Current Biology, Volume 31

Supplemental Information

Formin-mediated bridging of cell wall, plasma

membrane, and cytoskeleton in symbiotic

infections of Medicago truncatula

Pengbo Liang, Clara Schmitz, Beatrice Lace, Franck Anicet Ditengou, Chao Su, Eija Schulze, Julian Knerr, Robert Grosse, Jean Keller, Cyril Libourel, Pierre-Marc Delaux, and Thomas Ott

Figure S1. SYFO1 contributes to the symbiosis establishment. Related to Figure 1. (*A*) *SYFO1* and *SYFO1L* transcript levels before inoculation, at 1, 3 and 5 dpi. (*B-C*) Promoter activity was assessed with cellular resolution in transgenic *M. truncatula* root hairs by using the genetically encoded reporter *ProSYFO1:NLS-2xGFP*. (*D*) Maximum Likelihood tree (model: TIM3+F+R6; Log-likelihood: -124347.2322) of SYFO1 and SYFO1L family in 102 Angiosperm species. The tree was rooted on *Amborella trichopoda*. The Eudicots duplication leading to the emergence of the SYFO1/SYFO1L clade is indicated with a blue star and the *Papilionoideae* duplication from which SYFO1 and SYFO1L derived is indicated with a red star. Monocots, SYFO1 and SYFO1L clades are indicated by violet, green and blue ribbons respectively. Results of the selective pressure analysis are marked as follow: red dots indicate relaxation (K<1 and p-val < 0.01) of the selection in the clade while blue dots stand for an intensification of the selection (K>1 and p-val < 0.01). Details of selective pressure analysis are presented in Table S3. (*E*) Relative expression of *SYFO1* in inoculated roots. (*F-G*) Determining transcript levels in Tnt1 insertion lines. *SYFO1* transcript levels in wild-type R108, *syfo1-1*, *syfo1-2* at 1 dpi, and wild-type R108 *syfo1L*.

1, *syfo1L-2* without inoculation. Quantitative qRT-PCR was performed on cDNAs obtained from roots, with 4 biological replicates (each replicate contained roots from four independent plants). The graphs represent $\Delta\Delta$ Ct values obtained by qRT-PCR relative to ubiquitin. Asterisks indicate a significant statistical difference based on a Tukey–Kramer multiple-comparison test with p-values of p<0.05 (*) p<0.01 (**) and p<0.001 (***). Scale bars indicate 50 µm (*B-C*).

Figure S2. SYFO1 but not SYFO1L is required for nodulation. Related to Figure 1. (*A-C*) Nodule phenotypes observed on the different genotypes at 3 wpi with *S. meliloti* in open pots using WT R108 plants as a control. Quantification of nodule numbers (*D*) and the ratio of aborted/wild-type like nodules (*E*) (n=10 independent root systems per genotype). Semi-thin (60 μ m) sections of agarose-embedded nodules representative for wild-type (*F*), *syfo1L* (*G*) and *syfo1* (*H-I*). The dashed rectangles indicate the magnified selected zones. Plants were grown in open pots and inoculated for 3 weeks with *S. meliloti* (red) prior to the analysis. Asterisks indicate a significant statistical difference based on a Tukey–Kramer multiple-comparison test with p-values <0.01 (**), < 0.001 (***). Data are shown as mean ± SE. Scale bars indicate 200 μ m (*A-C*), 100 μ m (*F-I*).

Figure S3. Analysis of actin and morphological patterns in symbiotically responding root hairs. Related to Figures 1 and 2.

Root hairs grow normally (*A*-*C*) and actin arrangements are indistinguishable in young, uninoculated root hairs of on *syfo1-1* and *syfo1-2* mutants (*D-J*). Plants were grown on vertical agar plates in the absence of rhizobia for 10 days prior to the analysis. Root hair length was measured in 20 consecutive root segments covering the designated infection zone (3 mm above the root hair tip). No statistically significant differences were found based on an ANOVA followed by a Fisher LSD test when comparing root hair length in between the corresponding root segment of the different genotypes. Data are shown as mean \pm SE of 4 independent biological replicates with four roots being scored per experiment and genotype. Phalloidin staining of actin in root hairs of the differentiation zone (region II; *D-F*) and elongation zone (region III; *G-I*) as illustrated in *J*.

Dissecting early root hair responsiveness in *syfo1* mutants (*K*-*N*). The number of infection chambers (ICs) (*K*) and infection threads (ITs) (*L*) per root and the individual sizes of ICs (*M*) and ITs (*N*) were scored at 5 dpi in R108 wild-type as well as *syfo1-1* and *syfo1-2* mutant alleles. Asterisks indicate a significant statistical difference based on a Tukey–Kramer multiple-comparison test with p-values <0.05 (*) and 0.01 (**). Data are shown as mean \pm SE and were obtained from 9-14 independent plants (*K*, *L*) and from 13 plant for (*M*, *N*). Complementation studies for *syfo1* mutants (*O-Q*). (*O*) *SYFO1* driven by the epidermis specific expansin promoter (*ProEXP*) failed to restore the deformation phenotype in *syfo1* mutants. (*P*) The *syfo1* root hair deformation phenotype could not be complemented by expressing *SYFO1L* and *AtFH8* driven by *SYFO1* promoter. (*Q*) The PRR segment in the SYFO1 extracellular domain is required for its function as a SYFO1^{ΔPRR} variant driven by the *SYFO1* promoter was not able to restore the infection thread and infection chamber phenotypes in *syfo1* mutants. ev= empty vector. Asterisks indicate a significant statistical difference based on a Tukey–Kramer multiple-comparison test with p-values < 0.01 (**) and 0.001 (***). Data were obtained from 10 independent roots for each analysis.

Analysis of actin polarization upon rhizobial inoculation (*R-V*). Actin patterns were visualized by Phalloidin staining of root hairs and observed under non-inoculated (*R*) and inoculated conditions after 2 dpi with *S. meliloti* (*S-U*). Representative images for longitudinal alignment of actin filaments in the absence of rhizobia in wild type (*R*), apically polarized actin (*S*, *T*) and polarized actin at the apical shank of root hairs (*U*) upon inoculation of wild-type root hairs. The appearance of polarized patterns (n_{polar}) as shown in panels *S-U* was scored on wild-type and *syfo1* mutant roots by absent/present calls of appearance on individual root systems (*V*). Arrowheads indicate sites of polarized actin accumulations. Scale bars indicate 200 µm (*A-C*, *G*). Scale bars indicate 10 µm (*D-I*, and *R-U*).

Figure S4. Proposed model for a SYFO1-mediated actin-plasma membrane-cell wall-continuum. Related to Figures 3 and 4. Our data suggest that SYFO1 establishes actin nucleation centres at the tip or the apical part of the shank of growing root hairs (green) upon inoculation with rhizobia (red) (*A*). (*B*) Association with the cell wall (CW; light green) by the proline-rich extracellular domain of SYFO1 (orange) laterally immobilizes SYFO1. Polar secretion of SYFO1 together with other membrane constituents and SYFO1-mediated actin nucleation (green filaments) may allow the formation of a polarity domain (bright blue). PM= plasma membrane. The FH1FH2 domain is depicted in purple.

Gene ID	Description
Medtr2g086990	formin-like 2 domain protein
Medtr4g045670	formin-like 2 domain protein
Medtr4g095780	formin-like 2 domain protein
Medtr8g027995	formin-like 2 domain protein
Medtr7g080920	formin-like 2 domain protein
Medtr4g087890	formin-like 2 domain protein
Medtr5g015690	formin-like 2 domain protein
Medtr5g036540	formin-like 2 domain protein
Medtr3g078623	formin-like 2 domain protein
Medtr1g083260	formin-like 2 domain protein
Medtr2g082190	formin-like 2 domain protein
Medtr4g081410	formin-like 2 domain protein
Medtr0094s0010	formin-like 2 domain protein
Medtr8g062830	formin-like 2 domain protein
Medtr3g037080	actin-binding FH2 (formin-like) protein, putative
Medtr4g109040	actin-binding FH2 (formin-like) protein
Medtr1g013800	actin-binding FH2 (formin 2) family protein
Medtr4g131020	actin-binding FH2 (formin 2) family protein
Medtr4g109040	actin-binding FH2 (formin-like) protein
Medtr5g026645	actin-binding FH2 (formin-like) protein

Table S1: FH2-domain containing proteins identified in the *Medicago truncatula* genome. Related to Figure 1.

Abbreviation	Species	Order	Family	Reference	N-fixing
Alnglu	Alnus glutinosa	Fagales	Betulaceae	10.1126/science.aat1743	1
Ambtri	Amborella trichopoda	Amborellales	Amborellaceae	10.1126/science.1241089	0
Anacom	Ananas comosus	Bromeliales	Bromeliaceae	10.1038/ng.3435	0
Aposhe	Apostasia shenzhenica	Asparagales	Orchidaceae	10.1038/nature23897	0
Arahal	Arabidopsis halleri	Brassicales	Brassicaceae	Phytozome	0
Aralyr	Arabidopsis Iyrata	Brassicales	Brassicaceae	10.1038/ng.807	0
Aratha	Arabidopsis thaliana	Brassicales	Brassicaceae	10.1093/nar/gkr1090	0
Aradur	Arachis duranensis	Fabales	Fabaceae	10.1038/ng.3517	1
Arahyp	Arachis hypogaea	Fabales	Fabaceae	https://peanutbase.org/data/public/Arachis_hypogaea/Tifrunner.gnm1.KYV3/	1
Araipa	Arachis ipaensis	Fabales	Fabaceae	10.1038/ng.3517	1
Begfuc	Begonia fuchsioides	Cucurbitales	Begoniaceae	10.1126/science.aat1743	0
Betvul	Beta vulgaris ssp. vulgaris KWS2320	Caryophyllales	Amaranthaceae	10.1038/nature12817	0
Boestr	Boechera stricta	Brassicales	Brassicaceae	Phytozome	0
Bradis	Brachypodium distachyon	Poales	Poaceae	10.1038/nature08747	0
Braolecap	Brassica oleraceae capitata	Brassicales	Brassicaceae	10.1038/ncomms4930	0
Brarap	Brassica rapa FPsc	Brassicales	Brassicaceae	Phytozome	0
Cajcaj	Cajanus cajan	Fabales	Fabaceae	10.1038/nbt.2022.	1
Capgra	Capsella grandiflora	Brassicales	Brassicaceae	10.1038/ng.2669	0
Caprub	Capsella rubella	Brassicales	Brassicaceae	10.1038/ng.2669	0
Capann	Capsicum annuum cvCM334	Solanales	Solanaceae	10.1038/ng.2877	0
Carpap	Carica papaya	Brassicales	Caricaceae	10.1038/nature06856	0
Casmol	Castanea mollissima	Fagales	Fagaceae	https://www.hardwoodgenomics.org/organism/Castanea/mollissima	0
Casaus	Castanospermum australe	Fabales	Fabaceae	10.1126/science.aat1743	0
Casgla	Casuarina glauca	Fagales	Casuarinaceae	10.1126/science.aat1743	1
Cepfol	Cephalotus follicularis	Oxalidales	Cephalotaceae	10.1038/s41559-016-0059	0
Cercan	Cercis canadensis	Fabales	Caesalpiniaceae	10.1126/science.aat1743	0
Chafas	Chamaecrista fasciculata	Fabales	Fabaceae	10.1126/science.aat1743	1
Chequi	Chenopodium quinoa	Caryophyllales	Amaranthaceae	10.1038/nature21370	0
Cicari	Cicer arietinum ICC4958	Fabales	Fabaceae	10.1038/srep12806	1
Citlan	Citrullus lanatus subsp. vulgaris 97103	Cucurbitales	Cucurbitaceae	10.1038/ng.2470	0
Citcle	Citrus clementina	Sapindales	Rutaceae	10.1038/nbt.2906	0
Citsin	Citrus sinensis	Sapindales	Rutaceae	10.1038/nbt.2906	0
Cucmel	Cucumis melo	Cucurbitales	Cucurbitaceae	10.1073/pnas.1205415109	0
Cucsat	Cucumis sativus PI183967	Cucurbitales	Cucurbitaceae	10.1038/ng.2801	0
Cucmax	Cucurbita maxima	Cucurbitales	Cucurbitaceae	10.1016/j.molp.2017.09.003	0
Cucmos	Cucurbita moschata	Cucurbitales	Cucurbitaceae	10.1016/j.molp.2017.09.004	0
Cucpep	Cucurbita pepo	Cucurbitales	Cucurbitaceae	http://cucurbitgenomics.org/organism/13	0
Datglo	Datisca glomerata	Cucurbitales	Dasticaceae	10.1126/science.aat1743	0
Daucar	Daucus carota	Apiales	Apiaceae	10.1038/ng.3565	0
Dencat	Dendrobium catenatum	Asparagales	Orchidaceae	10.1038/nature23897	0
Diacar	Dianthus caryophyllus	Caryophyllales	Caryophyllaceae	10.1093/dnares/dst053	0
Distri	Discaria trinervis	Rosales	Rhamnaceae	10.1126/science.aat1743	1
Drydru	Dryas drummondii	Rosales	Rosaceae	10.1126/science.aat1743	1
Eutsal	Eutrema salsugineum	Brassicales	Brassicaceae	10.3389/fpls.2013.00046	0
Fraves	Fragaria vesca	Rosales	Rosaceae	10.1038/ng.740	0
Fraana	Fragaria x ananassa	Rosales	Rosaceae	https://www.rosaceae.org/species/fragaria/fragaria_x_ananassa	0
Fraexc	Fraxinus excelsior	Lamiales	Oleaceae	10.1038/nature20786	0

Glymax	Glycine max	Fabales	Fabaceae	10.1038/nature08670	1
Gosrai	Gossypium raimondii	Malvales	Malvaceae	10.1038/nature11798	0
Helann	Helianthus annuus	Asterales	Asteraceae	10.1038/nature22380	0
Horvul	Hordeum vulgare	Poales	Poaceae	10.1038/nature22043 / 10.1038/sdata.2017.44	0
Humlup	Humulus lupulus	Rosales	Cannabaceae	10.1093/pcp/pcu169	0
Jugreg	Juglans regia	Fagales	Juglandaceae	10.1111/tpj.13207	0
Lagsic	Lagenaria siceraria	Cucurbitales	Cucurbitaceae	10.1111/tpj.13722	0
Lotjap	Lotus japonicus	Fabales	Fabaceae	10.1093/dnares/dsn008	1
Lupang	Lupinus angustifolius	Fabales	Fabaceae	10.1111/pbi.12615	1
Maldom	Malus domestica	Rosales	Rosaceae	https://www.rosaceae.org/species/malus/malus_x_domestica/genome_v3.0.a0	0
Manesc	Manihot esculenta	Malpighiales	Euphorbiaceae	10.1038/nbt.3535	0
Medtru	Medicago truncatula	Fabales	Fabaceae	10.1038/s41477-018-0286-7	1
Mimpud	Mimosa pudica	Fabales	Fabaceae	10.1126/science.aat1743	1
Momcha	Momordica charantia	Cucurbitales	Cucurbitaceae	https://www.ncbi.nlm.nih.gov/assembly/GCF_001995035.0	0
Mornot	Morus notabilis	Rosales	Moraceae	10.1038/ncomms3445	0
Musacu	Musa acuminata	Zingiberales	Zingiberaceae	10.1093/database/bat035	0
Nelnuc	Nelumbo nucifera	Proteales	Nelumbonaceae	10.1186/gb-2013-14-5-r41	0
Nicben	Nicotiana benthamiana	Solanales	Solanaceae	10.1094/MPMI-06-12-0148-TA	0
Nissch	Nissolia schottii	Fabales	Fabaceae	10.1126/science.aat1743	0
Orysat	Oryza sativa	Poales	Poaceae	10.1093/nar/gkl976	0
Parand	Parasponia andersonii	Rosales	Cannabaceae	10.1073/pnas.1721395115	1
Petaxi	Petunia axillaris	Solanales	Solanaceae	10.1038/nplants.2016.74	0
Phaequ	Phalaenopsis equestris	Asparagales	Orchidaceae	10.1038/nature23897	0
Phavul	Phaseolus vulgaris	Fabales	Fabaceae	10.1038/ng.3008	1
Poptri	Populus trichocarpa	Malpighiales	Salicaceae	10.1126/science.1128691	0
Potmic	Potentilla micrantha	Rosales	Rosaceae	10.1093/gigascience/giy010	0
Pruavi	Prunus avium	Rosales	Rosaceae	10.1093/dnares/dsx020	0
Prudul	Prunus dulcis	Rosales	Rosaceae	https://www.rosaceae.org/analysis/294	0
Prumum	Prunus mume	Rosales	Rosaceae	https://www.ncbi.nlm.nih.gov/assembly/GCF_000346735.0	0
Pruper	Prunus persica	Rosales	Rosaceae	10.1038/ng.2586	0
Pyrcom	Pyrus communis	Rosales	Rosaceae	10.1371/journal.pone.0092644	0
Pyrbre	Pyrus x bretschneideri	Rosales	Rosaceae	https://www.ncbi.nlm.nih.gov/assembly/GCF_000315295.0	0
Querob	Quercus robur	Fagales	Fagaceae	10.1111/1755-0998.12425	0
Riccom	Ricinus communis	Malpighiales	Euphorbiaceae	10.1038/nbt.1674	0
Roschi	Rosa chinensis	Rosales	Rosaceae	10.1038/s41588-018-0110-3	0
Rubocc	Rubus occidentalis	Rosales	Rosaceae	10.1111/tpj.13215	0
Setita	Setaria italica	Poales	Poaceae	10.1038/nbt.2196	0
Sollyc	Solanum lycopersicum	Solanales	Solanaceae	10.1038/nature11119	0
Solpen	Solanum pennellii	Solanales	Solanaceae	10.1038/ng.3046	0
Sorbic	Sorghum bicolor	Poales	Poaceae	10.1111/tpj.13781	0
Spiole	Spinacia oleracea	Caryophyllales	Amaranthaceae	http://bvseq.molgen.mpg.de/Genome/Download/Spinach/	0
Spipol	Spirodela polyrhiza	Alismatales	Araceae	10.1038/ncomms4311	0
Tarhas	Tarenaya hassleriana	Brassicales	Cleomaceae	10.1105/tpc.113.113480	0
Thecac	Theobroma cacao	Malvales	Malvaceae	10.1186/gb-2013-14-6-r53	0
Treori	Trema orientalis	Rosales	Cannabaceae	10.1073/pnas.1721395115	0
Tripra	Trifolium pratense	Fabales	Fabaceae	10.1038/srep17394	1
Trisub	Trifolium subterraneum	Fabales	Fabaceae	https://www.ncbi.nlm.nih.gov/assembly/GCA_001742945.1#/st	1
Utrgib	Utricularia gibba	Lamiales	Lentibulariaceae	10.1073/pnas.1702072114	0

Vigang	Vigna angularis	Fabales	Fabaceae	10.1038/srep080669	1
Vigrad	Vigna radiata	Fabales	Fabaceae	10.1038/ncomms6443	1
Vigung	Vigna unguiculata	Fabales	Fabaceae	Phytozome	1
Zeamay	Zea mays PH207	Poales	Poaceae	10.1105/tpc.16.00353	0
Zizjuj	Ziziphus jujuba cv. Dongzao	Rosales	Rhamnaceae	10.1038/ncomms6315	0
Zosmar	Zostera marina	Alismatales	Zosteraceae	10.1038/nature16548	0

Table S2: List of species investigated in this study. Related to STAR Methods. The N-fixing column indicates if species can (1)

or not (0) establish root nodule nitrogen-fixing symbiosis.

Branch model - RELAX

Tree	Analyzed sequences	Analyzed sites	Tested branches	к	LRT	p-val	Selective pressure
		766	Brassicaceae	9,34	202,89	0,00E+00	intensification
			Cucurbitales	8,71	47,34	5,97E-12	intensification
			Fabales	0,54	22,32	2,31E-06	relaxation
			Fagales	1,73	27,97	1,23E-07	intensification
Svfo1/11/3	280		Rosales	0,96	4,40	3,59E-02	
angiosperm tree			NFN clade (Cuc, Fab, Fag and Ros)	1,09	15,82	6,97E-05	intensification
			Syfo1 clade	6,46	52,89	3,53E-13	intensification
			Syfo1 clade infection threads forming species	0,84	4,34	3,70E-02	
			Syfo1L clade	0,45	40,61	1,86E-10	relaxation
			Syfo1L clade infection threads forming species	0,96	0,840	3,60E-01	
			Infection threads forming species	0,25	18,63	1,59E-05	relaxation
Syfo1/1L NFN tree	107	779	Syfo1 Infection threads forming species	0,87	5,97	1,50E-02	
			Syfo1L Infection threads forming species	0,91	5,96	1,50E-02	
Syfo1/1L Fabales tree	41	758	Infection threads forming species	1,43	16,76	4,24E-05	intensification
Syfo1 Fabales tree	19	800	No Infection threads forming species	0,95	0,62	4,30E-01	
Syfo1L Fabales tree	20	772	No Infection threads forming species	0,66	7,29	7,00E-03	relaxation

Table S3: Results of the branch model analysis for signature of selection acting in the SYFO1/SYFO1L angiosperm clade on different branches of interest. Related to STAR Methods. The column tree indicates which species and corresponding phylogenetic tree was used to run the branch model RELAX. Analyzed sequences and sites indicated the number of sequences and sites analyzed corresponding to the species/tree selected. The tested branches column indicates which clade was targeted as 'Foreground' to compare selective pressure against the rest of the tree. K represent the selection intensity parameter where a significant result of k>1 indicates that selection strength has been intensified along the test branches, and a significant result of k<1 indicates that selection strength has been relaxed along the test branches. LRT represent the Likelihood Ratio Test to comparing the alternative and null models from RELAX with the corresponding p-value. Bold p-values indicate significant at 0.01 threshold.

Primer	Sequence (5'-3')	Used for	References or referenced ID
gt-SYFO1-F	AGCCACAATAACACAACCTCCT	Genotyping	Medtr5g036540.1
gt-SYFO1-R	GCCTTTGTTGTCTTCTTTTCTGC	Genotyping	Medtr5g036540.1
gt-SYFO2-F	GCCAAAACAATTCTCCACAAAAC	Genotyping	Medtr8g062830.1
gt-SYFO2-R	TCCCAAGAAATCCTTAACTATACCA	Genotyping	Medtr8g062830.1
TNT1-F	GTAGAGAATAGGTAAGGTGCT	Genotyping	S1
TNT1-R	TGTAGCACCGAGATACGGTAATTAACAAGA	Genotyping	S1
TNT1-R1	TGTAGCACCGAGATACGGTAATTAACAAGA	Genotyping	S1
qUbi-F	TTGTGTGTTGAATCCTAAGCA	Housekeeping gene for qRT-PCR	S2
qUbi-R	CAAGACCCATGCAACAAGTTC	Housekeeping gene for qRT-PCR	S2
qSYFO1-F	AGTAGCAGCAGCGGAGA	qRT-PCR for candidate prescreen and mutant transcript check	Medtr5g036540.1
qSYFO1-R	TCCTTGCTGAGAGTGCTGAGA	qRT-PCR for candidate prescreen and mutant transcript check	Medtr5g036540.1
qSYFO2-F	GTTCAGAAACAAGGCTTTCAATCTCA	qRT-PCR for candidate prescreen	Medtr8g062830.1
qSYFO2-R	GATCATTGTTGGATTCTTGCATCATG	qRT-PCR for candidate prescreen	Medtr8g062830.1
qSYFO2-F2	GGTGAGAGAGGAAATTTTGTG	qRT-PCR for mutant transcript check	Medtr8g062830.1
qSYFO2-R2	ACCCCCACATTCATAATACTG	qRT-PCR for mutant transcript check	Medtr8g062830.1
pSYFO1-F	ATGGTCTCAGCGGAGGGGGCATGTTAATCACC	Cloning	Medtr5g036540.1
pSYFO1-R	TAGGTCTCTCAGAGAATGAAGAGGAACAAAGAT	Cloning	Medtr5g036540.1
gSYFO1-F	ATGGTCTCACACCATGTCTTTGAACATGATGTTTC	Cloning	Medtr5g036540.1
gSYFO1-R	TAGGTCTCCCTTAAACTTTGTCTTAGGTGTTTTC	Cloning	Medtr5g036540.1

SYFO1 ^{ECD} -F	ATGGTCTCACACCATGTCTTTGAACATGATGTTTC	Cloning	Medtr5g036540.1
SYFO1 ^{ECD} -R	TAGGTCTCTCCTTTCACTTACTATTTGTTGAAGAATTTGT	Cloning	Medtr5g036540.1

Table S4: List of primers used in this study. Related to STAR Methods. Abbreviations: Forward (F) and reverse (R) primers, Ubiquitin (Ubi)

SUPPLEMENTAL REFERENCES

- ^{S1} Tadege, M., Wen, J.Q., He, J., Tu, H.D., Kwak, Y., Eschstruth, A., Cayrel, A., Endre, G., Zhao, P.X., Chabaud, M., et al. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume *Medicago truncatula*. Plant J. *54*, 335-347.
- ^{S2} Satge, C., Moreau, S., Sallet, E., Lefort, G., Auriac, M.C., Rembliere, C., Cottret, L., Gallardo, K., Noirot, C., Jardinaud, M.F., et al. (2016). Reprogramming of DNA methylation is critical for nodule development in *Medicago truncatula*. Nat. Plants 2, 1-10.