Designing Microbial Communities to Maximize the Thermodynamic Driving Force for the Production of Chemicals

S3 Text

Pavlos Stephanos Bekiaris¹ and Steffen Klamt^{2,*}

¹Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany ²Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

*<u>klamt@mpi-magdeburg.de</u>

ASTHERISC report for the toy model

The following text shows the ASTHERISC report generated for the community solution of the toy model (see Fig. 2 and Results section in the main text). The corresponding file can also be found in the ASTHERISC package's GitHub repository.

==TARGET WITH COMMUNITY ADVANTAGE: R_EX_C_P_exchg== Optimal yield without community and with deactivated dGO=NaN reactions without any MDF constraint [in mol/mol]: 1 Optimal yield without community without any MDF constraint [in mol/mol]: 1 Optimal MDF without community with minimal necessary yield as minimal yield constraint [in kJ/mol]: -0.19137 Reached yield without community at optimal MDF solution (this yield is a lower bound) [in mol/mol]: 1 Optimal MDF with community with minimal necessary yield as minimal yield constraint (if no warning given) [in kJ/mol]: 0.46467 Approximated optimal yield with community at maximal community MDF (if no warning given) [in mol/mol]: 1 Number of active metabolites: 11 Number of active reactions | Total absolute flux per species [in mmol/(gDW*h)]; Both with minimal absolute flux sum solution and substrate uptake scaled to maximum: strain1: 2 | 2 strain2: 2 | 2 Extra exchanges and scaled flux [in mmol/(gDW*h)] with minimal absolute flux solution (negative flux means uptake to species, positive flux secretion from species) and associated metabolites with concentrations in M: R_EXCHG_strain1_B_c_to_B | SCALED FLUX: 1 | M_B_c_strain1 [8.5268; 8.5308] | M_B_exchg [7.0694; 7.0727] R_EXCHG_strain2_B_c_to_B | SCALED FLUX: -1 | M_B_c_strain2 [5.8611; 5.8639] | M_B_exchg [7.0694; 7.0727] Metabolites with non-overlapping concentration ranges between species [concentrations are given in M]: M_X_c_strain1 [1; 1.3689] & M_X_c_strain2 [3.6525; 10] M_B_c_strain1 [8.5268; 8.5308] & M_B_c_strain2 [5.8611; 5.8639] M_S_c_strain1 [8.2869; 8.2908] & M_S_c_strain2 [unused] M_C_c_strain1 [unused] & M_C_c_strain2 [3.6525;10] M_P_c_strain1 [unused] & M_P_c_strain2 [6.0308; 6.0336] Bottleneck reactions (driving force=0ptMDF) of single-species solution as calculated back from community solution: MDF in single species with reactions occurring in community solution [in kJ/mol]: -0.19137 (OptMDF in community was 0.46467 kJ/mol, difference is 0.65605 kJ/mol) >Bottleneck reactions (driving force=OptMDF): R_S_to_A_strain1 | 1 M_S_c_strain1 -> 1 M_A_c_strain1 + 1 M_X_c_strain1 R_C_to_P_strain1 | 1 M_X_c_strain1 + 1 M_C_c_strain1 -> 1 M_P_c_strain1 R_EXCHG_strain1_P_c_to_P | 1 M_P_c_strain1 (<)-> 1 M_P_exchg >Connecting metabolites: R_S_to_A_strain1-> R_C_to_P_strain1; M_X_c_strain1 R_C_to_P_strain1-> R_EXCHG_strain1_P_c_to_P; M_P_c_strain1

>Connecting metabolite concentration ranges [in M]: ~M_X_c_strain1~ In single species: [2.1514; 2.1514] (range 4.9829e-05) In community: M_X_c_strain1: [1; 1.3689] (range 0.36894) M_X_c_strain2: [3.6525;10] (range 6.3475) ~M_P_c_strain1~ In single species: [4.6285; 4.6286] (range 0.0001072) In community: M P c strain1: [unused] (range 0) M_P_c_strain2: [6.0308; 6.0336] (range 0.0028514) Detailed reaction-wise solution reports: ~Detailed solution of community solution~ Active reactions associated with species strain1 (Reaction ID; Flux [in mmol/(gDW*h)]; Direction; dGO (adjusted to direction) [in kJ/mol]; dG [in kJ/mol]; Reaction string (adjusted to direction): S_to_A_strain1; 1; forward; 4; -0.46467; 1 M_S_c_strain1 -> 1 M_A_c_strain1 + 1 M_X_c_strain1 A_to_B_strain1; 1; forward; -5; -0.46548; 1 M_A_c_strain1 + 1 M_X_c_strain1 -> 1 M_B_c_strain1 EXCHG_strain1_S_c_to_S; -1; reverse; 0; -0.46467; 1 M_S_exchg (<)-> 1 M_S_c_strain1 EXCHG_strain1_B_c_to_B; 1; forward; 0; -0.46467; 1 M_B_c_strain1 -> 1 M_B_exchg Active reactions associated with species strain2 (Reaction ID; Flux [in mmol/(gDW*h)]; Direction; dGO (adjusted to direction) [in kJ/mol]; dG [in kJ/mol]; Reaction string (adjusted to direction): B to C strain2; 1; forward; -5; -0.46467; 1 M B c strain2 -> 1 M X c strain2 + 1 M_C_c_strain2 C_to_P_strain2; 1; forward; 4; -0.46467; 1 M_X_c_strain2 + 1 M_C_c_strain2 -> 1 M_P_c_strain2 EXCHG strain2 P_c_to P; 1; forward; 0; -0.46467; 1 M_P_c_strain2 (<)-> 1 M_P_exchg EXCHG strain2 B_c_to B; -1; reverse; 0; -0.46467; 1 M_B exchg -> 1 M_B c_strain2 Active reactions of exchange compartment<->environment exchange reactions: EX_C_S_exchg; -1; reverse; NaN; NaN; (<)-> 1 M_S_exchg EX_C_P_exchg; 1; forward; NaN; NaN; 1 M_P_exchg -> ~Detailed solution of single-strain solution (recalculated back from community solution reactions)~ Active reactions associated with species strain1 (Reaction ID; Flux [in mmol/(gDW*h)]; Direction; dGO (adjusted to direction) [in kJ/mol]; dG [in kJ/mol]; Reaction string (adjusted to direction): S_to_A_strain1; 1; forward; 4; 0.19137; 1 M_S_c_strain1 -> 1 M_A_c_strain1 + 1 M X c strain1 A_to_B_strain1; 1; forward; -5; -3.6068; 1 M_A_c_strain1 + 1 M_X_c_strain1 -> 1 M B c strain1 B_to_C_strain1; 1; forward; -5; -0.68555; 1 M_B_c_strain1 -> 1 M_X_c_strain1 + 1 M_C_c_strain1 C_to_P_strain1; 1; forward; 4; 0.19137; 1 M_X_c_strain1 + 1 M_C_c_strain1 -> 1 M_P_c_strain1 EXCHG_strain1_P_c_to_P; 1; forward; 0; 0.19137; 1 M_P_c_strain1 (<)-> 1 M_P_exchg EXCHG_strain1_S_c_to_S; -1; reverse; 0; 0; 1 M_S_exchg (<)-> 1 M_S_c_strain1 Active reactions of exchange compartment<->environment exchange reactions: EX_C_S_exchg; -1; reverse; NaN; NaN; (<)-> 1 M_S_exchg EX_C_P_exchg; 1; forward; NaN; NaN; 1 M_P_exchg ->