 16 | Keratin, type II cytoskeletal 2 epidermal OS=Homo<br>sapiens GN=KRT2 PE=1 SV=2                           | 19.40532 | 8                  | 65.393      |
| 17 | Heat shock protein 105 kDa OS=Homo sapiens<br>GN=HSPH1 PE=1 SV=1                                         | 9.440559 | 8                  | 96.804      |
| 18 | Keratin, type II cytoskeletal 5 OS=Homo sapiens<br>GN=KRT5 PE=1 SV=3                                     | 18.30508 | 8                  | 62.34       |
| 19 | Transcription intermediary factor 1-beta OS=Homo<br>sapiens GN=TRIM28 PE=1 SV=5                          | 8.263473 | 8                  | 88.493      |
| 20 | Fatty acid synthase OS=Homo sapiens GN=FASN PE=1<br>SV=3                                                 | 3.345281 | 8                  | 273.25      |
| 21 | Heat shock 70 kDa protein 4 OS=Homo sapiens<br>GN=HSPA4 PE=1 SV=4                                        | 8.452381 | 8                  | 94.271      |
| 22 | Trifunctional purine biosynthetic protein adenosine-3<br>OS=Homo sapiens GN=GART PE=1 SV=1               | 7.425743 | 8                  | 107.7       |
| 23 | Putative elongation factor 1-alpha-like 3 OS=Homo<br>sapiens GN=EEF1A1P5 PE=5 SV=1                       | 17.74892 | 8                  | 50.153      |
| 24 | Elongation factor 1-alpha 1 OS=Homo sapiens<br>GN=EEF1A1 PE=1 SV=1                                       | 17.74892 | 8                  | 50.109      |
| 25 | Acetyl-CoA carboxylase 2 OS=Homo sapiens GN=ACACB<br>PE=1 SV=3                                           | 3.091945 | 7                  | 276.37      |
| 26 | Protein transport protein Sec24C OS=Homo sapiens<br>GN=SEC24C PE=1 SV=3                                  | 5.758684 | 6                  | 118.25      |
| 27 | Eukaryotic translation initiation factor 3 subunit C-like<br>protein OS=Homo sapiens GN=EIF3CL PE=3 SV=1 | 5.36105  | 6                  | 105.41      |
| 28 | Eukaryotic translation initiation factor 3 subunit C<br>OS=Homo sapiens GN=EIF3C PE=1 SV=1               | 5.366922 | 6                  | 105.28      |

| 29 | Keratin, type II cytoskeletal 6B OS=Homo sapiens<br>GN=KRT6B PE=1 SV=5                      | 13.65248 | 5 | 60.03  |
|----|---------------------------------------------------------------------------------------------|----------|---|--------|
| 30 | Keratin, type II cytoskeletal 6C OS=Homo sapiens<br>GN=KRT6C PE=1 SV=3                      | 13.47518 | 5 | 59.988 |
| 31 | Keratin, type II cytoskeletal 6A OS=Homo sapiens<br>GN=KRT6A PE=1 SV=3                      | 13.47518 | 5 | 60.008 |
| 32 | Unconventional myosin-Ib OS=Homo sapiens GN=MYO1B<br>PE=1 SV=3                              | 3.961268 | 5 | 131.9  |
| 33 | Elongation factor 1-alpha 2 OS=Homo sapiens<br>GN=EEF1A2 PE=1 SV=1                          | 9.50324  | 5 | 50.438 |
| 34 | Chymotrypsinogen B2 OS=Homo sapiens GN=CTRB2<br>PE=2 SV=2                                   | 10.64639 | 4 | 27.905 |
| 35 | Chymotrypsinogen B OS=Homo sapiens GN=CTRB1 PE=2<br>SV=1                                    | 10.64639 | 4 | 27.852 |
| 36 | 116 kDa U5 small nuclear ribonucleoprotein component<br>OS=Homo sapiens GN=EFTUD2 PE=1 SV=1 | 4.835391 | 4 | 109.37 |
| 37 | Heat shock protein HSP 90-beta OS=Homo sapiens<br>GN=HSP90AB1 PE=1 SV=4                     | 5.662983 | 4 | 83.212 |
| 38 | Staphylococcal nuclease domain-containing protein 1<br>OS=Homo sapiens GN=SND1 PE=1 SV=1    | 4.395604 | 4 | 101.93 |
| 39 | Phosphorylase b kinase regulatory subunit beta<br>OS=Homo sapiens GN=PHKB PE=1 SV=3         | 3.385178 | 4 | 124.81 |
| 40 | Tubulin alpha-1C chain OS=Homo sapiens GN=TUBA1C<br>PE=1 SV=1                               | 9.35412  | 4 | 49.863 |
| 41 | Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B<br>PE=1 SV=1                               | 9.312639 | 4 | 50.12  |
| 42 | Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A<br>PE=1 SV=1                               | 9.312639 | 4 | 50.104 |
| 43 | Keratin, type I cytoskeletal 14 OS=Homo sapiens<br>GN=KRT14 PE=1 SV=4                       | 13.55932 | 3 | 51.529 |
| 44 | Keratin, type II cytoskeletal 2 oral OS=Homo sapiens<br>GN=KRT76 PE=1 SV=2                  | 6.269592 | 3 | 65.8   |
| 45 | Heat shock protein HSP 90-alpha A2 OS=Homo sapiens<br>GN=HSP90AA2P PE=1 SV=2                | 8.746356 | 3 | 39.34  |
| 46 | Heat shock protein HSP 90-alpha OS=Homo sapiens<br>GN=HSP90AA1 PE=1 SV=5                    | 4.098361 | 3 | 84.607 |
| 47 | Ubiquitin-like modifier-activating enzyme 6 OS=Homo<br>sapiens GN=UBA6 PE=1 SV=1            | 2.471483 | 3 | 117.9  |
| 48 | Trypsin-3 OS=Homo sapiens GN=PRSS3 PE=1 SV=2                                                | 8.552632 | 3 | 32.508 |
| 49 | Tubulin alpha-3E chain OS=Homo sapiens GN=TUBA3E<br>PE=1 SV=2                               | 5.777778 | 3 | 49.827 |
| 50 | Tubulin alpha-3C/D chain OS=Homo sapiens GN=TUBA3C PE=1 SV=3                                | 5.777778 | 3 | 49.928 |
| 51 | Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1<br>SV=1                                  | 8.266667 | 3 | 41.766 |
| 52 | Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1<br>SV=1                                   | 8.266667 | 3 | 41.71  |
| 53 | Asparagine synthetase [glutamine-hydrolyzing]<br>OS=Homo sapiens GN=ASNS PE=1 SV=4          | 5.525847 | 3 | 64.329 |
| 54 | Drebrin OS=Homo sapiens GN=DBN1 PE=1 SV=4                                                   | 5.701079 | 3 | 71.385 |
| 55 | Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4                                                 | 1.511145 | 3 | 280.56 |

#### Figure S16. Pyruvate carboxylase as non-competed target.



Treatment of PC3 cell lysate with DMSO or 10  $\mu$ M goyazensolide for 30 min followed by treatment with **GOYA-2** (10  $\mu$ M, 30 min). CuAAC reaction with the biotinylated fluorophore and streptavidin enrichment, SDS-PAGE followed by silver staining. gave a band that was not eliminated upon competition with 10  $\mu$ M goyazensolide. MS analysis from tryptic in-gel digests of these bands yielded Pyruvate Carboxylase (red rectangle).

Full gel of Figure 2d. Immunoblot of IPO5, ACLY and UBA1 (Full gels and western blots).



Western blots of  $\alpha$ -IPO5,  $\alpha$ -UBA1 and  $\alpha$ -ACLY. SDS-PAGE/Immunoblot of goyazensolide upon treatment of SW620 lysate with DMSO or 10  $\mu$ M goyazensolide for 30 min followed by treatment with **GOYA-2** (10  $\mu$ M, 30 min). CuAAC reaction with the desthiobiotinylated fluorophore, streptavidin enrichment and SDS-PAGE.



Figure S17. Goyazensolide is a selective binder for IPO5 compared to other importins.

Western blots of  $\alpha$ -IPO5,  $\alpha$ -KPNB1,  $\alpha$ -Karyopherin  $\beta$ 2,  $\alpha$ -IPO7,  $\alpha$ -IPO8,  $\alpha$ -IPL12. SDS-PAGE/Immunoblot of goyazensolide upon treatment of SW620 lysate with DMSO or 10  $\mu$ M goyazensolide for 30 min followed by treatment with **GOYA-2** (10  $\mu$ M, 30 min). CuAAC reaction with the desthiobiotinylated fluorophore, streptavidin enrichment and SDS-PAGE.

### i) Experimental procedures for Figure 3



Figure S18. Competition experiment with 50 µM of 1-17 and 32.

Goyazensolide and atripliciolide selectively bind IPO5 versus other members of the same family of heliangolides. Competition experiment. A SW620 Lysate was incubated for 30 minutes with DMSO or one of the natural products (50  $\mu$ M) for 30 min, and then labeled with 10  $\mu$ M of **GOYA-2** followed by CuAAC reaction with **Cy3-N<sub>3</sub>**. The labelling/competition experiment shows selective binding of goyazensolide (1) and atripliciolide (2) to IPO5 protein.

### **Quantification (ImageJ software)**



**Figure S19.** Competition experiment with 10 µM of analogs **1-17** and **32**.

PC3 cell lysate were preincubate for 30 min with 10  $\mu$ M of DMSO or analogs and then labeled with 10  $\mu$ M of **GOYA-2** followed by CuAAC reaction with **Cy3-N**<sub>3</sub>. Proteins were separated using a 10% SDS-PAGE gel. Gels were visualized at 625 nm using a fluorescence scanner and then stained with Coomassie brilliant blue.

## Quantification

The binding efficiency was calculated by density of the fluorescent band. We used Coomassie as reference.

1) Grey intensity determination for fluorescence



2) Grey intensity determination for Coomassie



## 3) Calculation

| Fluorescence         density         9938.844         3166.782         2863.225         8507.43         7714.823         6462.045         9374.38         9108.43         10058.309         9769.966 | Coomassie<br>density (dye)<br>5119.347<br>5275.811<br>5417.861<br>5651.154<br>5615.276<br>5792.276<br>5868.276<br>5868.276<br>5645.276<br>5812.811                                 | F/C<br>1.941428<br>0.600246<br>0.528479<br>1.505432<br>1.373899<br>1.115631<br>1.597467<br>1.613461                                                                                                                                                                                                                                                                  | Fraction 1 0.309177 0.272211 0.775425 0.707675 0.574645 0.822831 0.831069                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9938.8443166.7822863.2258507.437714.8236462.0459374.389108.4310058.3099769.966                                                                                                                       | 5119.347<br>5275.811<br>5417.861<br>5651.154<br>5615.276<br>5792.276<br>5868.276<br>5868.276<br>5645.276<br>5812.811                                                               | 1.941428         0.600246         0.528479         1.505432         1.373899         1.115631         1.597467         1.613461                                                                                                                                                                                                                                      | 1<br>0.309177<br>0.272211<br>0.775425<br>0.707675<br>0.574645<br>0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3166.782         2863.225         8507.43         7714.823         6462.045         9374.38         9108.43         10058.309         9769.966                                                       | 5275.811<br>5417.861<br>5651.154<br>5615.276<br>5792.276<br>5868.276<br>5868.276<br>5645.276<br>5812.811                                                                           | 0.600246<br>0.528479<br>1.505432<br>1.373899<br>1.115631<br>1.597467<br>1.613461                                                                                                                                                                                                                                                                                     | 0.309177<br>0.272211<br>0.775425<br>0.707675<br>0.574645<br>0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2863.225<br>8507.43<br>7714.823<br>6462.045<br>9374.38<br>9108.43<br>10058.309<br>9769.966                                                                                                           | 5417.861<br>5651.154<br>5615.276<br>5792.276<br>5868.276<br>5645.276<br>5812.811                                                                                                   | 0.528479<br>1.505432<br>1.373899<br>1.115631<br>1.597467<br>1.613461<br>1.5200000                                                                                                                                                                                                                                                                                    | 0.272211<br>0.775425<br>0.707675<br>0.574645<br>0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8507.43         7714.823         6462.045         9374.38         9108.43         10058.309         9769.966                                                                                         | 5651.154<br>5615.276<br>5792.276<br>5868.276<br>5645.276<br>5812.811                                                                                                               | 1.505432         1.373899         1.115631         1.597467         1.613461                                                                                                                                                                                                                                                                                         | 0.775425<br>0.707675<br>0.574645<br>0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7714.823<br>6462.045<br>9374.38<br>9108.43<br>10058.309<br>9769.966                                                                                                                                  | 5615.276<br>5792.276<br>5868.276<br>5645.276<br>5812.811                                                                                                                           | 1.373899         1.115631         1.597467         1.613461                                                                                                                                                                                                                                                                                                          | 0.707675<br>0.574645<br>0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6462.045<br>9374.38<br>9108.43<br>10058.309<br>9769.966                                                                                                                                              | 5792.276<br>5868.276<br>5645.276<br>5812.811                                                                                                                                       | 1.115631<br>1.597467<br>1.613461                                                                                                                                                                                                                                                                                                                                     | 0.574645<br>0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9374.38<br>9108.43<br>10058.309<br>9769.966                                                                                                                                                          | 5868.276<br>5645.276<br>5812.811                                                                                                                                                   | 1.597467<br>1.613461                                                                                                                                                                                                                                                                                                                                                 | 0.822831<br>0.831069                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9108.43<br>10058.309<br>9769.966                                                                                                                                                                     | 5645.276<br>5812.811                                                                                                                                                               | 1.613461                                                                                                                                                                                                                                                                                                                                                             | 0.831069                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10058.309<br>9769.966                                                                                                                                                                                | 5812.811                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9769.966                                                                                                                                                                                             |                                                                                                                                                                                    | 1.730369                                                                                                                                                                                                                                                                                                                                                             | 0.891287                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                      | 5093.296                                                                                                                                                                           | 1.918201                                                                                                                                                                                                                                                                                                                                                             | 0.988036                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11011.693                                                                                                                                                                                            | 5687.468                                                                                                                                                                           | 1.936133                                                                                                                                                                                                                                                                                                                                                             | 0.997272                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                                                                                                                                                                                    | Gel2                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11349.67                                                                                                                                                                                             | 4811.569                                                                                                                                                                           | 2.35883                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3077.953                                                                                                                                                                                             | 4637.569                                                                                                                                                                           | 0.6637                                                                                                                                                                                                                                                                                                                                                               | 0.281368                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11662.79                                                                                                                                                                                             | 4956.861                                                                                                                                                                           | 2.352859                                                                                                                                                                                                                                                                                                                                                             | 0.997469                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10525.38                                                                                                                                                                                             | 4756.154                                                                                                                                                                           | 2.213002                                                                                                                                                                                                                                                                                                                                                             | 0.938178                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10426.62                                                                                                                                                                                             | 4422.326                                                                                                                                                                           | 2.357724                                                                                                                                                                                                                                                                                                                                                             | 0.999531                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10538.92                                                                                                                                                                                             | 4654.569                                                                                                                                                                           | 2.264209                                                                                                                                                                                                                                                                                                                                                             | 0.959886                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8101.48                                                                                                                                                                                              | 4933.326                                                                                                                                                                           | 1.642194                                                                                                                                                                                                                                                                                                                                                             | 0.69619                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10379.97                                                                                                                                                                                             | 4987.983                                                                                                                                                                           | 2.080995                                                                                                                                                                                                                                                                                                                                                             | 0.882215                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9482.602                                                                                                                                                                                             | 4648.619                                                                                                                                                                           | 2.039875                                                                                                                                                                                                                                                                                                                                                             | 0.864783                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11447.21                                                                                                                                                                                             | 4881.447                                                                                                                                                                           | 2.345044                                                                                                                                                                                                                                                                                                                                                             | 0.994156                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                      | 11011.693         11349.67         3077.953         11662.79         10525.38         10426.62         10538.92         8101.48         10379.97         9482.602         11447.21 | 11011.693       5687.468         Gel2         11349.67       4811.569         3077.953       4637.569         11662.79       4956.861         10525.38       4756.154         10426.62       4422.326         10538.92       4654.569         8101.48       4933.326         10379.97       4987.983         9482.602       4648.619         11447.21       4881.447 | 11011.693       5687.468       1.936133         Gel2       11349.67       4811.569       2.35883         3077.953       4637.569       0.6637         11662.79       4956.861       2.352859         10525.38       4756.154       2.213002         10426.62       4422.326       2.357724         10538.92       4654.569       2.264209         8101.48       4933.326       1.642194         10379.97       4987.983       2.080995         9482.602       4648.619       2.345044 |

 Table S18. Quantification for competition.

Binding efficiency representation. We observed a difference of binding efficiency by comparison of compounds **1-6** versus **7-13**. The C8 stereochemistry plays an important role in the binding efficiency.

**Pulldown experiment with viruses NLS**. 10µL of 100µM solutions of the corresponding NLS (0.2% SDS in PBS) were added to 30 µL of magnetic streptavidin beads and the suspension was shaken for 1 hour. The supernatant was discarded and the beads were washed 5× with a solution of 0.2% SDS in PBS. The pre-treated lysates (30 µL of treated lysate (3 mg/mL) with DMSO or goyazensolide 10 µM fro 30 min) were added to the beads and shaken 3 hours. The supernatants were discarded and the beads were washed 2× times (20 µL) with 0.2% SDS in PBS. 15 µL of SDS 5%. For elutions 5 µL of Laemli buffer were added to the beads and the mixtures were shaken and heated at 95°C for 3 minutes followed by SDS-PAGE and western blot. Incubation with IPO5 antibody (1 : 1000) followed by rabbit secondary antibody (1 : 1000). Chemoluminescence was used for detection.

**Full gel of Figure 3b.** Immunoblot of competitive interaction between NLS and IPO5. Magnetic streptavidin beads were saturated with corresponding NLS and then incubated for 2 hours with HT29 lysate treated with DMSO or goyazensolide ( $10 \mu$ M, 30 min).

|                              | Lysate | Control     | HIV-       | 1 Rev      | Influe     | nza A      |
|------------------------------|--------|-------------|------------|------------|------------|------------|
| Biotin probes<br>(1) (10 μM) |        | Biotin<br>_ | NLS-1<br>– | NLS-1<br>+ | NLS-2<br>– | NLS-2<br>+ |
| IPO5 antibody                | 1      |             | -          |            |            |            |

Preparation of NLS-1 and NLS-2

**NLS-1** and **NLS-2** were synthesized using solid-phase synthesis. General procedure described in PLoS One **2020**, *15*, e0238089.

# Figure S20. Chemical structures of NLS-1 and NLS-2.



Data of **NLS-1**:

 $(C_{110}H_{194}N_{56}O_{26}S)$ ,  $[M+H]^+$  isotopic peaks with relative distribution : 2748.53 (100.0%), 2747.53 (84.1%), 2749.54 (35.9%)



### Data of NLS-2:

 $(C_{167}H_{299}N_{65}O_{42}S_3)$ ,  $[M+H]^+$  isotopic peaks with relative distribution : 3984.24 (100.0%), 3985.25 (66.1%), 3983.24 (55.4%), 3986.25 (46.9%), 3985.24 (24.0%)



## j) Experimental procedures for Figure 4

**Microscopy**. Cells (50000/well) were seeded on coverslips in a 12 well plate. After 24 hours, cells were treated with goyazensolide (**1**) or DMSO for 3 hours. Cells were fixed with PFA 4% for 25 minutes at room temperature. After a wash 3× with PBS, cells were blocked using 5% BSA + 0.1% saponin in PBS for 2 hours. Then they were incubate with anti IPO5 antibody (1 : 100) in 1% BSA in PBS (30  $\mu$ L/well) for 3 hours at room temperature.

For the incubation, the coverslips were taken out of the plate, and place on a drop of antibody solution on parafilm in a humidity chamber, then they were washed  $3 \times$  with PBS, incubated with anti-rabbit AlexaFluor488 (1 : 400), washed  $3 \times$  with PBS, incubate with Hoescht diluted 2000× in PBS for 10min, washed  $3 \times$  with PBS, then water and finally the edges were dried. The coverslips were then mounted on a clean slide treated with 5 µL ProlongDiamond per coverslip for 24 hours at room temperatue and finally sealed with nail polish.

### Ratio (cytosol/nucleus) caculation of RASAL2.

**Figure S21. Confocal microscopy images of SW620 cells after treatment with DMSO or goyazensolide**. Ratio of RASAL2 levels in the cytosol and nucleus was calculated applying a threshold mask to quantify fluorescence intensity in the cytosol and in the nucleus.



### Calculation of fluorescence intensity in the cytosol/nucleus.

Threshold masks were generated in ImageJ softwqre to calculate the integrated dendity of the signal in the green channel (Alexa488, RASAL2) and blue channel (Hoecht, nuclei).

Step 1 : Cell surface and green density determination.



Step 2 : Determination of the surface and green density within the nucleus



## Step 3 : Determination of the surface and green density within the cytosol by difference



Step 4 : Ratio calculation to all pictures

## Table S19. Ratio calculation.

|               | DMSO     |                      |          |          |  |
|---------------|----------|----------------------|----------|----------|--|
|               | Area     | Integrated density   | Int/Area | Ratio    |  |
| No Treatment  | Α        |                      |          |          |  |
| Whole cells   | 999.836  | 79215.392            | 79.22839 |          |  |
| Nucleus       | 524.499  | 35443.651            | 67.5762  |          |  |
| Cytosol       | 475.337  | 43771.741            | 92.0857  | 1.362694 |  |
|               | В        |                      |          |          |  |
| Whole cells   | 1326.899 | 122651.425           | 92.43464 |          |  |
| Nucleus       | 726.149  | 64428.407            | 88.72615 |          |  |
| Cytosol       | 600.75   | 58223.018            | 96.91722 | 1.092318 |  |
|               | С        |                      |          |          |  |
| Whole cells   | 1143.299 | 47116.191            | 41.21073 |          |  |
| Nucleus       | 559.298  | 20005.295            | 35.76858 |          |  |
| Cytosol       | 584.001  | 27110.896            | 46.42269 | 1.297862 |  |
|               | D        |                      |          |          |  |
| Whole cells   | 2663.854 | 264164.23            | 99.16618 |          |  |
| Nucleus       | 1405.78  | 131809.013           | 93.76219 |          |  |
| Cytosol       | 1258.074 | 132355.217           | 105.2046 | 1.122037 |  |
|               |          | Average Ratio DMSO   | 1.218728 |          |  |
|               | 1        | Goyazensolide        | 1        |          |  |
|               | Area     | Integrated density   | Int/Area | Ratio    |  |
| Goyazensolide | 1A       |                      |          |          |  |
| Whole cells   | 1036.597 | 70567.839            | 68.07645 |          |  |
| Nucleus       | 383.935  | 17332.133            | 45.1434  |          |  |
| Cytosol       | 652.662  | 53235.706            | 81.56704 | 1.806843 |  |
|               | 1B       |                      |          |          |  |
| Whole cells   | 2079.43  | 142805.488           | 68.6753  |          |  |
| Nucleus       | 1030.202 | 52726.816            | 51.18105 |          |  |
| Cytosol       | 1049.228 | 90078.672            | 85.85233 | 1.677424 |  |
|               | 25A      |                      |          |          |  |
| Whole cells   | 1452.821 | 70476.786            | 48.5103  |          |  |
| Nucleus       | 618.297  | 18677.594            | 30.20813 |          |  |
| Cytosol       | 834.524  | 51799.192            | 62.07034 | 2.054756 |  |
|               | 25B      |                      |          |          |  |
| Whole cells   | 890.415  | 42677.438            | 47.92983 |          |  |
| Nucleus       | 405.471  | 12686.904            | 31.2893  |          |  |
| Cytosol       | 484.944  | 29990.534            | 61.84329 | 1.9765   |  |
|               |          | Average Ratio 1 µM   | 1.742134 |          |  |
|               |          | Average Ratio 2.5 μM | 2.015628 |          |  |
|               |          | Ratio increasing (%) | 65.38786 |          |  |

| RAW DATA    | ImageJ So | ftware | 1 : Whole cells |      |            |           |
|-------------|-----------|--------|-----------------|------|------------|-----------|
|             |           |        | 2 : Nuc         | leus |            |           |
| PICTURE A   | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 999.836   | 79.228 | 11              | 255  | 79215.392  | 15905174  |
| 2           | 524.499   | 67.576 | 0               | 255  | 35443.651  | 7116514   |
| PICTURE B   | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 1326.899  | 92.435 | 19              | 255  | 122651.425 | 24626430  |
| 2           | 726.149   | 88.726 | 0               | 255  | 64428.407  | 12936186  |
| PICTURE C   | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 1143.299  | 41.211 | 5               | 255  | 47116.191  | 9460172   |
| 2           | 559.298   | 35.769 | 0               | 225  | 20005.295  | 4016741   |
| PICTURE D   | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 2663.854  | 99.166 | 23              | 255  | 264164.23  | 53039921  |
| 2           | 1405.78   | 93.762 | 0               | 255  | 131809.013 | 26465126  |
|             |           |        |                 |      |            |           |
| PICTURE 1A  | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 1036.597  | 68.076 | 12              | 255  | 70567.839  | 14168885  |
| 2           | 383.935   | 45.143 | 0               | 255  | 17332.133  | 3480013   |
| PICTURE 1B  | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 2079.43   | 68.675 | 6               | 255  | 142805.488 | 28673041  |
| 2           | 1030.202  | 51.181 | 0               | 255  | 52726.816  | 10586695  |
| PICTURE 25A | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 1452.821  | 48.51  | 5               | 255  | 70476.786  | 14150603  |
| 2           | 618.297   | 30.208 | 0               | 227  | 18677.594  | 3750160   |
| PICTURE 25B | Area      | Mean   | Min             | Max  | IntDen     | RawIntDen |
| 1           | 890.415   | 47.93  | 6               | 255  | 42677.438  | 8568942   |
| 2           | 405.471   | 31.289 | 1               | 255  | 12686.904  | 2547326   |

Table S20. Raw data

Figure S22. Plot profile determination (Image J software).



## Figure S23. DMSO treatment.



Figure S24. Goyazensolide 1  $\mu$ M treatment.



### Figure S25. Goyazensolide 2.5 µM treatment.



**Table S21.** Standard deviation (STDEV) and Standard error of mean (SEM)

| Ratio    | Ratio                  | Ratio                   |                       |   |                           |
|----------|------------------------|-------------------------|-----------------------|---|---------------------------|
| DMSO     | Goyazensolid<br>e 1 µM | Goyazensolide 2.5<br>µM | Standard<br>deviation |   | Standard error of<br>mean |
| 1.362694 | 1.806843               | 2.054756                | 0.132056852           | 4 | 0.066028426               |
| 1.092318 | 1.677424               | 1.9765                  | 0.091513053           | 2 | 0.0647095                 |
| 1.297862 |                        |                         | 0.055335348           | 2 | 0.039128                  |
| 1.122037 |                        |                         |                       |   |                           |
| DMSO     | Goyazensolid<br>e 1 µM | Goyazensolide 2.5<br>µM |                       |   |                           |
| 1.218728 | 1.7421335              | 2.015628                |                       |   |                           |

### pAKT assay.

SW620 Cells were seeded (350.000 cells/mL) in a 6 well plate and left two days to attach and grow. Cells were incubated with DMSO or goyazensolide (5  $\mu$ M) in a time dependant manner. Cells were lysed and scrapped in the presence of phosphatase inhibitors at 4 °C. Lysates were centrifuge at 14000g for 15 minutes at 4 °C. SDS-PAGE followed by western blot treated with respective antibodies (pAKT and actin).

**Full gel of Figure 4d.** Immunoblot of p-AKT (p-AKT Ser473 antibody) expression upon treatment of SW620 cells with DMSO or goyazensolide (5  $\mu$ M, 4 h).







Immunoblot of p-AKT (p-AKT Ser473 antibody) expression upon treatment of SW620 cells with DMSO or goyazensolide (5  $\mu$ M, 4 h).

### k) Chiral-HPLC spectra of 20a

| Major | TBDPSO<br>Me<br>OMe<br>20a | 12.797 min |
|-------|----------------------------|------------|
| Minor | TBDPSO<br>Me OH<br>ent-20a | 11.048 min |

14/02/2020 18:46:56 Pag



#### <Sample Information>

| Sample Name      | : wll-ug-13-54-rac             |
|------------------|--------------------------------|
| Sample ID        | : .                            |
| Data Filename    | : wll-ug-13-54-rac-AD-9901.lcd |
| Method Filename  | : Aqu Čol1 99-1 1mL 40 MIN.lcm |
| Batch Filename   | : new template.lcb             |
| Vial #           | : 1-91                         |
| Injection Volume | : 10 uL                        |
| Date Acquired    | : 14/02/2020 15:43:44          |
| Date Processed   | : 14/02/2020 16:23:46          |
|                  |                                |

## <Chromatogram>

mAU



Sample Type

Acquired by Processed by : Unknown

: System Administrator : System Administrator

#### <Peak Table>

| PDA Ch1 210nm |           |         |  |  |  |
|---------------|-----------|---------|--|--|--|
| Peak#         | Ret. Time | Area%   |  |  |  |
| 1             | 11.048    | 50.182  |  |  |  |
| 2             | 12.797    | 49.818  |  |  |  |
| Total         |           | 100.000 |  |  |  |

: Unknown

System Administrator System Administrator



LabSolutions Analysis Report

### <Sample Information>

| Sample Name      | : wll-ug-13-54-chiral             |              |
|------------------|-----------------------------------|--------------|
| Sample ID        | :                                 |              |
| Data Filename    | : wll-ug-13-54-chiral-AD-9901.lcd |              |
| Method Filename  | : Aqu Čol1 99-1 1mL 40 MIN.lcm    |              |
| Batch Filename   | : new template.lcb                |              |
| Vial #           | : 1-92                            | Sample Type  |
| Injection Volume | : 10 uL                           |              |
| Date Acquired    | : 14/02/2020 16:24:16             | Acquired by  |
| Date Processed   | : 14/02/2020 17:04:17             | Processed by |
|                  |                                   |              |

#### <Chromatogram>

mAU



#### <Peak Table>

| PDA Ch1 210nm |           |         |  |  |
|---------------|-----------|---------|--|--|
| Peak#         | Ret. Time | Area%   |  |  |
| 1             | 11.010    | 4.429   |  |  |
| 2             | 12.709    | 95.571  |  |  |
| Total         |           | 100.000 |  |  |

### l) <sup>1</sup>H and <sup>13</sup>C NMR spectra































S107


















































S132




























S146











































S166























































































































































S234

# m) X-Ray data of 2, 30 and 34



Table 1 Crystal data and structure refinement for WL2.

| Identification code                         | WL2                                                           |
|---------------------------------------------|---------------------------------------------------------------|
| Empirical formula                           | C15H16O5                                                      |
| Formula weight                              | 276.28                                                        |
| Temperature/K                               | 149.99(10)                                                    |
| Crystal system                              | orthorhombic                                                  |
| Space group                                 | P212121                                                       |
| a/Å                                         | 8.11197(3)                                                    |
| b/Å                                         | 9.30326(4)                                                    |
| c/Å                                         | 17.61440(7)                                                   |
| α/°                                         | 90                                                            |
| β/°                                         | 90                                                            |
| γ/°                                         | 90                                                            |
| Volume/Å <sup>3</sup>                       | 1329.320(9)                                                   |
| Z                                           | 4                                                             |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.380                                                         |
| μ/mm <sup>-1</sup>                          | 0.866                                                         |
| F(000)                                      | 584.0                                                         |
| Crystal size/mm <sup>3</sup>                | $0.214 \times 0.169 \times 0.102$                             |
| Radiation                                   | Cu Kα (λ = 1.54184)                                           |
| 20 range for data collection/°              | 10.044 to 147.598                                             |
| Index ranges                                | $-10 \le h \le 9$ , $-11 \le k \le 11$ , $-21 \le l \le 21$   |
| Reflections collected                       | 61110                                                         |
| Independent reflections                     | 2690 [R <sub>int</sub> = 0.0304, R <sub>sigma</sub> = 0.0071] |
| Data/restraints/parameters                  | 2690/0/189                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.043                                                         |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0233$ , $wR_2 = 0.0605$                              |
| Final R indexes [all data]                  | $R_1 = 0.0235$ , $wR_2 = 0.0606$                              |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.18/-0.12                                                    |
| Flack parameter                             | -0.01(17)                                                     |

# Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for WL2. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X          | у          | Z         | U(eq)   |
|------|------------|------------|-----------|---------|
| 01   | 5570.9(15) | 8694.9(15) | 7454.2(7) | 40.0(3) |
| 07   | 6273.6(13) | 5594.8(12) | 5471.0(7) | 28.7(3) |
| 012  | 2119.0(17) | 2290.0(12) | 4442.5(7) | 39.2(3) |
| 013  | 1707.8(15) | 3217.2(12) | 5595.5(6) | 33.1(3) |

| 019 | 2185.6(12) | 8008.4(11)  | 6258.8(6)  | 23.8(2) |
|-----|------------|-------------|------------|---------|
| C2  | 4301.7(19) | 8275.6(18)  | 7156.7(9)  | 29.0(3) |
| C3  | 3849.5(18) | 8589.2(16)  | 6328.7(8)  | 24.0(3) |
| C4  | 3839(2)    | 10179.8(17) | 6142.1(10) | 33.8(4) |
| C5  | 4943.2(18) | 7730.0(15)  | 5784.2(8)  | 22.6(3) |
| C6  | 4828.0(17) | 6088.2(15)  | 5841.6(8)  | 20.9(3) |
| C8  | 3182.2(17) | 5477.9(14)  | 5492.6(8)  | 21.1(3) |
| С9  | 3368.3(17) | 4549.8(15)  | 4799.1(8)  | 23.5(3) |
| C10 | 4209(2)    | 4768.4(19)  | 4166.9(9)  | 33.1(4) |
| C11 | 2368.5(19) | 3238.0(16)  | 4899.9(9)  | 28.0(3) |
| C14 | 2193.1(19) | 4481.9(16)  | 6043.1(9)  | 25.7(3) |
| C15 | 621.2(19)  | 5048.5(18)  | 6391.9(9)  | 30.5(3) |
| C16 | 447.3(19)  | 6240.3(19)  | 6801.7(9)  | 29.4(3) |
| C17 | -1153(2)   | 6710(2)     | 7159.3(11) | 40.6(4) |
| C18 | 1883.6(19) | 7206.5(17)  | 6890.2(8)  | 26.1(3) |
| C20 | 3000(2)    | 7374(2)     | 7447.9(9)  | 33.7(4) |

| Table 3 Anisotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for WL2. The Anisotropic displacemen | t |
|---------------------------------------------------------------------------------------------------------------------|---|
| factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$ .                                       |   |

| Atom | <b>U</b> 11 | <b>U</b> 22 | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| 01   | 29.3(6)     | 54.5(8)     | 36.2(6)     | -14.2(6)    | -6.2(5)     | -2.3(6)     |
| 07   | 18.9(5)     | 25.9(5)     | 41.5(6)     | -8.5(5)     | 0.7(5)      | 2.9(4)      |
| 012  | 48.4(7)     | 27.2(6)     | 42.1(7)     | -5.8(5)     | -3.4(6)     | -11.7(5)    |
| 013  | 39.2(7)     | 25.2(5)     | 34.9(6)     | 2.1(4)      | 0.8(5)      | -11.1(5)    |
| 019  | 19.8(5)     | 24.6(5)     | 27.0(5)     | 2.1(4)      | -0.4(4)     | 2.1(4)      |
| C2   | 24.8(7)     | 35.5(8)     | 26.8(7)     | -9.5(6)     | -0.2(6)     | 4.3(6)      |
| C3   | 19.9(7)     | 22.9(7)     | 29.1(7)     | -2.5(6)     | 0.3(6)      | 0.4(5)      |
| C4   | 32.4(8)     | 22.6(7)     | 46.5(9)     | -4.0(7)     | 4.3(7)      | 1.3(6)      |
| C5   | 20.1(7)     | 21.6(7)     | 26.2(7)     | -1.7(6)     | 1.0(6)      | -1.8(5)     |
| C6   | 18.1(6)     | 20.7(7)     | 24.0(7)     | -1.0(5)     | -1.3(5)     | 1.2(5)      |
| C8   | 18.0(7)     | 21.2(6)     | 24.0(6)     | 2.4(5)      | -1.2(5)     | -0.3(5)     |
| С9   | 21.3(7)     | 21.9(7)     | 27.4(7)     | -0.2(6)     | -4.9(5)     | -1.1(5)     |
| C10  | 33.1(9)     | 36.1(9)     | 30.0(8)     | -6.9(7)     | 1.7(7)      | -9.0(7)     |
| C11  | 28.4(8)     | 24.1(7)     | 31.4(7)     | 1.6(6)      | -5.2(6)     | -2.4(6)     |
| C14  | 24.6(7)     | 25.8(7)     | 26.7(7)     | 2.4(6)      | -2.3(6)     | -5.5(6)     |
| C15  | 22.2(7)     | 38.9(9)     | 30.4(7)     | 6.7(7)      | 0.5(6)      | -7.7(7)     |
| C16  | 20.1(7)     | 40.9(9)     | 27.2(7)     | 8.5(7)      | 2.8(6)      | -0.6(6)     |
| C17  | 23.7(8)     | 54.7(11)    | 43.4(9)     | 1.6(9)      | 8.2(7)      | 0.1(8)      |
| C18  | 22.0(7)     | 31.6(7)     | 24.6(7)     | 0.7(6)      | 4.3(6)      | 4.5(6)      |
| C20  | 28.7(8)     | 49.2(10)    | 23.1(7)     | 2.3(7)      | 1.3(6)      | 1.8(7)      |

#### Table 4 Bond Lengths for WL2.

| 36(18)<br>56(18) |
|------------------|
| 56(18)           |
|                  |
| 504(2)           |
| 28(19)           |
| 321(2)           |
| 476(2)           |
| 510(2)           |
| 331(2)           |
| 508(2)           |
|                  |

| C3 | C4 | 1.516(2) C16 | C18 | 1.480(2) |
|----|----|--------------|-----|----------|
| C3 | C5 | 1.532(2) C18 | C20 | 1.345(2) |

# Table 5 Bond Angles for WL2.

| Atom | n Aton | n Atom | Angle/°    | Aton | ı Aton | n Atom | Angle/°    |
|------|--------|--------|------------|------|--------|--------|------------|
| C11  | 013    | C14    | 111.86(11) | C10  | С9     | C8     | 130.40(14) |
| C18  | 019    | C3     | 107.48(11) | C10  | С9     | C11    | 120.80(14) |
| 01   | C2     | C3     | 123.40(15) | C11  | С9     | C8     | 108.78(12) |
| 01   | C2     | C20    | 130.63(16) | 012  | C11    | 013    | 122.12(14) |
| C20  | C2     | C3     | 105.89(12) | 012  | C11    | C9     | 127.86(15) |
| 019  | C3     | C2     | 103.38(11) | 013  | C11    | C9     | 110.02(13) |
| 019  | C3     | C4     | 109.76(12) | 013  | C14    | C8     | 106.22(11) |
| 019  | C3     | C5     | 106.84(11) | 013  | C14    | C15    | 105.75(12) |
| C4   | C3     | C2     | 113.19(13) | C15  | C14    | C8     | 118.61(13) |
| C4   | C3     | C5     | 112.13(13) | C16  | C15    | C14    | 126.94(14) |
| C5   | C3     | C2     | 110.98(12) | C15  | C16    | C17    | 124.01(15) |
| С3   | C5     | C6     | 116.30(12) | C15  | C16    | C18    | 118.68(14) |
| 07   | C6     | C5     | 103.98(12) | C18  | C16    | C17    | 117.26(15) |
| 07   | C6     | C8     | 113.85(11) | 019  | C18    | C16    | 112.86(13) |
| C5   | C6     | C8     | 112.63(11) | C20  | C18    | 019    | 114.33(14) |
| С9   | C8     | C6     | 116.03(11) | C20  | C18    | C16    | 132.65(15) |
| С9   | C8     | C14    | 102.42(11) | C18  | C20    | C2     | 107.49(14) |
| C14  | C8     | C6     | 113.99(11) |      |        |        |            |

## Table 6 Torsion Angles for WL2.

| Α   | В   | С   | D   | Angle/°     | Α   | В   | С   | D   | Angle/°     |
|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|
| 01  | C2  | С3  | 019 | -174.50(14) | C8  | C14 | C15 | C16 | -56.1(2)    |
| 01  | C2  | С3  | C4  | -55.8(2)    | С9  | C8  | C14 | 013 | -8.00(14)   |
| 01  | C2  | С3  | C5  | 71.28(19)   | С9  | C8  | C14 | C15 | -126.73(13) |
| 01  | C2  | C20 | C18 | -178.89(17) | C10 | С9  | C11 | 012 | -4.1(3)     |
| 07  | C6  | C8  | С9  | -3.60(17)   | C10 | С9  | C11 | 013 | 176.64(14)  |
| 07  | C6  | C8  | C14 | 115.04(14)  | C11 | 013 | C14 | C8  | 5.74(16)    |
| 013 | C14 | C15 | C16 | -175.11(15) | C11 | 013 | C14 | C15 | 132.62(13)  |
| 019 | C3  | C5  | C6  | -50.30(16)  | C14 | 013 | C11 | 012 | 179.96(15)  |
| 019 | C18 | C20 | C2  | -5.94(19)   | C14 | 013 | C11 | С9  | -0.76(17)   |
| C2  | C3  | C5  | C6  | 61.72(17)   | C14 | C8  | C9  | C10 | -173.89(16) |
| С3  | 019 | C18 | C16 | -164.15(12) | C14 | C8  | C9  | C11 | 7.74(15)    |
| С3  | 019 | C18 | C20 | 11.69(17)   | C14 | C15 | C16 | C17 | -177.47(15) |
| С3  | C2  | C20 | C18 | -2.05(18)   | C14 | C15 | C16 | C18 | 5.2(2)      |
| С3  | C5  | C6  | 07  | -162.34(12) | C15 | C16 | C18 | 019 | 76.26(18)   |
| С3  | C5  | C6  | C8  | 73.94(16)   | C15 | C16 | C18 | C20 | -98.6(2)    |
| C4  | C3  | C5  | C6  | -170.60(13) | C16 | C18 | C20 | C2  | 168.85(16)  |
| C5  | C6  | C8  | С9  | 114.45(13)  | C17 | C16 | C18 | 019 | -101.23(16) |
| C5  | C6  | C8  | C14 | -126.90(13) | C17 | C16 | C18 | C20 | 83.9(2)     |
| C6  | C8  | С9  | C10 | -49.1(2)    | C18 | 019 | С3  | C2  | -11.74(14)  |
| C6  | C8  | С9  | C11 | 132.55(13)  | C18 | 019 | С3  | C4  | -132.77(13) |
| C6  | C8  | C14 | 013 | -134.15(12) | C18 | 019 | С3  | C5  | 105.43(13)  |
| C6  | C8  | C14 | C15 | 107.12(14)  | C20 | C2  | С3  | 019 | 8.37(15)    |
| C8  | С9  | C11 | 012 | 174.43(16)  | C20 | C2  | С3  | C4  | 127.05(15)  |
| C8  | С9  | C11 | 013 | -4.80(17)   | C20 | C2  | С3  | C5  | -105.85(14) |

Table 7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for WL2.

| Atom | X        | у        | Ζ        | U(eq) |
|------|----------|----------|----------|-------|
| H7   | 6290(30) | 4680(20) | 5494(12) | 45(6) |
| H4A  | 3497.02  | 10315.37 | 5613.29  | 51    |
| H4B  | 4948.34  | 10574.92 | 6213.23  | 51    |
| H4C  | 3065.47  | 10677.44 | 6478.95  | 51    |
| H5A  | 6103.62  | 8013.21  | 5873.34  | 27    |
| H5B  | 4659.92  | 8013.13  | 5258.35  | 27    |
| H6   | 4884.8   | 5807.29  | 6389     | 25    |
| H8   | 2462.37  | 6311.53  | 5356.35  | 25    |
| H10A | 4173.87  | 4076.8   | 3770.46  | 40    |
| H10B | 4847.59  | 5617.07  | 4108.93  | 40    |
| H14  | 2944.46  | 4162.26  | 6460.27  | 31    |
| H15  | -346.59  | 4494.77  | 6309.98  | 37    |
| H17A | -1002.74 | 6813.04  | 7708.6   | 61    |
| H17B | -2005.57 | 5987.95  | 7058.8   | 61    |
| H17C | -1492.36 | 7634.32  | 6942.81  | 61    |
| H20  | 2941.55  | 6972.47  | 7943     | 40    |
| E    | امه      |          |          |       |

#### Experimental

Single crystals of C<sub>15</sub>H<sub>16</sub>O<sub>5</sub> **[WL2]** were **[2]**. A suitable crystal was selected and **[2]** on a **XtaLAB Synergy, Dualflex, HyPix-Arc** diffractometer. The crystal was kept at 149.99(10) K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

#### Crystal structure determination of [WL2]

**Crystal Data** for  $C_{15}H_{16}O_5$  (M = 276.28 g/mol): orthorhombic, space group  $P2_12_12_1$  (no. 19), a = 8.11197(3) Å, b = 9.30326(4) Å, c = 17.61440(7) Å, V = 1329.320(9) Å<sup>3</sup>, Z = 4, T = 149.99(10) K,  $\mu$ (Cu K $\alpha$ ) = 0.866 mm<sup>-1</sup>, *Dcalc* = 1.380 g/cm<sup>3</sup>, 61110 reflections measured (10.044°  $\leq 2\Theta \leq 147.598°$ ), 2690 unique ( $R_{int} = 0.0304$ ,  $R_{sigma} = 0.0071$ ) which were used in all calculations. The final  $R_1$  was 0.0233 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0606 (all data).

#### Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Twinned data refinement Scales: 1.01(17) -0.01(17)2. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 3.a Ternary CH refined with riding coordinates: C6(H6), C8(H8), C14(H14) 3.b Secondary CH2 refined with riding coordinates: C5(H5A,H5B) 3.c Aromatic/amide H refined with riding coordinates: C15(H15), C20(H20) 3.d X=CH2 refined with riding coordinates: C10(H10A,H10B) 3.e Idealised Me refined as rotating group: C4(H4A,H4B,H4C), C17(H17A,H17B,H17C) This report has been created with Olex2, compiled on Nov 21 2019 18:26:39 for OlexSys.



### Table 1 Crystal data and structure refinement for exp\_2516.

| Identification code                       | exp_2516                                                      |
|-------------------------------------------|---------------------------------------------------------------|
| Empirical formula                         | C31H36O5Si                                                    |
| Formula weight                            | 516.69                                                        |
| Temperature/K                             | 180.01(10)                                                    |
| Crystal system                            | orthorhombic                                                  |
| Space group                               | P212121                                                       |
| a/Å                                       | 9.52826(14)                                                   |
| b/Å                                       | 11.72660(18)                                                  |
| c/Å                                       | 25.7421(4)                                                    |
| α/°                                       | 90                                                            |
| β/°                                       | 90                                                            |
| γ/°                                       | 90                                                            |
| Volume/Å <sup>3</sup>                     | 2876.27(8)                                                    |
| Z                                         | 4                                                             |
| $\rho_{calc}g/cm^3$                       | 1.193                                                         |
| μ/mm <sup>-1</sup>                        | 1.015                                                         |
| F(000)                                    | 1104.0                                                        |
| Crystal size/mm <sup>3</sup>              | 0.312 × 0.144 × 0.039                                         |
| Radiation                                 | CuKα (λ = 1.54184)                                            |
| $2\Theta$ range for data collection/°     | 6.868 to 141.618                                              |
| Index ranges                              | $-11 \leq h \leq 10, -10 \leq k \leq 14, -31 \leq l \leq 28$  |
| Reflections collected                     | 22000                                                         |
| Independent reflections                   | 5480 [R <sub>int</sub> = 0.0418, R <sub>sigma</sub> = 0.0306] |
| Data/restraints/parameters                | 5480/0/346                                                    |
| Goodness-of-fit on F <sup>2</sup>         | 1.069                                                         |
| Final R indexes [I>= $2\sigma$ (I)]       | $R_1 = 0.0473$ , $wR_2 = 0.1186$                              |
| Final R indexes [all data]                | $R_1 = 0.0524$ , $wR_2 = 0.1215$                              |
| Largest diff. peak/hole / e Å $^{\rm -3}$ | 0.69/-0.36                                                    |
| Flack parameter                           | 0.02(4)                                                       |

# Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for exp\_2516. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X         | У           | Z          | U(eq)    |
|------|-----------|-------------|------------|----------|
| Si1  | 4040.7(9) | 4210.0(7)   | 4263.6(3)  | 28.0(2)  |
| 05   | 850(3)    | 10947.3(18) | 3223.4(9)  | 40.7(6)  |
| 06   | 2309(2)   | 9819.9(18)  | 2780.1(9)  | 34.6(5)  |
| 014  | 2806(2)   | 4793.0(18)  | 3898.9(8)  | 28.8(5)  |
| 016  | 994(3)    | 4625.2(18)  | 2652.2(8)  | 30.5(5)  |
| 019  | -287(2)   | 7368.9(18)  | 2618.4(9)  | 29.8(5)  |
| C1   | 1698(3)   | 7967(2)     | 3118.4(11) | 25.9(6)  |
| C2   | 778(4)    | 8894(2)     | 3335.9(11) | 30.0(6)  |
| C3   | -349(5)   | 8840(3)     | 3638.2(16) | 49.3(10) |
| C4   | 1260(3)   | 9997(3)     | 3122.9(13) | 32.3(7)  |
|      |           | S239        |            |          |

| C7  | 2557(3) | 8601(2) | 2698.8(12) | 27.7(6)  |
|-----|---------|---------|------------|----------|
| C8  | 4122(3) | 8431(3) | 2699.7(12) | 30.8(6)  |
| С9  | 4833(3) | 7478(3) | 2800.8(12) | 30.6(6)  |
| C10 | 6416(3) | 7417(3) | 2758.6(17) | 44.1(9)  |
| C11 | 4151(3) | 6432(3) | 2951.6(12) | 28.4(6)  |
| C12 | 3541(3) | 5594(3) | 3100.7(11) | 26.7(6)  |
| C13 | 2670(3) | 4712(2) | 3346.1(11) | 25.5(6)  |
| C14 | 1092(3) | 4827(2) | 3198.0(11) | 25.7(6)  |
| C15 | 514(3)  | 6028(2) | 3298.1(12) | 27.5(6)  |
| C17 | 237(4)  | 3959(3) | 3503.6(13) | 33.2(7)  |
| C18 | 921(3)  | 6935(2) | 2890.2(11) | 23.6(5)  |
| C20 | 5597(4) | 5175(3) | 4334.3(13) | 36.5(7)  |
| C21 | 5504(5) | 6332(3) | 4223.8(16) | 49.5(9)  |
| C22 | 6632(6) | 7064(4) | 4336(2)    | 71.3(14) |
| C23 | 7842(6) | 6637(5) | 4558(2)    | 72.2(15) |
| C24 | 7945(5) | 5501(5) | 4671(2)    | 65.1(13) |
| C25 | 6844(4) | 4777(4) | 4554.3(16) | 49.3(9)  |
| C26 | 4635(4) | 2818(3) | 3974.1(13) | 40.0(8)  |
| C27 | 3862(5) | 1817(3) | 4013(2)    | 59.6(12) |
| C28 | 4357(6) | 798(4)  | 3808(2)    | 79.7(18) |
| C29 | 5635(7) | 759(5)  | 3553(2)    | 80.0(19) |
| C30 | 6404(7) | 1745(5) | 3499.8(17) | 72.9(16) |
| C31 | 5917(6) | 2762(4) | 3708.9(14) | 54.9(11) |
| C32 | 3171(4) | 4120(3) | 4925.9(13) | 38.0(7)  |
| C33 | 2908(6) | 5328(4) | 5117.7(17) | 61.6(12) |
| C34 | 1734(5) | 3522(5) | 4894.6(17) | 62.1(12) |
| C35 | 4085(5) | 3500(4) | 5321.5(14) | 55.0(10) |

# Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for exp\_2516. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U22      | U33      | U23      | U <sub>13</sub> | <b>U</b> 12 |
|------|-----------------|----------|----------|----------|-----------------|-------------|
| Si1  | 29.9(4)         | 23.6(4)  | 30.6(4)  | 1.0(3)   | -2.9(3)         | 0.0(3)      |
| 05   | 52.0(14)        | 18.0(10) | 52.2(13) | -4.4(9)  | -12.1(12)       | 7.5(11)     |
| 06   | 32.8(11)        | 18.6(10) | 52.3(13) | 7.0(9)   | -3.7(10)        | -2.6(9)     |
| 014  | 32.2(11)        | 25.2(10) | 28.8(10) | 0.3(8)   | -3.1(8)         | 2.8(9)      |
| 016  | 38.4(11)        | 19.2(9)  | 33.8(10) | -1.1(8)  | -6.3(9)         | -1.1(9)     |
| 019  | 23.3(10)        | 20.5(10) | 45.7(13) | -0.8(9)  | -9.2(9)         | 2.8(8)      |
| C1   | 25.5(14)        | 19.0(13) | 33.1(14) | 0.0(11)  | -1.3(11)        | -1.3(11)    |
| C2   | 35.6(16)        | 21.4(14) | 32.9(14) | -3.3(10) | -0.5(13)        | 1.2(12)     |
| C3   | 61(2)           | 32.2(18) | 55(2)    | -1.5(15) | 22.5(19)        | 10.6(17)    |
| C4   | 35.6(17)        | 23.4(15) | 37.9(15) | -1.1(12) | -9.7(12)        | 1.2(13)     |
| C7   | 26.6(14)        | 20.6(13) | 35.8(14) | 1.6(11)  | -1.4(12)        | -3.9(12)    |
| C8   | 28.3(14)        | 25.5(14) | 38.4(15) | 1.0(11)  | 2.9(13)         | -10.3(13)   |
| С9   | 20.6(14)        | 33.0(16) | 38.4(16) | 0.7(13)  | 1.2(11)         | -2.4(13)    |
| C10  | 21.3(15)        | 43(2)    | 68(2)    | 3.7(17)  | 6.4(14)         | -0.7(14)    |
| C11  | 21.2(13)        | 26.2(14) | 37.9(14) | 1.4(12)  | -1.7(12)        | 5.5(12)     |
| C12  | 22.0(13)        | 24.8(15) | 33.4(14) | 0.5(11)  | -1.6(11)        | 5.8(12)     |
| C13  | 29.2(14)        | 18.2(13) | 29.2(13) | 0.6(10)  | -4.1(11)        | 6.0(12)     |
| C14  | 26.3(14)        | 19.7(13) | 31.1(13) | 0.4(10)  | -4.0(11)        | -2.4(12)    |
| C15  | 24.8(13)        | 20.3(14) | 37.4(15) | 1.8(11)  | 1.8(11)         | -0.5(11)    |
| C17  | 36.3(17)        | 20.9(14) | 42.4(17) | 3.5(12)  | -2.3(13)        | -4.7(13)    |
| C18  | 20.3(12)        | 15.8(12) | 34.6(13) | 1.0(10)  | -1.5(11)        | 3.0(11)     |

| C20 | 33.5(16) | 38.2(17) | 37.7(16) | 0.4(13)  | -1.8(13)  | -8.5(14)  |
|-----|----------|----------|----------|----------|-----------|-----------|
| C21 | 60(2)    | 36.5(18) | 52(2)    | 2.2(16)  | -14.0(18) | -15.2(18) |
| C22 | 89(4)    | 51(3)    | 75(3)    | 10(2)    | -18(3)    | -30(3)    |
| C23 | 64(3)    | 81(4)    | 71(3)    | -1(3)    | -13(2)    | -37(3)    |
| C24 | 32.9(19) | 83(4)    | 79(3)    | 2(3)     | -6.6(19)  | -16(2)    |
| C25 | 36.0(19) | 57(2)    | 55(2)    | 5.0(18)  | -3.4(16)  | -4.7(18)  |
| C26 | 52(2)    | 34.1(17) | 33.6(16) | -1.8(13) | -14.5(15) | 12.1(16)  |
| C27 | 52(2)    | 39(2)    | 88(3)    | -20(2)   | -28(2)    | 4.2(19)   |
| C28 | 83(4)    | 39(2)    | 117(4)   | -26(3)   | -55(3)    | 12(3)     |
| C29 | 114(5)   | 59(3)    | 68(3)    | -31(2)   | -47(3)    | 52(3)     |
| C30 | 108(4)   | 73(3)    | 37.7(19) | -4(2)    | 1(2)      | 49(3)     |
| C31 | 81(3)    | 46(2)    | 37.4(17) | 3.5(15)  | 8(2)      | 25(2)     |
| C32 | 34.4(16) | 45(2)    | 34.3(15) | 4.4(14)  | -2.0(13)  | -2.0(16)  |
| C33 | 77(3)    | 60(3)    | 48(2)    | -5.2(19) | 13(2)     | 16(2)     |
| C34 | 48(2)    | 92(4)    | 47(2)    | 13(2)    | 2.2(18)   | -18(2)    |
| C35 | 53(2)    | 75(3)    | 37.4(17) | 13.4(18) | 0.7(18)   | 14(2)     |

# Table 4 Bond Lengths for exp\_2516. Atom Atom Length /Å

|      |      | 8        | - <b>r</b> |        |           |
|------|------|----------|------------|--------|-----------|
| Atom | Atom | Length/Å | Aton       | n Atom | Length/Å  |
| Si1  | 014  | 1.653(2) | C12        | C13    | 1.468(4)  |
| Si1  | C20  | 1.874(3) | C13        | C14    | 1.557(4)  |
| Si1  | C26  | 1.882(4) | C14        | C15    | 1.535(4)  |
| Si1  | C32  | 1.899(3) | C14        | C17    | 1.522(4)  |
| 05   | C4   | 1.209(4) | C15        | C18    | 1.544(4)  |
| 06   | C4   | 1.350(4) | C20        | C21    | 1.389(5)  |
| 06   | C7   | 1.464(3) | C20        | C25    | 1.396(5)  |
| 014  | C13  | 1.432(3) | C21        | C22    | 1.406(6)  |
| 016  | C14  | 1.428(3) | C22        | C23    | 1.380(8)  |
| 019  | C18  | 1.440(3) | C23        | C24    | 1.367(8)  |
| C1   | C2   | 1.505(4) | C24        | C25    | 1.383(6)  |
| C1   | C7   | 1.546(4) | C26        | C27    | 1.390(6)  |
| C1   | C18  | 1.535(4) | C26        | C31    | 1.401(6)  |
| C2   | C3   | 1.327(5) | C27        | C28    | 1.388(6)  |
| C2   | C4   | 1.478(4) | C28        | C29    | 1.385(10) |
| C7   | C8   | 1.504(4) | C29        | C30    | 1.375(9)  |
| C8   | С9   | 1.332(5) | C30        | C31    | 1.389(6)  |
| С9   | C10  | 1.514(4) | C32        | C33    | 1.522(6)  |
| С9   | C11  | 1.441(4) | C32        | C34    | 1.540(6)  |
| C11  | C12  | 1.205(4) | C32        | C35    | 1.524(5)  |
|      |      |          |            |        |           |

## Table 5 Bond Angles for exp\_2516.

| Atom | 1 Atom | 1 Atom | Angle/°    | Atom | Aton | n Atom | Angle/°  |
|------|--------|--------|------------|------|------|--------|----------|
| 014  | Si1    | C20    | 111.62(14) | 016  | C14  | C17    | 111.3(2) |
| 014  | Si1    | C26    | 110.37(13) | C15  | C14  | C13    | 112.6(2) |
| 014  | Si1    | C32    | 102.85(13) | C17  | C14  | C13    | 109.4(2) |
| C20  | Si1    | C26    | 108.90(17) | C17  | C14  | C15    | 109.6(2) |
| C20  | Si1    | C32    | 106.98(16) | C14  | C15  | C18    | 115.4(2) |
| C26  | Si1    | C32    | 116.02(17) | 019  | C18  | C1     | 107.0(2) |
| C4   | 06     | C7     | 111.3(2)   | 019  | C18  | C15    | 111.9(2) |
| C13  | 014    | Si1    | 126.99(19) | C1   | C18  | C15    | 113.8(2) |
| C2   | C1     | C7     | 102.7(2)   | C21  | C20  | Si1    | 121.3(3) |
| C2   | C1     | C18    | 115.5(3)   | C21  | C20  | C25    | 117.6(4) |
|      |        |        |            |      |      |        |          |

| C18 | C1  | C7  | 111.5(2) C25 | C20 | Si1 | 120.7(3) |
|-----|-----|-----|--------------|-----|-----|----------|
| C3  | C2  | C1  | 130.9(3) C20 | C21 | C22 | 120.4(4) |
| C3  | C2  | C4  | 120.7(3) C23 | C22 | C21 | 120.1(5) |
| C4  | C2  | C1  | 108.3(3) C24 | C23 | C22 | 120.1(4) |
| 05  | C4  | 06  | 121.4(3) C23 | C24 | C25 | 119.8(5) |
| 05  | C4  | C2  | 128.8(3) C24 | C25 | C20 | 121.9(4) |
| 06  | C4  | C2  | 109.8(3) C27 | C26 | Si1 | 123.0(3) |
| 06  | C7  | C1  | 106.5(2) C27 | C26 | C31 | 117.3(4) |
| 06  | C7  | C8  | 106.8(2) C31 | C26 | Si1 | 119.7(3) |
| C8  | C7  | C1  | 117.4(3) C28 | C27 | C26 | 121.3(5) |
| C9  | C8  | C7  | 128.0(3) C29 | C28 | C27 | 120.5(5) |
| C8  | С9  | C10 | 122.1(3) C30 | C29 | C28 | 119.2(4) |
| C8  | С9  | C11 | 122.5(3) C29 | C30 | C31 | 120.4(6) |
| C11 | С9  | C10 | 115.4(3) C30 | C31 | C26 | 121.3(5) |
| C12 | C11 | C9  | 176.1(3) C33 | C32 | Si1 | 108.1(3) |
| C11 | C12 | C13 | 169.8(3) C33 | C32 | C34 | 107.1(4) |
| 014 | C13 | C12 | 109.2(2) C33 | C32 | C35 | 108.7(3) |
| 014 | C13 | C14 | 109.0(2) C34 | C32 | Si1 | 111.5(3) |
| C12 | C13 | C14 | 112.3(2) C35 | C32 | Si1 | 112.2(3) |
| 016 | C14 | C13 | 106.8(2) C35 | C32 | C34 | 109.0(3) |
| 016 | C14 | C15 | 107.1(2)     |     |     |          |
|     |     |     |              |     |     |          |

| Table 6 Hydrogen Atom Coordinates (Å | ×10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for |
|--------------------------------------|-------------------------------------------------------------------------------------------------|
| exp_2516.                            |                                                                                                 |

| Atom | X        | У        | Ζ        | U(eq) |
|------|----------|----------|----------|-------|
| H16  | 820(50)  | 3960(40) | 2618(17) | 46    |
| H19  | -470(50) | 6940(40) | 2407(18) | 45    |
| H1   | 2349.84  | 7696.53  | 3396.82  | 31    |
| H3A  | -853.87  | 9515.38  | 3719.8   | 59    |
| H3B  | -649.54  | 8126.97  | 3773.05  | 59    |
| H7   | 2184.75  | 8385     | 2349.17  | 33    |
| H8   | 4670.46  | 9082.85  | 2618.02  | 37    |
| H10A | 6804.41  | 7105.76  | 3081.19  | 66    |
| H10B | 6792.75  | 8184.19  | 2700.24  | 66    |
| H10C | 6674.11  | 6922.84  | 2467.01  | 66    |
| H13  | 3013.07  | 3946.21  | 3232.1   | 31    |
| H15A | 849.83   | 6287.31  | 3642.44  | 33    |
| H15B | -522.46  | 5983.48  | 3314.59  | 33    |
| H17A | -724.92  | 3939.66  | 3368.98  | 50    |
| H17B | 221.14   | 4176.68  | 3871.17  | 50    |
| H17C | 663.81   | 3203.18  | 3467.47  | 50    |
| H18  | 1552.91  | 6565.36  | 2629.67  | 28    |
| H21  | 4672.63  | 6629.79  | 4071.67  | 59    |
| H22  | 6561.62  | 7854.18  | 4259.09  | 86    |
| H23  | 8603.75  | 7133.74  | 4631.92  | 87    |
| H24  | 8771.12  | 5210.54  | 4829.72  | 78    |
| H25  | 6938.86  | 3985.89  | 4625.83  | 59    |
| H27  | 2976.78  | 1829.49  | 4182.69  | 72    |
| H28  | 3815.08  | 122.23   | 3843.38  | 96    |
| H29  | 5977.06  | 60.34    | 3415.32  | 96    |
| H30  | 7273.79  | 1729.2   | 3319.42  | 87    |
| H31  | 6464.22  | 3434.6   | 3671.19  | 66    |

| H33A | 3804.23 | 5731.59 | 5150.01 | 92 |
|------|---------|---------|---------|----|
| H33B | 2443.68 | 5300.99 | 5457.26 | 92 |
| H33C | 2305.46 | 5730.75 | 4869.43 | 92 |
| H34A | 1149.53 | 3902.62 | 4633.75 | 93 |
| H34B | 1269.94 | 3560.33 | 5233.91 | 93 |
| H34C | 1868.1  | 2721.82 | 4796.23 | 93 |
| H35A | 4234.73 | 2712.13 | 5207.84 | 83 |
| H35B | 3615.51 | 3501.37 | 5660.27 | 83 |
| H35C | 4991.63 | 3889.32 | 5350.75 | 83 |
|      |         |         |         |    |

#### Experimental

Single crystals of C<sub>31</sub>H<sub>36</sub>O<sub>5</sub>Si [exp\_2516] were [30]. A suitable crystal was selected and [30] on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at 180.01(10) K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 2. 59-75.
- 3. Sheldrick, G.M. (2015), Acta Crvst, C71, 3-8.

#### Crystal structure determination of [exp\_2516]

**Crystal Data** for  $C_{31}H_{36}O_5Si$  (*M* = 516.69 g/mol): orthorhombic, space group  $P2_12_12_1$  (no. 19), *a* = 9.52826(14) Å, b = 11.72660(18) Å, c = 25.7421(4) Å, V = 2876.27(8) Å<sup>3</sup>, Z = 4, T = 180.01(10) K,  $\mu$ (CuK $\alpha$ ) = 1.015 mm<sup>-1</sup>, *Dcalc* = 1.193 g/cm<sup>3</sup>, 22000 reflections measured (6.868°  $\leq 20 \leq 141.618°$ ), 5480 unique ( $R_{int} = 0.0418$ ,  $R_{sigma} = 0.0306$ ) which were used in all calculations. The final  $R_1$  was 0.0473 ( $I > 2\sigma(I)$ ) and  $wR_2$  was 0.1215 (all data).

#### **Refinement model description**

Number of restraints - 0, number of constraints - unknown.

Details: 1. Twinned data refinement Scales: 0.98(4) 0.02(4)2. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 3.a Ternary CH refined with riding coordinates: C1(H1), C7(H7), C13(H13), C18(H18) 3.b Secondary CH2 refined with riding coordinates: C15(H15A,H15B) 3.c Aromatic/amide H refined with riding coordinates: C8(H8), C21(H21), C22(H22), C23(H23), C24(H24), C25(H25), C27(H27), C28(H28), C29(H29), C30(H30), C31(H31) 3.d X=CH2 refined with riding coordinates: C3(H3A,H3B) 3.e Idealised Me refined as rotating group: C10(H10A,H10B,H10C), C17(H17A,H17B,H17C), C33(H33A,H33B,H33C), C34(H34A,H34B, H34C), C35(H35A,H35B,H35C)

This report has been created with Olex2, compiled on 2018.05.29 svn.r3508 for OlexSys.



#### Table 1 Crystal data and structure refinement for WL3c.

| Identification code                       | WL3c                                                          |
|-------------------------------------------|---------------------------------------------------------------|
| Empirical formula                         | C35H42O6Si                                                    |
| Formula weight                            | 586.77                                                        |
| Temperature/K                             | 150.00(10)                                                    |
| Crystal system                            | orthorhombic                                                  |
| Space group                               | P212121                                                       |
| a/Å                                       | 9.10599(3)                                                    |
| b/Å                                       | 15.40214(5)                                                   |
| c/Å                                       | 23.08098(7)                                                   |
| α/°                                       | 90                                                            |
| β/°                                       | 90                                                            |
| γ/°                                       | 90                                                            |
| Volume/Å <sup>3</sup>                     | 3237.148(18)                                                  |
| Z                                         | 4                                                             |
| $\rho_{calc}g/cm^3$                       | 1.204                                                         |
| μ/mm <sup>-1</sup>                        | 0.985                                                         |
| F(000)                                    | 1256.0                                                        |
| Crystal size/mm <sup>3</sup>              | 0.376 × 0.195 × 0.097                                         |
| Radiation                                 | Cu Kα (λ = 1.54184)                                           |
| $2\Theta$ range for data collection/°     | 6.9 to 148.85                                                 |
| Index ranges                              | $-11 \le h \le 10, -19 \le k \le 19, -28 \le l \le 28$        |
| Reflections collected                     | 144009                                                        |
| Independent reflections                   | 6598 [R <sub>int</sub> = 0.0487, R <sub>sigma</sub> = 0.0108] |
| Data/restraints/parameters                | 6598/0/390                                                    |
| Goodness-of-fit on F <sup>2</sup>         | 1.039                                                         |
| Final R indexes [I>= $2\sigma$ (I)]       | $R_1 = 0.0250$ , $wR_2 = 0.0665$                              |
| Final R indexes [all data]                | $R_1 = 0.0252$ , $wR_2 = 0.0666$                              |
| Largest diff. peak/hole / e Å $^{\rm -3}$ | 0.16/-0.23                                                    |
| Flack parameter                           | 0.00(2)                                                       |

# Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for WL3c. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X           | У          | Z         | U(eq)    |
|------|-------------|------------|-----------|----------|
| Si1  | 5657.2(4)   | 4971.8(3)  | 8198.2(2) | 22.72(9) |
| 08   | 12510.2(12) | 3724.5(8)  | 6543.6(5) | 29.2(2)  |
| 010  | 13658.7(13) | 3370.7(9)  | 5723.0(5) | 36.7(3)  |
| 015  | 10518.9(11) | 5071.3(7)  | 6018.1(4) | 25.8(2)  |
| 017  | 9170.8(13)  | 5934.8(8)  | 5436.8(5) | 35.4(3)  |
| 023  | 6620.0(12)  | 3719.5(7)  | 6160.3(5) | 27.5(2)  |
| 025  | 6173.2(12)  | 4904.2(7)  | 7512.8(4) | 26.7(2)  |
| C1   | 6264.9(17)  | 4155.7(9)  | 7152.0(6) | 23.8(3)  |
| C2   | 7420.3(17)  | 3558.4(10) | 7350.6(6) | 25.8(3)  |
| C3   | 8492.8(17)  | 3132.7(10) | 7452.5(6) | 25.9(3)  |
|      |             |            |           |          |

| C4  | 9849.3(18)  | 2668.8(10) | 7515.5(7)  | 26.9(3) |
|-----|-------------|------------|------------|---------|
| C5  | 9922(2)     | 1913.1(11) | 7927.0(8)  | 33.3(4) |
| C6  | 11010.6(17) | 2927.9(11) | 7203.5(7)  | 28.4(3) |
| C7  | 11027.2(16) | 3680.3(10) | 6789.3(7)  | 25.9(3) |
| С9  | 12520.7(18) | 3445.0(10) | 5990.7(7)  | 28.6(3) |
| C11 | 10993.1(17) | 3273.4(10) | 5798.1(7)  | 26.4(3) |
| C12 | 9971.3(16)  | 3607.9(10) | 6261.9(6)  | 24.3(3) |
| C13 | 10691(2)    | 2882.4(12) | 5302.8(8)  | 36.9(4) |
| C14 | 9277.5(16)  | 4474.7(9)  | 6082.8(6)  | 23.8(3) |
| C16 | 10320.7(18) | 5767.2(10) | 5669.2(6)  | 27.1(3) |
| C18 | 11738.5(19) | 6271.1(12) | 5599.7(7)  | 32.0(3) |
| C19 | 11439(2)    | 7202.7(13) | 5413.2(9)  | 44.6(4) |
| C20 | 12701(2)    | 5789.6(14) | 5162.2(9)  | 43.5(4) |
| C21 | 8197.3(15)  | 4876.1(9)  | 6513.3(6)  | 23.6(3) |
| C22 | 6636.3(16)  | 4468.0(9)  | 6529.7(6)  | 23.4(3) |
| C24 | 5497.9(17)  | 5128.2(10) | 6333.9(7)  | 28.4(3) |
| C26 | 4535.8(17)  | 6003.9(10) | 8225.4(7)  | 29.1(3) |
| C27 | 3274.0(19)  | 5988.0(12) | 7780.5(8)  | 36.0(4) |
| C28 | 3936(2)     | 6171.1(13) | 8836.5(8)  | 40.9(4) |
| C29 | 5546(2)     | 6763.9(11) | 8060.4(10) | 42.7(4) |
| C30 | 4645.1(18)  | 3976.7(10) | 8443.0(7)  | 28.0(3) |
| C31 | 3116(2)     | 3934.2(12) | 8492.2(8)  | 34.6(4) |
| C32 | 2425(2)     | 3194.6(13) | 8696.7(8)  | 41.2(4) |
| C33 | 3231(2)     | 2471.8(13) | 8849.4(8)  | 41.4(4) |
| C34 | 4743(2)     | 2493.1(12) | 8799.7(9)  | 42.1(4) |
| C35 | 5439(2)     | 3236.5(11) | 8600.9(8)  | 36.0(4) |
| C36 | 7334.9(17)  | 5122.7(11) | 8651.7(7)  | 28.6(3) |
| C37 | 7325(2)     | 4964.3(16) | 9247.6(8)  | 43.1(4) |
| C38 | 8506(2)     | 5201.3(18) | 9593.2(9)  | 56.9(6) |
| C39 | 9723(2)     | 5600.2(16) | 9353.3(9)  | 51.3(5) |
| C40 | 9770(2)     | 5748.8(14) | 8762.0(9)  | 44.3(4) |
| C41 | 8594.2(19)  | 5509.6(12) | 8416.6(8)  | 35.1(4) |

Table 3 Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for WL3c. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | <b>U</b> 11 | U22       | U33       | U23      | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-----------|-----------|----------|-------------|-------------|
| Si1  | 19.62(18)   | 24.01(18) | 24.53(18) | 1.06(15) | 1.26(14)    | 0.39(16)    |
| 08   | 19.6(5)     | 39.2(6)   | 28.8(5)   | -0.6(5)  | -0.6(4)     | -1.4(5)     |
| 010  | 23.0(6)     | 47.7(7)   | 39.4(6)   | -3.9(5)  | 5.1(5)      | 1.1(5)      |
| 015  | 21.0(5)     | 29.3(5)   | 27.2(5)   | 4.3(4)   | 0.0(4)      | -2.4(5)     |
| 017  | 32.0(6)     | 38.4(6)   | 36.0(6)   | 7.9(5)   | -5.6(5)     | -0.2(5)     |
| 023  | 21.4(5)     | 29.4(6)   | 31.8(5)   | -8.4(4)  | -2.0(4)     | -0.4(4)     |
| 025  | 31.3(5)     | 23.1(5)   | 25.8(5)   | -0.4(4)  | 3.6(4)      | 0.6(4)      |
| C1   | 21.4(7)     | 22.6(6)   | 27.5(7)   | -0.6(6)  | 1.2(5)      | 0.1(6)      |
| C2   | 25.2(7)     | 24.4(7)   | 27.7(7)   | 0.7(5)   | 2.2(6)      | -2.0(6)     |
| C3   | 26.8(8)     | 25.4(7)   | 25.5(7)   | 1.9(6)   | 1.3(6)      | -2.2(6)     |
| C4   | 26.6(8)     | 27.4(7)   | 26.7(7)   | -0.9(6)  | -4.1(6)     | 2.3(6)      |
| C5   | 32.4(9)     | 32.6(8)   | 35.0(8)   | 7.1(7)   | -6.0(7)     | 0.6(7)      |
| C6   | 23.7(8)     | 32.2(8)   | 29.4(8)   | 0.7(6)   | -3.9(6)     | 6.6(6)      |
| C7   | 19.4(7)     | 31.9(7)   | 26.4(7)   | -1.0(6)  | 0.1(6)      | 0.7(6)      |
| С9   | 23.8(7)     | 30.3(8)   | 31.7(8)   | -0.4(6)  | -0.6(6)     | 1.5(6)      |
| C11  | 23.1(7)     | 27.1(7)   | 29.0(7)   | 0.2(6)   | 0.3(6)      | 0.8(6)      |

| C12 | 20.3(7)  | 27.4(7)  | 25.1(7)  | -0.3(5)  | -0.7(6)  | 0.1(6)   |
|-----|----------|----------|----------|----------|----------|----------|
| C13 | 31.5(8)  | 45.1(9)  | 34.1(8)  | -9.4(7)  | -0.1(7)  | 1.3(8)   |
| C14 | 20.0(6)  | 26.5(7)  | 25.0(7)  | 0.7(5)   | 0.1(6)   | -1.9(6)  |
| C16 | 28.0(8)  | 29.5(7)  | 23.7(7)  | 0.8(6)   | 2.9(6)   | -0.6(6)  |
| C18 | 31.0(8)  | 36.3(9)  | 28.9(8)  | 3.3(6)   | 3.8(6)   | -6.3(7)  |
| C19 | 52.5(12) | 37.1(9)  | 44.3(10) | 7.1(8)   | 8.2(9)   | -6.5(9)  |
| C20 | 37.5(10) | 50.3(11) | 42.7(10) | 3.6(8)   | 14.2(8)  | 0.2(8)   |
| C21 | 21.2(7)  | 24.6(7)  | 25.0(6)  | -0.5(6)  | 1.1(5)   | -2.0(6)  |
| C22 | 20.9(7)  | 23.3(7)  | 26.1(7)  | -2.5(6)  | -0.4(6)  | -0.1(6)  |
| C24 | 25.0(7)  | 31.4(8)  | 28.8(7)  | 2.3(6)   | -1.0(6)  | 4.0(6)   |
| C26 | 23.0(7)  | 25.7(7)  | 38.6(8)  | -2.5(6)  | 1.2(7)   | 2.5(6)   |
| C27 | 27.4(8)  | 35.0(9)  | 45.6(9)  | 3.6(7)   | -3.7(7)  | 6.3(7)   |
| C28 | 31.0(9)  | 45.2(10) | 46.6(10) | -15.3(8) | 3.3(8)   | 4.6(8)   |
| C29 | 33.5(9)  | 25.9(8)  | 68.7(12) | 1.8(8)   | 1.4(9)   | 0.4(7)   |
| C30 | 28.8(8)  | 29.3(7)  | 25.9(7)  | -0.1(6)  | 2.9(6)   | -3.3(6)  |
| C31 | 29.8(8)  | 36.9(9)  | 37.3(8)  | 0.8(7)   | 0.0(7)   | -4.4(7)  |
| C32 | 36.7(9)  | 45.8(10) | 41.0(9)  | -2.9(8)  | 1.4(8)   | -15.6(8) |
| C33 | 54.3(12) | 34.0(9)  | 35.9(9)  | -0.4(7)  | 1.2(8)   | -18.3(8) |
| C34 | 49.4(11) | 29.0(8)  | 47.9(10) | 4.5(8)   | -2.4(9)  | -2.4(8)  |
| C35 | 35.6(9)  | 30.0(8)  | 42.5(9)  | 3.0(7)   | 4.1(7)   | 0.1(7)   |
| C36 | 23.9(7)  | 32.6(8)  | 29.3(7)  | 3.7(6)   | -0.4(6)  | 1.0(6)   |
| C37 | 34.8(9)  | 62.2(12) | 32.3(8)  | 11.3(8)  | -2.4(7)  | -3.7(10) |
| C38 | 46.8(11) | 89.3(18) | 34.5(10) | 9.4(10)  | -13.2(9) | 0.1(12)  |
| C39 | 34.4(10) | 67.9(14) | 51.5(11) | 1.4(10)  | -19.4(9) | -1.2(9)  |
| C40 | 23.9(8)  | 55.0(12) | 53.9(11) | 5.7(9)   | -4.6(8)  | -5.3(8)  |
| C41 | 25.6(8)  | 46.1(10) | 33.6(8)  | 4.1(7)   | -0.7(7)  | -2.4(7)  |

## Table 4 Bond Lengths for WL3c.

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å   |
|------|------|------------|------|------|------------|
| Si1  | 025  | 1.6537(11) | C12  | C14  | 1.534(2)   |
| Si1  | C26  | 1.8904(16) | C14  | C21  | 1.5289(19) |
| Si1  | C30  | 1.8755(16) | C16  | C18  | 1.515(2)   |
| Si1  | C36  | 1.8663(16) | C18  | C19  | 1.523(3)   |
| 80   | C7   | 1.4662(18) | C18  | C20  | 1.529(3)   |
| 80   | С9   | 1.3469(19) | C21  | C22  | 1.5547(19) |
| 010  | С9   | 1.212(2)   | C22  | C24  | 1.521(2)   |
| 015  | C14  | 1.4643(17) | C26  | C27  | 1.541(2)   |
| 015  | C16  | 1.3528(19) | C26  | C28  | 1.534(2)   |
| 017  | C16  | 1.204(2)   | C26  | C29  | 1.537(2)   |
| 023  | C22  | 1.4341(18) | C30  | C31  | 1.399(2)   |
| 025  | C1   | 1.4246(17) | C30  | C35  | 1.398(2)   |
| C1   | C2   | 1.471(2)   | C31  | C32  | 1.384(3)   |
| C1   | C22  | 1.552(2)   | C32  | C33  | 1.380(3)   |
| C2   | С3   | 1.200(2)   | C33  | C34  | 1.381(3)   |
| С3   | C4   | 1.434(2)   | C34  | C35  | 1.387(3)   |
| C4   | C5   | 1.504(2)   | C36  | C37  | 1.397(2)   |
| C4   | C6   | 1.340(2)   | C36  | C41  | 1.402(2)   |
| C6   | C7   | 1.502(2)   | C37  | C38  | 1.388(3)   |
| C7   | C12  | 1.555(2)   | C38  | C39  | 1.383(3)   |
| С9   | C11  | 1.484(2)   | C39  | C40  | 1.384(3)   |
| C11  | C12  | 1.509(2)   | C40  | C41  | 1.385(3)   |
| C11  | C13  | 1.321(2)   |      |      |            |

## Table 5 Bond Angles for WL3c.

| Aton | n Aton | n Atom | Angle/°    | Aton | ı Aton | n Atom | Angle/°    |
|------|--------|--------|------------|------|--------|--------|------------|
| 025  | Si1    | C26    | 103.78(7)  | 017  | C16    | 015    | 123.42(14) |
| 025  | Si1    | C30    | 112.11(6)  | 017  | C16    | C18    | 125.73(15) |
| 025  | Si1    | C36    | 108.16(7)  | C16  | C18    | C19    | 111.10(15) |
| C30  | Si1    | C26    | 114.32(7)  | C16  | C18    | C20    | 108.06(15) |
| C36  | Si1    | C26    | 108.60(7)  | C19  | C18    | C20    | 111.90(15) |
| C36  | Si1    | C30    | 109.58(7)  | C14  | C21    | C22    | 116.14(12) |
| С9   | 08     | C7     | 110.99(12) | 023  | C22    | C1     | 107.39(12) |
| C16  | 015    | C14    | 117.06(11) | 023  | C22    | C21    | 108.67(11) |
| C1   | 025    | Si1    | 128.82(9)  | 023  | C22    | C24    | 110.72(12) |
| 025  | C1     | C2     | 111.46(12) | C1   | C22    | C21    | 110.31(12) |
| 025  | C1     | C22    | 107.64(11) | C24  | C22    | C1     | 109.49(12) |
| C2   | C1     | C22    | 109.05(12) | C24  | C22    | C21    | 110.22(12) |
| C3   | C2     | C1     | 170.17(16) | C27  | C26    | Si1    | 111.54(11) |
| C2   | C3     | C4     | 173.33(16) | C28  | C26    | Si1    | 111.34(12) |
| C3   | C4     | C5     | 119.18(14) | C28  | C26    | C27    | 110.49(14) |
| C6   | C4     | C3     | 118.47(14) | C28  | C26    | C29    | 108.24(15) |
| C6   | C4     | C5     | 122.35(14) | C29  | C26    | Si1    | 108.00(11) |
| C4   | C6     | C7     | 125.42(14) | C29  | C26    | C27    | 107.05(15) |
| 80   | C7     | C6     | 106.93(12) | C31  | C30    | Si1    | 123.50(13) |
| 80   | C7     | C12    | 105.67(11) | C35  | C30    | Si1    | 119.38(13) |
| C6   | C7     | C12    | 115.88(13) | C35  | C30    | C31    | 117.10(16) |
| 80   | С9     | C11    | 109.52(13) | C32  | C31    | C30    | 121.26(18) |
| 010  | С9     | 08     | 121.29(15) | C33  | C32    | C31    | 120.60(18) |
| 010  | С9     | C11    | 129.19(15) | C32  | C33    | C34    | 119.35(18) |
| С9   | C11    | C12    | 107.73(13) | C33  | C34    | C35    | 120.18(19) |
| C13  | C11    | C9     | 122.40(15) | C34  | C35    | C30    | 121.51(17) |
| C13  | C11    | C12    | 129.86(15) | C37  | C36    | Si1    | 121.68(13) |
| C11  | C12    | C7     | 101.45(12) | C37  | C36    | C41    | 117.42(15) |
| C11  | C12    | C14    | 111.10(12) | C41  | C36    | Si1    | 120.37(12) |
| C14  | C12    | C7     | 113.78(12) | C38  | C37    | C36    | 121.02(18) |
| 015  | C14    | C12    | 104.81(11) | C39  | C38    | C37    | 120.51(18) |
| 015  | C14    | C21    | 108.01(11) | C38  | C39    | C40    | 119.51(18) |
| C21  | C14    | C12    | 116.22(12) | C39  | C40    | C41    | 120.00(18) |
| 015  | C16    | C18    | 110.81(13) | C40  | C41    | C36    | 121.52(16) |

# Table 6 Torsion Angles for WL3c.

| Α   | В   | С   | D   | Angle/°     | Α   | В   | С   | D   | Angle/°     |
|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|
| Si1 | 025 | C1  | C2  | -66.87(16)  | С9  | C11 | C12 | C14 | 103.15(14)  |
| Si1 | 025 | C1  | C22 | 173.60(10)  | C11 | C12 | C14 | 015 | -61.81(14)  |
| Si1 | C30 | C31 | C32 | -177.44(13) | C11 | C12 | C14 | C21 | 179.07(12)  |
| Si1 | C30 | C35 | C34 | 178.22(14)  | C12 | C14 | C21 | C22 | -77.34(16)  |
| Si1 | C36 | C37 | C38 | -170.22(18) | C13 | C11 | C12 | C7  | 161.06(18)  |
| Si1 | C36 | C41 | C40 | 170.09(15)  | C13 | C11 | C12 | C14 | -77.7(2)    |
| 80  | C7  | C12 | C11 | 21.17(15)   | C14 | 015 | C16 | 017 | 3.6(2)      |
| 80  | C7  | C12 | C14 | -98.21(14)  | C14 | 015 | C16 | C18 | -174.44(12) |
| 80  | C9  | C11 | C12 | 8.68(17)    | C14 | C21 | C22 | 023 | 5.93(17)    |
| 80  | C9  | C11 | C13 | -170.58(16) | C14 | C21 | C22 | C1  | 123.40(13)  |
| 010 | C9  | C11 | C12 | -170.77(17) | C14 | C21 | C22 | C24 | -115.56(14) |
| 010 | С9  | C11 | C13 | 10.0(3)     | C16 | 015 | C14 | C12 | 156.38(12)  |

| 015 | C14 | C21 | C22 | 165.29(11)  | C16 015 | C14 C21    | -79.12(14)  |
|-----|-----|-----|-----|-------------|---------|------------|-------------|
| 015 | C16 | C18 | C19 | -158.42(14) | C26 Si1 | 025 C1     | -140.30(12) |
| 015 | C16 | C18 | C20 | 78.46(16)   | C26 Si1 | C30 C31    | 16.56(17)   |
| 017 | C16 | C18 | C19 | 23.6(2)     | C26 Si1 | C30 C35    | -161.77(13) |
| 017 | C16 | C18 | C20 | -99.5(2)    | C26 Si1 | C36 C37    | 85.96(17)   |
| 025 | Si1 | C26 | C27 | 55.31(13)   | C26 Si1 | C36 C41    | -85.51(15)  |
| 025 | Si1 | C26 | C28 | 179.24(11)  | C30 Si1 | 025 C1     | -16.43(14)  |
| 025 | Si1 | C26 | C29 | -62.06(14)  | C30 Si1 | C26 C27    | -67.10(14)  |
| 025 | Si1 | C30 | C31 | -101.19(15) | C30 Si1 | C26 C28    | 56.82(14)   |
| 025 | Si1 | C30 | C35 | 80.47(14)   | C30 Si1 | C26 C29    | 175.53(12)  |
| 025 | Si1 | C36 | C37 | -162.02(16) | C30 Si1 | C36 C37    | -39.54(18)  |
| 025 | Si1 | C36 | C41 | 26.51(16)   | C30 Si1 | C36 C41    | 148.99(14)  |
| 025 | C1  | C22 | 023 | -175.81(11) | C30 C31 | C32 C33    | -1.0(3)     |
| 025 | C1  | C22 | C21 | 65.93(15)   | C31C30  | $C35\ C34$ | -0.2(3)     |
| 025 | C1  | C22 | C24 | -55.54(15)  | C31C32  | C33 C34    | 0.4(3)      |
| C2  | C1  | C22 | 023 | 63.13(15)   | C32 C33 | C34 C35    | 0.3(3)      |
| C2  | C1  | C22 | C21 | -55.13(15)  | C33 C34 | C35 C30    | -0.4(3)     |
| C2  | C1  | C22 | C24 | -176.59(12) | C35 C30 | C31 C32    | 0.9(3)      |
| С3  | C4  | С6  | C7  | 0.6(2)      | C36 Si1 | 025 C1     | 104.49(13)  |
| C4  | C6  | С7  | 08  | -179.71(15) | C36 Si1 | C26 C27    | 170.22(11)  |
| C4  | C6  | С7  | C12 | -62.2(2)    | C36 Si1 | C26 C28    | -65.86(13)  |
| C5  | C4  | С6  | C7  | -179.33(15) | C36 Si1 | C26 C29    | 52.85(14)   |
| C6  | C7  | C12 | C11 | -97.01(15)  | C36 Si1 | C30 C31    | 138.71(14)  |
| C6  | C7  | C12 | C14 | 143.61(13)  | C36 Si1 | C30 C35    | -39.63(15)  |
| C7  | 80  | С9  | 010 | -174.59(15) | C36 C37 | C38 C39    | -0.1(4)     |
| C7  | 80  | С9  | C11 | 5.90(17)    | C37 C36 | C41 C40    | -1.7(3)     |
| C7  | C12 | C14 | 015 | 51.93(15)   | C37 C38 | C39 C40    | -1.1(4)     |
| C7  | C12 | C14 | C21 | -67.20(17)  | C38 C39 | C40 C41    | 0.9(4)      |
| С9  | 80  | С7  | C6  | 106.40(14)  | C39 C40 | C41 C36    | 0.6(3)      |
| С9  | 80  | С7  | C12 | -17.61(16)  | C41C36  | C37 C38    | 1.5(3)      |
| С9  | C11 | C12 | C7  | -18.13(16)  |         |            |             |

Table 7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for WL3c.

| Atom | X        | У        | Ζ       | U(eq) |
|------|----------|----------|---------|-------|
| H23  | 5680(30) | 3606(14) | 6043(9) | 41    |
| H1   | 5298     | 3847.9   | 7150.01 | 29    |
| H5A  | 9299.83  | 1441.39  | 7782.5  | 50    |
| H5B  | 9575.3   | 2095.79  | 8309.98 | 50    |
| H5C  | 10939.24 | 1709.76  | 7956.67 | 50    |
| H6   | 11896.82 | 2609.36  | 7247.9  | 34    |
| H7   | 10815.03 | 4228.66  | 7005.58 | 31    |
| H12  | 9186.88  | 3170.16  | 6343.12 | 29    |
| H13A | 11465.25 | 2699.95  | 5055.49 | 44    |
| H13B | 9698.38  | 2783.69  | 5194.05 | 44    |
| H14  | 8780.38  | 4402.9   | 5699.41 | 29    |
| H18  | 12258.13 | 6281.7   | 5981.34 | 38    |
| H19A | 10874.71 | 7201.83  | 5051.7  | 67    |
| H19B | 12373    | 7505.3   | 5352.24 | 67    |
| H19C | 10876.52 | 7500.55  | 5715.79 | 67    |
| H20A | 12890.31 | 5199.28  | 5301.95 | 65    |
| H20B | 13634.95 | 6098.4   | 5116.34 | 65    |
|      |          |          |         |       |

| 12195.24 | 5762.54                                                                                                                                                                                                                                                                        | 4787.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8096.1   | 5501.01                                                                                                                                                                                                                                                                        | 6421.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8628.31  | 4833.3                                                                                                                                                                                                                                                                         | 6906.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5693.89  | 5295.58                                                                                                                                                                                                                                                                        | 5931.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5550.63  | 5642.85                                                                                                                                                                                                                                                                        | 6582.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4515.59  | 4871.49                                                                                                                                                                                                                                                                        | 6361.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3673.56  | 5874.49                                                                                                                                                                                                                                                                        | 7393.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2770.37  | 6550.26                                                                                                                                                                                                                                                                        | 7781.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2575.91  | 5529.01                                                                                                                                                                                                                                                                        | 7883.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3298.07  | 5688.67                                                                                                                                                                                                                                                                        | 8951.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3371.53  | 6712.76                                                                                                                                                                                                                                                                        | 8838.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4755.72  | 6218.57                                                                                                                                                                                                                                                                        | 9109.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6342.53  | 6810.48                                                                                                                                                                                                                                                                        | 8344.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4978.09  | 7304.42                                                                                                                                                                                                                                                                        | 8057.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5960.8   | 6661.41                                                                                                                                                                                                                                                                        | 7674.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2540.57  | 4422.09                                                                                                                                                                                                                                                                        | 8383.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1385.5   | 3184.73                                                                                                                                                                                                                                                                        | 8732.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2752.32  | 1964.46                                                                                                                                                                                                                                                                        | 8987.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5306.36  | 1997.27                                                                                                                                                                                                                                                                        | 8901.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6479.82  | 3242.93                                                                                                                                                                                                                                                                        | 8571.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6497.54  | 4690.22                                                                                                                                                                                                                                                                        | 9418.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8477.6   | 5088.74                                                                                                                                                                                                                                                                        | 9997.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10521.69 | 5770.9                                                                                                                                                                                                                                                                         | 9592.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10608.05 | 6014.85                                                                                                                                                                                                                                                                        | 8593.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8642.39  | 5610.09                                                                                                                                                                                                                                                                        | 8010.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | 12195.24<br>8096.1<br>8628.31<br>5693.89<br>5550.63<br>4515.59<br>3673.56<br>2770.37<br>2575.91<br>3298.07<br>3371.53<br>4755.72<br>6342.53<br>4978.09<br>5960.8<br>2540.57<br>1385.5<br>2752.32<br>5306.36<br>6479.82<br>6497.54<br>8477.6<br>10521.69<br>10608.05<br>8642.39 | 12195.24 $5762.54$ $8096.1$ $5501.01$ $8628.31$ $4833.3$ $5693.89$ $5295.58$ $5550.63$ $5642.85$ $4515.59$ $4871.49$ $3673.56$ $5874.49$ $2770.37$ $6550.26$ $2575.91$ $5529.01$ $3298.07$ $5688.67$ $3371.53$ $6712.76$ $4755.72$ $6218.57$ $6342.53$ $6810.48$ $4978.09$ $7304.42$ $5960.8$ $6661.41$ $2540.57$ $4422.09$ $1385.5$ $3184.73$ $2752.32$ $1964.46$ $5306.36$ $1997.27$ $6479.82$ $3242.93$ $6497.54$ $4690.22$ $8477.6$ $5088.74$ $10521.69$ $5770.9$ $10608.05$ $6014.85$ $8642.39$ $5610.09$ | 12195.245762.544787.888096.15501.016421.078628.314833.36906.085693.895295.585931.685550.635642.856582.714515.594871.496361.273673.565874.497393.552770.376550.267781.392575.915529.017883.513298.075688.678951.783371.536712.768838.264755.726218.579109.866342.536810.488344.144978.097304.428057.215960.86661.417674.692540.574422.098383.241385.53184.738732.212752.321964.468987.435306.361997.278901.926479.823242.938571.326497.544690.229418.858477.65088.749997.7410521.695770.99592.4510608.056014.858593.298642.395610.098010.97 |

#### **Experimental**

Single crystals of  $C_{35}H_{42}O_6$ Si **[WL3c]** were **[34]**. A suitable crystal was selected and **[34]** on a **XtaLAB Synergy, Dualflex, HyPix-Arc** diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

#### Crystal structure determination of [WL3c]

**Crystal Data** for C<sub>35</sub>H<sub>42</sub>O<sub>6</sub>Si (*M* =586.77 g/mol): orthorhombic, space group P2<sub>12</sub>1<sub>21</sub> (no. 19), *a* = 9.10599(3) Å, *b* = 15.40214(5) Å, *c* = 23.08098(7) Å, *V* = 3237.148(18) Å<sup>3</sup>, *Z* = 4, *T* = 150.00(10) K,  $\mu$ (Cu K $\alpha$ ) = 0.985 mm<sup>-1</sup>, *Dcalc* = 1.204 g/cm<sup>3</sup>, 144009 reflections measured (6.9° ≤ 2Θ ≤ 148.85°), 6598 unique (*R*<sub>int</sub> = 0.0487, R<sub>sigma</sub> = 0.0108) which were used in all calculations. The final *R*<sub>1</sub> was 0.0250 (I > 2 $\sigma$ (I)) and *wR*<sub>2</sub> was 0.0666 (all data).

#### **Refinement model description**

Number of restraints - 0, number of constraints - unknown. Details: 1. Twinned data refinement Scales: 1.00(2) 0.00(2) 2. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups, All O(H) groups 3.a Ternary CH refined with riding coordinates: C1(H1), C7(H7), C12(H12), C14(H14), C18(H18) 3.b Secondary CH2 refined with riding coordinates: C21(H21A,H21B)
3.c Aromatic/amide H refined with riding coordinates: C6(H6), C31(H31), C32(H32), C33(H33), C34(H34), C35(H35), C37(H37), C38(H38), C39(H39), C40(H40), C41(H41)
3.d X=CH2 refined with riding coordinates: C13(H13A,H13B)
3.e Idealised Me refined as rotating group: C5(H5A,H5B,H5C), C19(H19A,H19B,H19C), C20(H20A,H20B,H20C), C24(H24A,H24B,

H24C), C27(H27A,H27B,H27C), C28(H28A,H28B,H28C), C29(H29A,H29B,H29C)

This report has been created with Olex2, compiled on Nov 21 2019 18:26:39 for OlexSys.

# n) Abbreviation

| Ac            | acetyl                                                                      |
|---------------|-----------------------------------------------------------------------------|
| ACLY          | ATP-citrate synthase                                                        |
| AD-mix-α      | a mixture of (DHQ)2PHAL, potassium osmate dihydrate, potassium              |
|               | carbonate, and potassium ferricyanide                                       |
| AKT           | protein kinase B                                                            |
| Boc           | <i>tert</i> -butyloxycarbonyl                                               |
| <i>t</i> Bu   | <i>tert</i> -butyl                                                          |
| CID           | collision-induced dissociation                                              |
| <i>m</i> CPBA | meta-chloroperoxybenzoic acid                                               |
| CSA           | camphorsulfonic acid                                                        |
| CuAAC         | Cu <sup>1</sup> -catalyzed azide/alkyne cycloaddition                       |
| СуЗ           | Cyanine 3                                                                   |
| dba           | dibenzylideneacetone                                                        |
| DBU           | 1,8-diazabicyclo[5.4.0]undec-7-ene                                          |
| DCE           | 1,2-dichloroethane                                                          |
| DCM           | CH <sub>2</sub> Cl <sub>2</sub> , dichloromethane                           |
| DDQ           | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone                                   |
| (DHQD)2Pyr    | hydroquinidine-2,5-diphenyl-4,6-pyrimidinediyl diether                      |
| DIPEA         | <i>N,N</i> -diisopropylethylamine                                           |
| DMAP          | 4-dimethylaminopyridine                                                     |
| DMEM          | Dulbecco's modified eagle medium                                            |
| DMF           | dimethylformamide                                                           |
| DMSO          | dimethyl sulfoxide                                                          |
| dr            | diastereomeric ratio                                                        |
| DTT           | dithiothreitol                                                              |
| DMP           | Dess-Martin periodinane                                                     |
| EDTA          | ethylenediaminetetraacetic acid                                             |
| ee            | enantiomeric excess                                                         |
| Et            | ethyl                                                                       |
| FCS           | fetal calf serum                                                            |
| HATU          | 1-[bis(dimethylamino)methylene]-1 <i>H</i> -1,2,3-triazolo[4,5-b]pyridinium |
|               | 3-oxide hexafluorophosphate                                                 |
| HCD           | higher-energy C-trap dissociation                                           |
| HF            | hydrofluoric acid                                                           |
| HPLC          | high-performance liquid chromatography                                      |
| HRMS          | high resolution mass spectrometry                                           |
| Imid.         | imidazole                                                                   |
| IPO5          | importin-5                                                                  |
| IR            | infrared spectra                                                            |

| KPNB1            | karyopherin subunit beta 1                                 |
|------------------|------------------------------------------------------------|
| LC-MS            | liquid chromatography-mass spectrometry                    |
| Ме               | methyl                                                     |
| m.p.             | melting point                                              |
| NLS              | nuclear localization sequence                              |
| NOE              | nuclear overhauser effect                                  |
| PBS              | phosphate-buffered saline                                  |
| PFA              | paraformaldehyde                                           |
| PhMe             | toluene                                                    |
| РМВ              | <i>p</i> -methoxybenzyl                                    |
| PPh <sub>3</sub> | triphenylphosphine                                         |
| PTLC             | preparative thin-layer chromatography                      |
| PTSA             | <i>p</i> -TsOH, p-toluenesulfonic acid                     |
| Ру               | pyridine                                                   |
| RASAL2           | RAS protein activator like 2                               |
| Red-Al           | vitride, sodium bis(2-methoxyethoxy)aluminium hydride      |
| r.t.             | room temperature                                           |
| SAD              | Sharpless asymmetric dihydroxylation                       |
| Sat. aq.         | saturated aqueous solution                                 |
| SDS              | sodium dodecyl sulphate                                    |
| SDS-PAGE         | sodium dodecyl sulphate-polyacrylamide gel electrophoresis |
| SEM              | standard error of mean                                     |
| STDEV            | standard deviation                                         |
| TBAF             | tetra- <i>n</i> -butylammonium fluoride                    |
| TBDPSCl          | tert-Butyl(chloro)diphenylsilane                           |
| TBTA             | tris[(1-benzyl-1 <i>H</i> -1,2,3-triazol-4-yl)methyl]amine |
| ТСЕР             | tris(2-carboxyethyl)phosphine hydrochloride                |
| Tf               | triflate                                                   |
| TFA              | trifluoroacetic acid                                       |
| THF              | tetrahydrofuran                                            |
| TLC              | thin-layer chromatography                                  |
| TMS              | trimethylsilyl                                             |
| TMSOTf           | trimethylsilyl trifluoromethanesulfonate                   |
| UBA1             | ubiquitin-like modifier-activating enzyme 1                |