Discovery of Cyclohexadepsipeptides with Anti-Zika Virus Activities and Biosynthesis of the Nonproteinogenic Building Block (3S)-Methyl-L-Proline

Bochuan Yuan,^{a,+} Ziwei Wu,^{a,+} Wei Ji,^b Dong Liu,^a Xiang Guo,^a Donghui Yang,^a Aili

Fan,^a Hongli Jia,^a Ming Ma,^{a,*} Wenhan Lin^{a,c,*}

- ^[a] State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, P.R. China
- ^[b] School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
- ^[c] Institute of Ocean Research, Peking University, Beijing 100191, P.R. China
- ^[+] These authors contributed equally to this work
- *Correspondence: mma@bjmu.edu.cn; whlin@bjmu.edu.cn

ORCID of Prof. Ma: 0000-0001-8311-3892

ORCID of Prof. Lin: 0000-0002-4978-4083

Table of Contents

Spectroscopic data of cyclohexadepsipeptides

Table S1. The ¹H and ¹³C NMR data of **1** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Table S2. The ¹H and ¹³C NMR data of **2** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Table S3. The ¹H and ¹³C NMR data of **3** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Table S4. The ¹H and ¹³C NMR data of **4** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Table S5. The ¹H and ¹³C NMR data of **5** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Table S6. The ¹H and ¹³C NMR data of **6** in DMSO- d_6 (δ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Table S7. The ¹H and ¹³C NMR data of **7** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

 Table S8. Clusters encoding non ribosomal peptide synthases (NRPSs) (excluding PKS/NRPS hybrids) in *B. felina* SX-6-22

Table S9. Gene annotation for detx, isd and isr clusters

Table S10. The substrate selectivity-conferring codes of A domains in DtxA, IsrA and IsdA

Table S11. Primers used in this study

Table S12. Plasmids and strains used in this study

Figure S1. Natural products containing (3S)-methyl-L-proline moiety

Figure S2. Morphological feature and phylogenetic analysis of Beauveria felina SX-6-22

Figure S3. HPLC chromatograph and ¹H NMR spectrum for EtOAc extract of *B. felina* SX-6-22

Figure S4. Global Natural Product Social Molecular Networking (GNPS) based on LC-MS data

Figure S5. MS/MS spectra of known compounds (12, 20, 23, 27-30) detected from total ion chromatogram (TIC)

Figure S6. The Marfey's analysis for the determination of absolute configuration of 6

Figure S7. Schematic diagrams of gene deletion of *detxA*, *isdA*, *isrA*, *detxE*, *SX-p5cr1* and *SX-p5cr2* and PCR confirmation for mutants

Figure S8. LC-MS analysis of compounds accumulated in wild-type strain and mutants including $\Delta detxA$, $\Delta isdA$ and $\Delta isrA$. Compounds 1/2, 3/4, 5/8, 21/22 and 7/25 are isomers

Figure S9. Proposed biogenetic oxidation of α-HIC

Figure S10. The extracted ion chromatogram (EIC) detection of compounds accumulated in $\Delta detxE$ mutant compared to wild-type strain

Figure S11. SDS-PAGE analysis of purified DetxE, SX-P5CR1 and SX-P5CR2

Figure S12. The UPLC profile of DetxE reaction with *o*-AB derivatization using L-isoleucine as the substrate

Figure S13. The HPLC profiles of DetxE reaction with Fmoc-Cl derivatization

Figure S14. The EIC analysis of DetxE reactions without Fmoc-Cl derivatization

Figure S15. The biosynthetic process of (4R)-methyl-L-proline reported in previous literature

Figure S16. The EIC analysis of DetxE combined with P5CR1/P5CR2 reactions, using L-isoleucine as the substrate and derivatized with Fmoc-Cl

Figure S17. Detection of lysosome acidification of A549 cells and the uncropped NS5 production inhibition images.

Figure S18. ¹H NMR spectrum of 1 (600 MHz, DMSO-*d*₆)

Figure S19. ¹³C APT spectrum of compound 1 (600 MHz, DMSO-d₆)

Figure S20. ¹H-¹H COSY spectrum of compound 1

Figure S21. HSQC spectrum of compound 1

Figure S22. HMBC spectrum of compound 1

Figure S23. NOESY spectrum of compound 1

Figure S24. IR of compound 1

Figure S25. HRESIMS of compound 1

Figure S26. ¹H NMR spectrum of compound 2 (600 MHz, DMSO-*d*₆)

Figure S27. ¹³C APT spectrum of compound 2 (600 MHz, DMSO- d_6)

Figure S28. ¹H-¹H COSY spectrum of compound 2

Figure S29. HSQC spectrum of compound 2

Figure S30. HMBC spectrum of compound 2

Figure S31. NOESY spectrum of compound 2

Figure S32. IR of compound 2

Figure S33. HRESIMS of compound 2

Figure S34. ¹H NMR spectrum of compound 3 (600 MHz, DMSO-*d*₆)

Figure S35. ¹³C APT spectrum of compound 3 (600 MHz, DMSO- d_6)

Figure S36. ¹H-¹H COSY spectrum of compound 3

Figure S37. HSQC spectrum of compound 3

Figure S38. HMBC spectrum of compound 3

Figure S39. NOESY spectrum of compound 3

Figure S40. IR of compound 3

Figure S41. HRESIMS of compound 3

Figure S42. ¹H NMR spectrum of compound 4 (600 MHz, DMSO-d₆)

Figure S43. ¹³C APT spectrum of compound 4 (600 MHz, DMSO-*d*₆)

Figure S44. ¹H-¹H COSY spectrum of compound 4

Figure S45. HSQC spectrum of compound 4

Figure S46. HMBC spectrum of compound 4

- Figure S47. IR of compound 4
- Figure S48. HRESIMS of compound 4
- Figure S49. ¹H NMR spectrum of compound 5 (600 MHz, DMSO-*d*₆)
- Figure S50. ¹³C APT spectrum of compound 5 (600 MHz, DMSO-d₆)
- Figure S51. ¹H-¹H COSY spectrum of compound 5
- Figure S52. HSQC spectrum of compound 5
- Figure S53. HMBC spectrum of compound 5
- Figure S54. IR of compound 5
- Figure S55. HRESIMS of compound 5
- Figure S56. ¹H NMR spectrum of 6 (600 MHz, DMSO-*d*₆)
- Figure S57. ¹³C APT spectrum of 6 (600 MHz, DMSO-d₆)
- Figure S58. ¹H-¹H COSY spectrum of 6
- Figure S59. HSQC spectrum of 6
- Figure S60. HMBC spectrum of 6
- Figure S61. NOESY spectrum of 6
- Figure S62. IR spectrum of 6
- Figure S63. HRESIMS spectrum of 6
- Figure S64. ¹H NMR spectrum of 7 (600 MHz, DMSO-*d*₆)
- Figure S65. ¹³C APT spectrum of 7 (600 MHz, DMSO- d_6)
- Figure S66. ¹H-¹H COSY spectrum of 7
- Figure S67. HSQC spectrum of 7
- Figure S68. HMBC spectrum of 7
- Figure S69. NOESY spectrum of 7
- Figure S70. IR spectrum of 7
- Figure S71. HRESIMS spectrum of 7
- Figure S72. ¹H and ¹³C NMR and ESIMS spectra of roseotoxin C (8)
- Figure S73. ¹H and ¹³C NMR and ESIMS spectra of roseotoxin B (9)
- Figure S74. ¹H and ¹³C NMR and ESIMS spectra of roseotoxin A (10)
- Figure S75. ¹H and ¹³C NMR and ESIMS spectra of [β-MePro] destruxin E chlorohydrin (11)
- Figure S76. ¹H and ¹³C NMR and ESIMS spectra of destruxin A (12)
- Figure S77. ¹H and ¹³C NMR and ESIMS spectra of destruxin C (13)
- Figure S78. ¹H and ¹³C NMR and ESIMS spectra of destruxin D (14)
- Figure S79. ¹H and ¹³C NMR and ESIMS spectra of destruxin Ed (15)
- Figure S80. ¹H and ¹³C NMR and ESIMS spectra of destruxin F (16)
- Figure S81. ¹H and ¹³C NMR and ESIMS spectra of destruxin Chl (17)
- Figure S82. ¹H and ¹³C NMR and ESIMS spectra of destruxin Brh (18)
- Figure S83. ¹H and ¹³C NMR and ESIMS spectra of isaridin C (19)
- Figure S84. ¹H and ¹³C NMR and ESIMS spectra of isaridin A (20)

Figure S85. ¹H and ¹³C NMR and ESIMS spectra of isariin G1 (21)

Figure S86. ¹H and ¹³C NMR and ESIMS spectra of isariin G2 (22)

Figure S87. ¹H and ¹³C NMR and ESIMS spectra of isoisariin B (23)

Figure S88. ¹H and ¹³C NMR and ESIMS spectra of isariin E (24)

Figure S89. ¹H and ¹³C NMR and ESIMS spectra of nodupetide (25)

Figure S90. ¹H and ¹³C NMR and ESIMS spectra of isariin A (26)

References

Spectroscopic data of cyclohexadepsipeptides

Felinotoxin A (1): light yellowish crystal; mp 229.5-230.7 °C, $[\alpha]_D^{25}$ -110 (*c* 0.06, MeOH). IR (KBr) v_{max} 3385, 3292, 1670, 1632, 1446 cm⁻¹; ¹H and ¹³C NMR data, see Table S1; HRESIMS *m/z* 638.3766 [M + H]⁺ (calcd for C₃₁H₅₁N₅O₉, 638.3765).

Felinotoxin B (2): light yellowish amorphous; $[\alpha]_D^{25}$ -27 (*c* 0.06, MeOH). IR (KBr) ν_{max} 3385, 3292, 1670, 1632, 1446 cm⁻¹; ¹H and ¹³C NMR data, see Table S2; HRESIMS *m/z* 638.3761 [M + H]⁺ (calcd for C₃₁H₅₁N₅O₉, 638.3765).

Felinotoxin C (**3**): white crystal; mp 185-186 °C, $[\alpha]_D^{25}$ -56 (*c* 0.06, MeOH). IR (KBr) ν_{max} 3381, 2965, 1670, 1639, 1450 cm⁻¹; ¹H and ¹³C NMR data, see Table S3; HRESIMS *m/z* 626.3757 [M + H]⁺ (calcd for C₃₀H₅₂N₅O₉, 626.3765).

Felinotoxin D (4): white amorphous; $[\alpha]_D^{25}$ -36 (*c* 0.06, MeOH). IR (KBr) v_{max} 3382, 2965, 1639, 1449 cm⁻¹; ¹H and ¹³C NMR data, see Table S4; HRESIMS *m/z* 626.3763 [M + H]⁺ (calcd for C₃₀H₅₂N₅O₉, 626.3765).

Felinotoxin E (**5**): light yellowish amorphous; mp 235.1-235.8 °C, $[\alpha]_D^{25}$ -18 (*c* 0.06, MeOH). IR (KBr) ν_{max} 3378, 2968, 1678, 1209, 1186 cm⁻¹; ¹H and ¹³C NMR data, see Table S5; HRESIMS *m/z* 624.3763 [M + H]⁺ (calcd for C₃₀H₅₄N₅O₈, 624.3972).

Felinotoxin F (6): white amorphous; $[\alpha]_D^{25}$ -34 (*c* 0.06, MeOH). IR (KBr) v_{max} 3282, 2960, 1645, 1541 cm⁻¹; ¹H and ¹³C NMR data, see Table S6; HRESIMS *m/z* 703.4182 [M + H]⁺ (calcd for C₃₉H₅₅N₆O₆, 703.4183).

Felinotoxin G (7): white powder; $[\alpha]_D^{25}$ -13 (*c* 0.06, MeOH). IR (KBr) ν_{max} 3400, 3325, 2960, 1651, 1542 cm⁻¹; ¹H and ¹³C NMR data, see Table S7; HRESIMS *m/z* 568.3708 [M + H]⁺ (calcd for C₂₈H₅₀N₅O₇, 568.3710).

Roseotoxin C (8): white powder; $[\alpha]_D^{25}$ -32 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for β-Me-Pro: δ_H 3.98 (1H, d, *J* = 2.0 Hz), 2.49 (1H, m), 1.03 (3H, d, *J* = 7.0 Hz), 1.69/1.93 (2H, m), 3.65/3.80 (2H, m); δ_C 170.3 (CO), 66.5, 36.4, 18.7, 30.3, 44.6, Ile: δ_H 6.96 (1H, d, *J* = 9.4 Hz, NH), 4.76 (1H, dd, *J* = 6.9, 9.4 Hz), 1.85 (1H, m), 0.77 (3H, d, *J* = 6.2 Hz), 1.25/1.39 (2H, m), 0.78 (3H, t, *J* = 7.0 Hz); δ_C 173.1 (CO), 52.6, 36.7, 15.1, 23.9, 11.2, NMe-Val: δ_H 4.99 (1H, d, *J* = 10.9 Hz), 2.19 (1H, dqq, J = 6.5, 6.5, 10.9 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.86 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); & 170.5 (CO), 57.1, 26.7, 19.1, 19.1, NMe-Ala: $\delta_{\rm H} 5.17$ (1H, q, J = 6.5 Hz), 1.17 (3H, d, J = 6.5 Hz), 2.54 (3H, s, NMe); & 169.0 (CO), 54.8, 15.4, 27.7, β-Ala: $\delta_{\rm H} 8.10$ (1H, dd, J = 3.0, 10.0 Hz, NH), 2.35/2.77 (2H, m), 2.92/3.85 (2H, m); & 173.3 (CO), 34.0, 32.9, 2,5-dihydroxy-4-methylpentanoic acid: $\delta_{\rm H} 5.00$ (1H, d, J = 11.0 Hz), 1.37/1.89 (2H, m), 1.68 (1H, m), 0.88 (3H, d, J = 6.6 Hz), 3.72 (2H, m); & 173.1 (CO), 71.2, 33.6, 31.6, 15.9, 66.4, 23.1. C₃₀H₅₃N₅O₈, ESIMS *m/z* 624.4299 [M+H]⁺, 646.4120 [M+Na]⁺.

Roseotoxin B (**9**): white powder; $[α]_D^{25}$ -50 (*c* 0.24, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for β-Me-Pro: δ_H 3.97 (1H, d, *J* = 2.0 Hz), 2.47 (1H, m), 1.00 (3H, d, *J* = 7.0 Hz), 1.65/1.92 (2H, m), 3.67/3.76 (2H, m); δ_C 170.2 (CO), 66.5, 36.3, 18.6, 30.2, 44.7, Ile: δ_H 6.96 (1H, d, *J* = 9.4 Hz, NH), 4.78 (1H, dd, *J* = 6.6, 9.4 Hz), 1.83 (1H, m), 0.77 (3H, d, *J* = 6.2 Hz), 1.23/1.38 (2H, m), 0.78 (3H, t, *J* = 7.0 Hz); δ_C 173.0 (CO), 52.5, 36.7, 15.1, 23.8, 11.2, NMe-Val: δ_H 5.00 (1H, d, *J* = 10.9 Hz), 2.19 (1H, dqq, *J* = 6.5, 6.5, 10.9 Hz), 0.84 (3H, d, *J* = 6.5 Hz), 0.86 (3H, d, *J* = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.1, 26.7, 19.1, 19.1, 30.5 (NMe), NMe-Ala: δ_H 5.17 (1H, q, *J* = 6.6 Hz), 1.17 (3H, d, *J* = 6.6 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.8, 15.4, 27.7, β-Ala: δ_H 8.10 (1H, dd, *J* = 3.0, 10.0 Hz, NH), 2.36/2.77 (2H, m), 2.93/3.85 (2H, m); δ_C 173.2 (CO), 34.1, 32.9, 2-methylpent-4-enoic acid: δ_H 5.04 (1H, d, *J* = 11.0 Hz), 2.50/2.51 (2H, m), 5.81 (1H, m), 5.14 (1H, brd, *J* = 11.0 Hz), 5.21 (1H, brd, *J* = 16.0 Hz); δ_C 168.6 (CO), 71.9, 34.7, 131.7, 119.3. C₃₀H₄₉N₅O₇, ESIMS *m*/z 592.3715 [M+H]⁺, 614.3531 [M+Na]⁺.

Roseotoxin A (10): white powder; $[\alpha]_D^{25}$ -46 (*c* 0.24, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for β-Me-Pro: $\delta_H 3.98$ (1H, d, J = 2.0 Hz), 2.50 (1H, m), 1.03 (3H, d, J = 6.9 Hz), 1.70/1.95 (2H, m), 3.61/3.81 (2H, m); & 170.2 (CO), 66.5, 36.4, 18.7, 30.3, 44.6, Ile: $\delta_H 6.92$ (1H, d, J = 9.3 Hz, NH), 4.76 (1H, dd, J = 6.9, 9.3Hz), 1.86 (1H, m), 0.77 (3H, d, J = 6.2 Hz), 1.25/1.74 (2H, m), 0.78 (3H, t, J = 7.0Hz); & 173.0 (CO), 52.6, 36.7, 15.1, 23.9, 11.1, NMe-Val: $\delta_H 4.99$ (1H, d, J = 10.9Hz), 2.19 (1H, dqq, J = 6.5, 6.5, 10.9 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.87 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); $\delta_{\rm C}$ 170.5 (CO), 57.1, 26.7, 19.1, 19.1, NMe-Ala: $\delta_{\rm H}$ 5.17 (1H, q, *J* = 6.6 Hz), 1.17 (3H, d, *J* = 6.6 Hz), 2.54 (3H, s, NMe); $\delta_{\rm C}$ 169.2 (CO), 54.8, 15.4, 27.7, β-Ala: $\delta_{\rm H}$ 8.09 (1H, dd, *J* = 3.0, 9.0 Hz, NH), 2.35/2.77 (2H, m), 2.93/3.86 (2H, m); $\delta_{\rm C}$ 173.3 (CO), 34.0, 32.5, 2-hydroxy-4-methylpentanoic acid: $\delta_{\rm H}$ 4.97 (1H, d, *J* = 11.3 Hz), 1.47/1.70 (2H, m), 1.74 (1H, m), 0.92 (3H, d, *J* = 6.5 Hz), 0.94 (3H, d, *J* = 6.5 Hz); $\delta_{\rm C}$ 169.0 (CO), 71.5, 38.4, 24.0, 21.5, 23.1. C₃₁H₅₃N₅O₇, ESIMS *m/z* 608.4021 [M+H]⁺, 630.3839 [M+Na]⁺.

Desmethyldestruxin Ch1 (**11**): white powder; $[\alpha]_D^{25}$ -84 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for β-Me-Pro: δ_H 4.01 (1H, d, *J* = 2.0 Hz), 2.48 (1H, m), 1.03 (3H, d, *J* = 6.9 Hz), 1.68/1.94 (2H, m), 3.77/3.88 (2H, m); δ_C 170.2 (CO), 66.6, 36.5, 18.7, 30.2, 44.6, Ile: δ_H 6.92 (1H, d, *J* = 9.3 Hz, NH), 4.79 (1H, dd, *J* = 6.4, 9.3 Hz), 1.83 (1H, m), 0.78 (3H, d, *J* = 6.2 Hz), 1.24/1.38 (2H, m), 0.77 (3H, t, *J* = 7.0 Hz); δ_C 173.0 (CO), 52.5, 36.7, 15.2, 23.7, 11.2, NMe-Val: δ_H 5.02 (1H, d, *J* = 11.0 Hz), 2.19 (1H, dqq, *J* = 6.5, 6.5, 11.0 Hz), 0.86 (3H, d, *J* = 6.5 Hz), 0.86 (3H, d, *J* = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.1, 26.7, 19.1, 19.1, NMe-Ala: δ_H 5.17 (1H, q, *J* = 6.6 Hz), 1.17 (3H, d, *J* = 6.6 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.8, 15.3, 27.7, β-Ala: δ_H 8.09 (1H, dd, *J* = 3.0, 9.6 Hz, NH), 2.35/2.78 (2H, m), 2.94/3.84 (2H, m); δ_C 173.2 (CO), 34.1, 32.9, 5-chloro-2,4-dihydroxypentanoic acid: δ_H 5.09 (1H, t, *J* = 7.2 Hz), 2.00 (2H, m), 3.66 (1H, m), 3.64 (2H, m); δ_C 168.7 (CO), 71.4, 35.1, 66.6, 49.4. C₃₀H₅₀CIN₅O8, ESIMS *m/z* 644.3451 [M+H]⁺, 666.3268 [M+Na]⁺.

Destruxin A (12): white powder; $[\alpha]_D^{25}$ -100 (*c* 0.06, MeOH). ¹H and ⁻¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: $\delta_H 4.39$ (1H, dd, J = 2.0, 7.5 Hz), 1.97/2.10 (2H, m), 1.74/1.98 (2H, m), 3.54/3.81 (2H, m); δ_C 170.5 (CO), 60.0, 29.0, 23.5, 46.3, Ile: $\delta_H 6.96$ (1H, d, J = 9.4 Hz, NH), 4.80 (1H, dd, J = 6.5, 9.4 Hz), 1.83 (1H, m), 0.77 (3H, d, J = 7.0 Hz), 1.21/1.36 (2H, m), 0.78 (3H, t, J = 7.0 Hz); δ_C 173.0 (CO), 52.6, 36.8, 15.2, 23.7, 11.2, NMe-Val: $\delta_H 4.99$ (1H, d, J = 11.0 Hz), 2.18 (1H, dqq, J = 6.5, 6.5, 11.0 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.86 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.2, 26.7, 19.1, 19.1, 30.5 (NMe), NMe-Ala: $\delta_H 5.18$ (1H, q, J = 6.7 Hz), 1.17 (3H, d, J = 6.7 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.8, 15.4, 27.7,

β-Ala: $\delta_{\rm H}$ 8.07 (1H, dd, J = 2.0, 10.0 Hz, NH), 2.33/2.48 (2H, m), 2.93/3.84 (2H, m); $\delta_{\rm C}$ 173.2 (CO), 34.0, 32.9, 2-hydroxypent-4-enoic acid: $\delta_{\rm H}$ 5.02 (1H, t, J = 7.0 Hz), 2.20/2.36 (2H, m), 5.80 (1H, m), 5.12 (1H, d, J = 11.0 Hz), 5.19 (1H, d, J = 11.0 Hz); $\delta_{\rm C}$ 168.2 (CO), 72.1, 34.2, 132.2, 118.8. C₂₉H₄₇N₅O₇, ESIMS *m*/*z* 578.3778 [M+H]⁺, 600.3605[M+Na]⁺.

Destruxin C (**13**): white powder; $[\alpha]_D^{25}$ -64 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: $\delta_H 4.38$ (1H, dd, J = 2.0, 7.6 Hz), 2.12/2.20 (2H, m), 1.75/2.01 (2H, m), 3.49/3.86 (2H, m); δ_C 170.5 (CO), 60.0, 28.9, 23.6, 46.1, Ile: $\delta_H 6.96$ (1H, d, J = 9.4 Hz, NH), 4.79 (1H, dd, J = 6.7, 9.4 Hz), 1.85 (1H, m), 0.78 (3H, d, J = 7.0 Hz), 1.25/1.39 (2H, m), 0.77 (3H, t, J = 7.0 Hz); δ_C 173.0 (CO), 52.6, 36.7, 15.1, 23.8, 11.2, NMe-Val: $\delta_H 4.97$ (1H, d, J = 10.8 Hz), 2.18 (1H, dqq, J = 6.5, 6.5, 10.8 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.86 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.2, 26.7, 19.1, 19.1, 30.5 (NMe), NMe-Ala: $\delta_H 5.17$ (1H, q, J = 6.7Hz), 1.17 (3H, d, J = 6.7 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.7, 15.4, 27.7, β -Ala: $\delta_H 8.07$ (1H, dd, J = 2.0, 10.0 Hz, NH), 2.33/2.78 (2H, m), 2.93/3.84 (2H, m); δ_C 173.3 (CO), 34.0, 32.9, 2,5-dihydroxy-methypentanedioic acid: $\delta_H 4.98$ (1H, t, J =7.0 Hz), 1.36/1.87 (2H, m), 1.71 (1H, m), 0.87 (3H, d, J = 7.0 Hz), 3.25 (2H, m); δ_C 169.0 (CO), 72.2, 33.4, 31.6, 15.8, 66.3. C₂₉H₅₁N₅O₈, ESIMS *m/z* 610.4145 [M+H]⁺, 632.3973 [M+Na]⁺.

Destruxin D (14): white powder; $[\alpha]_D^{25}$ -80 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: $\delta_H 4.36$ (1H, dd, *J* = 2.0, 7.5 Hz), 2.00/2.11 (2H, m), 1.23/1.78 (2H, m), 3.54/3.83 (2H, m); δ_C 170.6 (CO), 60.1, 28.9, 23.7, 46.1, Ile: $\delta_H 6.96$ (1H, d, *J* = 9.4 Hz, NH), 4.79 (1H, dd, *J* = 6.5, 9.4 Hz), 1.83 (1H, m), 0.78 (3H, d, *J* = 7.0 Hz), 1.23/1.38 (2H, m), 0.77 (3H, t, *J* = 7.0 Hz); δ_C 173.0 (CO), 52.6, 36.7, 15.2, 23.8, 11.2, NMe-Val: $\delta_H 4.97$ (1H, d, *J* = 10.5 Hz), 2.19 (1H, dqq, *J* = 6.5, 6.5, 10.5 Hz), 0.84 (3H, d, *J* = 6.5 Hz), 0.87 (3H, d, *J* = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.2, 26.7, 19.1, 19.1, 30.5 (NMe), NMe-Ala: $\delta_H 5.17$ (1H, q, *J* = 6.7 Hz), 1.17 (3H, d, *J* = 6.7 Hz), 2.54 (3H, s, NMe); δ_C 169.1 (CO), 54.8, 15.4, 27.7, β-Ala: $\delta_H 8.05$ (1H, dd, *J* = 2.0, 10.0 Hz, NH), 2.35/2.75 (2H, m), 2.93/3.83 (2H, m); $\delta_{\rm C}$ 173.1 (CO), 34.0, 32.9, 2-hydroxy-4-methylpentanedioic acid: $\delta_{\rm H}$ 4.99 (1H, t, J = 7.0 Hz), 1.75/2.00 (2H, m), 2.49 (1H, m), 1.13 (3H, d, J = 7.0 Hz); $\delta_{\rm C}$ 176.8 (COOH), 168.3 (CO), 71.1, 23.6, 35.0, 16.9. C₃₀H₄₈N₅O₉, ESIMS *m*/*z* 624.3854 [M+H]⁺, 600.3605[M+Na]⁺.

Destruxin Ed (15): white powder; $[\alpha]_D^{25}$ -53 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: δ_H 4.40 (1H, dd, J = 2.0, 7.7 Hz), 2.00/2.09 (2H, m), 1.76/1.99 (2H, m), 3.80 (2H, m); δ_C 170.5 (CO), 60.0, 29.3, 23.5, 46.0, Ile: δ_H 6.97 (1H, d, J = 9.5 Hz, NH), 4.81 (1H, dd, J = 6.3, 9.5 Hz), 1.81 (1H, m), 0.78 (3H, d, J = 6.0 Hz), 1.23/1.37 (2H, m), 0.77 (3H, t, J = 7.0 Hz); δ_C 173.0 (CO), 52.5, 36.7, 15.2, 23.6, 11.2, NMe-Val: δ_H 5.01 (1H, d, J = 10.8 Hz), 2.19 (1H, dqq, J = 6.5, 6.5,10.9 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.87 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.1, 26.7, 19.1, 19.1, NMe-Ala: δ_H 5.17 (1H, q, J = 6.7 Hz), 1.17 (3H, d, J = 6.7 Hz), 2.54 (3H, s, NMe); δ_C 168.8 (CO), 54.8, 15.4, 27.7, β -Ala: δ_H 8.07 (1H, dd, J = 3.0, 10.0 Hz, NH), 2.35/2.77 (2H, m), 2.94/3.84 (2H, m); δ_C 173.3 (CO), 34.2, 32.9, 2,4,5-trihydroxypentanoic acid: δ_H 5.09 (1H, t, J = 7.0 Hz), 1.75/1.94 (2H, m), 3.41 (1H, m), 3.27/3.34 (2H, m); δ_C 169.0 (CO), 71.1, 35.0, 67.2, 65.8. C₂₉H₄₉N₅O₉, ESIMS *m/z* 612.3611 [M+H]⁺.

Destruxin F (16): white powder; $[\alpha]_D^{25}$ -106 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: δ_H 4.40 (1H, dd, J = 2.0, 7.6 Hz), 1.99/2.09 (2H, m), 1.76/2.00 (2H, m), 3.76/3.80 (2H, m); δ_C 170.5 (CO), 60.0, 29.2, 23.5, 46.1, IIe: δ_H 6.96 (1H, d, J = 9.4 Hz, NH), 4.81 (1H, dd, J = 6.3, 9.4 Hz), 1.82 (1H, m), 0.77 (3H, d, J = 6.0 Hz), 1.23/1.36 (2H, m), 0.78 (3H, t, J = 7.0 Hz); δ_C 172.9 (CO), 52.6, 36.7, 15.2, 23.7, 11.2, NMe-Val: δ_H 5.00 (1H, d, J = 11.0 Hz), 2.18 (1H, dqq, J = 6.5, 6.5, 11.0 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.87 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.1, 26.7, 19.1, 19.1, 30.5, NMe-Ala: δ_H 5.16 (1H, q, J = 6.6 Hz), 1.17 (3H, d, J = 6.6 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.8, 15.3, 27.7, β -Ala: δ_H 8.07 (1H, dd, J = 2.0, 10.0 Hz, NH), 2.34/2.77 (2H, m), 2.94/3.84 (2H, m); δ_C 173.3 (CO), 34.1, 32.9, 2,4-dihydroxypentoic acid: δ_H 5.06 (1H, t, J = 7.0 Hz), 1.79/1.80 (2H, m), 3.62 (1H, m), 1.10 (3H, d, J = 7.0 Hz); δ_C 168.8 (CO), 71.0, 40.4, 62.2, 23.7. C₂₉H₄₉N₅O₈, ESIMS *m/z* 596.3654 [M+H]⁺.

Destruxin Chl (17): white powder; $[α]_D^{25}$ -128 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: δ_H 4.40 (1H, dd, J = 2.0, 7.6 Hz), 2.00/2.09 (2H, m), 1.76/2.00 (2H, m), 3.71/3.82 (2H, m); δ_C 170.5 (CO), 60.1, 29.2, 23.5, 46.2, IIe: δ_H 6.97 (1H, d, J = 9.4 Hz, NH), 4.81 (1H, dd, J = 6.4, 9.4 Hz), 1.83 (1H, m), 0.77 (3H, d, J = 6.0 Hz), 1.23/1.38 (2H, m), 0.78 (3H, t, J = 7.0 Hz); δ_C 173.0 (CO), 52.6, 36.8, 15.2, 23.7, 11.2, NMe-Val: δ_H 5.00 (1H, d, J = 10.9 Hz), 2.18 (1H, dqq, J = 6.5, 6.5, 10.9 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.87 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.1, 26.7, 19.1, 19.2, NMe-Ala: δ_H 5.16 (1H, q, J = 6.7 Hz), 1.17 (3H, d, J = 6.7 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.8, 15.4, 27.8, β-Ala: δ_H 8.07 (1H, dd, J = 2.0, 10.0 Hz, NH), 2.34/2.78 (2H, m), 2.94/3.83 (2H, m); δ_C 173.3 (CO), 34.3, 32.9, 5-chloro-2,4-dihydroxy pentanoic acid: δ_H 5.06 (1H, t, J = 7.0 Hz), 1.92/1.96 (2H, m), 3.72 (1H, m), 3.62/3.63 (2H, m); δ_C 168.4 (CO), 70.5, 35.0, 66.3, 46.5. C₂₉H₄₈ClN₅O₈, ESIMS *m/z* 630.3519 [M+H]⁺, 652.2346 [M+Na]⁺.

Destruxin Br1 (**18**): white crystal; mp 202.9-204.8, $[\alpha]_D^{25}$ -43 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: δ_H 4.40 (1H, dd, J = 2.0, 7.5 Hz), 2.00/2.09 (2H, m), 1.76/2.00 (2H, m), 3.70/3.80 (2H, m); δ_C 170.5 (CO), 60.0, 29.2, 23.5, 46.2, Ile: δ_H 6.97 (1H, d, J = 9.4 Hz, NH), 4.81 (1H, dd, J = 6.4, 9.4 Hz), 1.81 (1H, m), 0.78 (3H, d, J = 6.0 Hz), 1.23/1.38 (2H, m), 0.77 (3H, t, J = 7.0 Hz); δ_C 172.9 (CO), 52.6, 36.7, 15.2, 23.7, 11.2, NMe-Val: δ_H 5.00 (1H, d, J = 10.8 Hz), 2.19 (1H, dqq, J = 6.5, 6.5, 10.9 Hz), 0.84 (3H, d, J = 6.5 Hz), 0.87 (3H, d, J = 6.5 Hz), 3.13 (3H, s, NMe); δ_C 170.5 (CO), 57.1, 26.7, 19.1, 19.1, NMe-Ala: δ_H 5.16 (1H, q, J = 6.6 Hz), 1.17 (3H, d, J = 6.6 Hz), 2.54 (3H, s, NMe); δ_C 169.0 (CO), 54.8, 15.4, 27.7, β-Ala: δ_H 8.09 (1H, dd, J = 2.0, 10.0 Hz, NH), 2.36/2.78 (2H, m), 2.93/3.84 (2H, m); δ_C 173.2 (CO), 34.1, 32.9, 25-bromo-2,4-dihydroxypentanic acid: δ_H 5.06 (1H, t, J = 7.2 Hz), 1.95 (2H, m), 3.77 (1H, m), 3.70/3.82 (2H, m); δ_C 168.4 (CO), 71.5, 35.8, 65.8, 46.2. C₂₉H₄₈BrN₅O₈, ESIMS *m/z* 674.2794 [M+H]⁺.

Isaridin C (19): white powder; $[\alpha]_D^{25}$ -40 (*c* 0.12, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Pro: δ_H 4.10 (1H, dd, *J* = 2.0, 8.3 Hz), 1.97, 2.08 (2H, m),

1.06, 1.69 (2H, m), 3.27 (2H, m); & 171.1 (CO), 60.1, 31.5, 21.4, 46.7, Phe: $\delta_{\rm H}$ 7.90 (1H, d, J = 7.6 Hz, NH), 4.61 (1H, ddd, J = 3.0, 7.6, 8.0 Hz), 2.89 (1H, dd, J = 3.0, 13.0 Hz), 2.96 (1H, dd, J = 8.0, 13.0 Hz), 7.90 (2H, J = 8.0 Hz), 7.28 (2H, d, J = 8.0 Hz), 7.26 (1H, t, J = 8.0 Hz); & 172.5 (CO), 52.7, 34.5, 137.2, 129.0 (2C), 128.3 (2C), 126.6, NMe-Val: $\delta_{\rm H}$ 5.03 (1H, d, J = 10.7 Hz), 2.24 (1H, dqq, J = 6.5, 6.5, 10.7 Hz), 0.77 (3H, d, J = 6.5 Hz), 0.73 (3H, d, J = 6.5 Hz), 2.98 (3H, s, NMe); & 168.9 (CO), 56.5, 26.3, 19.2, 18.4, NMe-Leu: $\delta_{\rm H}$ 4.92 (1H, d, J = 7.0 Hz), 1.20/2.08 (2H, m), 1.41 (1H, m), 0.92 (6H, d, J = 6.5 Hz), 2.86 (3H, s, NMe); & 168.0 (CO), 58.0, 38.0, 24.7, 22.5, 22.1, β-Ala: $\delta_{\rm H}$ 7.35 (1H, t, J = 5.6 Hz, NH), 2.50/2.65 (2H, m), 3.44/3.55 (2H, m); $\delta_{\rm C}$ 173.1 (CO), 34.4, 35.4, 2-hydroxy-4-methylpentanoic acid: $\delta_{\rm H}$ 5.22 (1H, d, J = 11.3 Hz), 1.47/1.64 (2H, m), 1.41 (1H, m), 0.92 (3H, d, J = 6.5 Hz), 0.88 (3H, d, J = 6.5 Hz); & 2.6 168.9 (CO), 72.6, 37.7, 24.7, 20.1, 23.2. C₃₆H₅₅N₅O₇, ESIMS m/z 670.4243 [M+H]⁺.

Isaridin A (20): white powder; $[\alpha]_D^{25}$ -72 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-d₆) data for Pro: $\delta_{\rm H}$ 4.10 (1H, dd, J = 2.0, 7.0 Hz), 1.97/2.07 (2H, m), 1.06/1.67 (2H, m), 3.26 (1H, m), 3.30 (1H, m); & 171.1 (CO), 60.1, 31.4, 21.4, 46.7, Phe: $\delta_{\rm H}$ 7.90 (1H, d, J = 7.8 Hz, NH), 4.52 (1H, ddd, J = 3.0, 7.6, 7.8 Hz), 2.87 (1H, dd, J = 3.0, 13.0 Hz), 2.88 (1H, dd, J = 7.6, 13.0 Hz), 7.90 (2H, J = 8.0 Hz), 7.31 (2H, d, J = 8.0 Hz), 7.26 (1H, t, J = 8.0 Hz); $\delta_{\rm C}$ 171.7 (CO), 53.0, 34.3, 137.5, 129.0 (2C), 10.7 Hz), 0.71 (3H, d, J = 6.5 Hz), 0.58 (3H, d, J = 6.5 Hz), 2.88 (3H, s, NMe); $\delta_{\rm C}$ 169.1 (CO), 56.3, 25.7, 18.1, 18.0, NMe-Phe: $\delta_{\rm H}$ 5.14 (1H, dd, J = 6.0, 8.2 Hz), 2.77 (1H, dd, J = 8.2, 12.0 Hz), 3.50 (1H, dd, J = 6.0, 12.0 Hz), 7.30 (2H, d, J = 8.0 Hz),7.26 (2H, d, J = 8.0 Hz), 7.21 (1H, t, J = 8.0 Hz), 2.81 (3H, s, NMe); $\delta_{\rm C}$ 167.7 (CO), 62.0, 34.9, 137.9, 128.8 (2C), 128.2 (2C), 126.5, 29.5 (NMe), β-Ala: $\delta_{\rm H}$ 7.53 (1H, t, J = 5.3 Hz, NH), 2.50/2.59 (2H, m), 3.33/3.67 (2H, m); $\delta_{\rm C}$ 173.3 (CO), 34.0, 35.6, 2-hydroxy-4-methylpentanoic acid: $\delta_{\rm H}$ 5.30 (1H, dd, J = 1.2, 11.5 Hz), 1.46/1.64 (2H, m), 1.87 (1H, m), 0.92 (3H, d, J = 6.5 Hz), 0.98 (3H, d, J = 6.5 Hz); $\delta_{\rm C}$ 169.0 (CO), 72.5, 37.8, 21.4, 20.0, 23.3. C₃₉H₅₃N₅O₇, ESIMS *m/z* 704.4279 [M+H]⁺.

Isariin G1 (21): white amorphous; $[\alpha]_D^{25}$ -14 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Gly: δ_H 7.90 (1H, dd, *J* = 3.1, 5.5 Hz, NH), 3.44 (1H, dd, *J* = 3.1, 12.0 Hz), 4.12 (1H, *J* = 5.5, 12.0 Hz); δ_C 169.1 (CO), 42.0, Val¹: δ_H 8.10 (1H, d, *J* = 7.1 Hz, NH), 4.00 (1H, dd, 6.5, 7.1 Hz), 1.86 (1H, m), 0.89 (3H, d, *J* = 6.5 Hz), 0.86 (3H, d, *J* = 6.5 Hz); δ_C 171.8 (CO), 58.9, 29.4, 23.0, 18.7, Leu: δ_H 8.65 (1H, d, *J* = 6.4 Hz, NH), 4.04 (1H, dt, *J* = 6.4, 6.5 Hz), 1.50 (2H, m), 1.63 (1H, m), 0.81 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.5 Hz); δ_C 171.2 (CO), 51.7, 38.6, 24.1, 20.8, 19.1, Ala: 7.96 (1H, d, *J* = 6.4 Hz, NH), 4.19 (1H, dd, *J* = 6.4, 7.0 Hz), 1.22 (3H, d, *J* = 7.0 Hz); δ_C 172.0 (CO), 47.9, 17.2, Val²: δ_H 7.47 (1H, d, *J* = 6.2 Hz, NH), 3.96 (1H, dd, *J* = 6.2, 6.5 Hz), 2.06 (1H, m), 0.88 (3H, d, *J* = 6.5 Hz), 0.84 (3H, d, *J* = 6.5 Hz); δ_C 169.3 (CO), 58.2, 29.2, 17.8, 18.9, 3-hydroxydecanoic acid: δ_H 2.34 (1H, dd, *J* = 2.5, 14.0 Hz), 2.45 (1H, dd, *J* = 6.5, 14.0 Hz), 4.93 (1H, m), 1.23-1.25 (12H, m), 0.85 (3H, t, *J* = 6.5 Hz); δ_C 170.1 (CO), 40.0, 72.0, 22.0-33.2, 13.9. C₃₁H₅₅N₅O₇, ESIMS *m/z* 610.4227 [M+H]⁺.

Isariin G2 (22): white amorphous; $[\alpha]_D^{25}$ -5 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Gly: δ_H 7.94 (1H, dd, J = 3.1, 5.5 Hz, NH), 3.45 (1H, dd, J = 3.1, 12.0 Hz, α -Ha), 4.06 (1H, dd, J = 5.5, 12.0 Hz, α -Hb); δ_C 169.0 (CO), 42.5, Val: δ_H 7.79 (1H, d, J = 7.1 Hz, NH), 4.09 (1H, dd, J = 6.0, 7.1 Hz), 1.23 (1H, dqq, J = 6.0, 6.5, 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.87 (3H, d, J = 6.5 Hz); δ_C 171.8 (CO), 58.2, 29.9, 22.9, 18.6, Leu: δ_H 8.64 (3H, d, J = 6.4 Hz, NH), 4.02 (1H, dt, J =6.4, 6.5 Hz), 1.49 (2H, m), 1.64 (1H, m), 0.81 (3H, d, J = 6.5 Hz), 0.84 (3H, d, J = 6.5Hz); δ_C 171.1 (CO), 51.9, 38.5, 24.1, 21.1, 19.0, Ala¹: δ_H 7.99 (1H, d, J = 6.4 Hz, NH), 4.20 (1H, dq, J = 6.5, 7.0 Hz), 1.20 (3H, J = 7.0 Hz); δ_C 171.9 (CO), 47.5, 17.2, Ala²: δ_H 7.87 (1H, d, J = 6.4 Hz, NH), 4.07 (1H, dq, J = 6.4, 7.0 Hz), 1.30 (3H, d, J = 7.0Hz); δ_C 171.7 (CO), 48.6, 16.4, 3-hydroxydodecanoic acid: δ_H 2.40 (2H, d, J = 6.0Hz), 4.94 (1H, m), 0.90-1.25 (16H, m), 0.86 (3H, d, J = 6.0 Hz); δ_C 169.4 (CO), 39.5, 71.5, 22.9-33.4, 13.9. C₃₁H₅₅N₅O₇, ESIMS *m/z* 610.4227 [M+H]⁺.

Isoisariin B (23): white amorphous; $[\alpha]_D^{25}$ -12 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Gly: δ_H 7.91 (1H, dd, *J* = 3.8, 6.7 Hz, NH), 3.44 (1H,

dd, J = 3.8, 14.0 Hz), 4.09 (1H, dd, J = 6.7, 14.0 Hz); & 169.1 (CO), 41.9, Val¹: $\delta_{\rm H}$ 8.11 (1H, d, J = 7.6 Hz), 4.04 (1H, dd, J = 6.5, 7.6 Hz), 1.88 (1H, m), 0.86 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz); & 171.7 (CO), 58.8, 29.5, 23.0, 18.7, Leu: $\delta_{\rm H}$ 8.65 (1H, d, J = 6.5 Hz, NH), 4.03 (1H, m), 1.42 (2H, m), 1.61 (1H, m), 0.81 (3H, d, J = 6.5 Hz), 0.92 (3H, d, J = 6.5 Hz); & 171.3 (CO), 51.9, 38.7, 24.2, 21.0, 19.0, Ala: $\delta_{\rm H}$ 7.97 (1H, d, J = 6.5 Hz, NH), 4.19 (1H, dq, J = 6.5, 6.6 Hz), 1.22 (3H, d, J = 6.6 Hz); & 171.9 (CO), 48.0, 17.3, Val²: $\delta_{\rm H}$ 7.47 (1H, d, J = 7.7 Hz, NH), 4.08 (1H, dd, J = 6.5, 7.7 Hz), 2.07 (1H, m), 0.86 (3H, d, J = 6.5 Hz), 0.88 (3H, d, J = 6.5 Hz); $\delta_{\rm C}$ 170.8 (CO), 57.7, 29.5, 17.5, 19.0, 2-hydroxy-3-methylheptanoic acid: $\delta_{\rm H}$ 2.23 (1H, dd, J = 3.0, 14.0 Hz), 2.52 (1H, dd, J = 6.0, 14.0 Hz), 4.91 (1H, m), 1.67 (1H, m), 0.84 (3H, d, J = 6.5 Hz); $\delta_{\rm C}$ 169.9 (CO), 31.6, 75.5, 36.2, 14.8, 31.2, 28.9, 22.4, 13.9. C₃₀H₅₃N₅O₇, ESIMS m/z 596.4350 [M+H]⁺.

Isariin E (**24**): white amorphous; $[\alpha]_D^{25}$ -10 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Gly: δ_H 7.91 (1H, dd, *J* = 3.1, 5.5 Hz, NH), 3.44 (1H, dd, *J* = 3.1, 14.0 Hz), 4.12 (1H, dd, *J* = 5.5, 14.0 Hz); & 169.2 (CO), 42.0, Val¹: δ_H 8.11 (1H, d, *J* = 7.1 Hz), 4.00 (1H, dd, *J* = 6.5, 7.1 Hz), 1.86 (1H, m), 0.89 (3H, d, *J* = 6.5 Hz), 0.87 (3H, d, *J* = 6.5 Hz); & 171.8 (CO), 59.0, 29.4, 23.1, 18.7, Leu: δ_H 8.66 (1H, d, *J* = 6.4 Hz, NH), 4.04 (1H, m), 1.50 (2H, m), 1.63 (1H, m), 0.80 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.5 Hz); & 171.2 (CO), 51.7, 38.6, 24.1, 20.8, 18.9, Ala: δ_H 7.97 (1H, d, *J* = 6.4 Hz, NH), 4.19 (1H, dq, *J* = 6.4, 7.0 Hz), 1.22 (1H, d, *J* = 7.0 Hz); & 172.0 (CO), 47.9, 17.3, Val²: δ_H 7.47 (1H, d, *J* = 7.1 Hz, NH), 3.97 (1H, dd, *J* = 6.5, 7.1 Hz), 2.06 (1H, m), 0.88 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.1 Hz), 0.88 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.4 Hz, NH), 4.19 (1H, dq, *J* = 7.1 Hz, NH), 3.97 (1H, dd, *J* = 6.5, 7.1 Hz), 2.06 (1H, m), 0.88 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.5 Hz); & 170.8 (CO), 58.2, 29.2, 17.9, 19.2, 3-hydroxyhexanoic acid: δ_H 2.35 (1H, dd, *J* = 3.0, 14.0 Hz), 2.44 (1H, dd, *J* = 6.0, 14.0 Hz), 4.94 (1H, m), 1.51 (2H, m), 1.26 (2H, m), 0.85 (3H, t, *J* = 6.5 Hz); & 169.3 (CO), 40.0, 71.9, 35.4, 17.8, 13.7. C₂₇H₄₇N₅O₇, ESIMS *m*/z 554.3866 [M+H]⁺.

Nodupetide (25): white amorphous; $[\alpha]_D^{25}$ -14 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Gly: δ_H 7.89 (1H, dd, *J* = 3.2, 4.8 Hz, NH), 3.45 (1H,

dd, J = 3.2, 14.0 Hz), 4.08 (1H, dd, J = 4.8, 14.0 Hz); & 169.1 (CO), 42.0, Val¹: 8.08 (1H, d, J = 7.6 Hz, NH), 4.05 (1H, dd, J = 6.5, 7.6 Hz), 1.87 (1H, m), 0.89 (3H, d, J = 6.5 Hz), 0.88 (3H, d, J = 6.5 Hz); & 171.7 (CO), 58.8, 29.5, 23.0, 18.7, Leu: $\delta_{\rm H}$ 8.65 (1H, d, J = 6.4 Hz, NH), 4.04 (1H, m), 1.49 (2H, m), 1.64 (1H, m), 0.81 (3H, d, J = 6.5 Hz), 0.88 (3H, d, J = 6.5 Hz); & 171.2 (CO), 51.8, 38.6, 24.1, 21.0, 18.9, Ala: $\delta_{\rm H}$ 7.99 (1H, d, J = 7.9 Hz, NH), 4.19 (1H, dd, J = 6.5, 7.9 Hz), 1.22 (3H, d, J = 6.5 Hz); & 171.9 (CO), 48.0, 17.4, Val²: $\delta_{\rm H}$ 7.44 (1H, d, J = 6.9 Hz, NH), 4.09 (1H, dd, J = 6.5, 6.9 Hz), 2.08 (1H, m), 0.88 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz); $\delta_{\rm C}$ 170.8 (CO), 57.7, 29.5, 17.6, 19.0, 3-hydroxy-4-methylhexanoic acid: 2.25 (1H, dd, J = 3.0, 14.0 Hz), 2.52 (1H, dd, J = 6.5, 14.0 Hz), 4.93 (1H, m), 1.60 (1H, m), 0.84 (3H, d, J = 6.0 Hz), m), 1.06, 1.41 (2H, m), 0.85 (3H, t, J = 6.5 Hz); $\delta_{\rm C}$ 169.8 (CO), 37.7, 75.4, 38.0, 14.3, 24.5, 11.5. C₂₈H₄₉N₅O7, ESIMS *m*/z 568.3743 [M+H]⁺.

Isariin A (**26**): white amorphous; $[\alpha]_D^{25}$ -32 (*c* 0.06, MeOH). ¹H and ¹³C NMR (100 MHz, DMSO-*d*₆) data for Gly: δ_H 7.90 (1H, dd, *J* = 3.1, 5.5 Hz, NH), 3.45 (1H, dd, *J* = 3.1, 14.0 Hz), 4.11 (1H, dd, *J* = 5.5, 14.0 Hz); δ_C 169.1 (CO), 42.0, Val¹: δ_H 8.08 (1H, d, *J* = 7.1 Hz), 4.00 (1H, dd, *J* = 6.5, 7.1 Hz), 1.87 (1H, m), 0.89 (3H, d, *J* = 6.5 Hz), 0.87 (3H, d, *J* = 6.5 Hz); δ_C 171.7 (CO), 58.9, 29.4, 23.0, 18.7, Leu: δ_H 8.64 (1H, d, *J* = 6.4 Hz, NH), 4.03 (1H, m), 1.50 (2H, m), 1.23 (1H, m), 0.81 (3H, d, *J* = 6.5 Hz), 0.87 (3H, d, *J* = 6.5 Hz); δ_C 171.2 (CO), 51.7, 38.6, 24.1, 20.9, 18.9, Ala: δ_H 7.97 (1H, d, *J* = 6.4 Hz, NH), 4.20 (1H, dq, *J* = 6.4, 7.0 Hz), 1.22 (1H, d, *J* = 7.0 Hz); δ_C 172.0 (CO), 47.9, 17.2, Val²: δ_H 7.49 (1H, d, *J* = 6.2 Hz, NH), 3.96 (1H, dd, *J* = 6.2, 6.5 Hz), 2.06 (1H, m), 0.86 (3H, d, *J* = 6.5 Hz), 0.88 (3H, d, *J* = 6.5 Hz); δ_C 170.8 (CO), 58.2, 29.2, 17.9, 19.1, 3-hydroxydodecanoic acid: δ_H 2.25 (1H, dd, *J* = 3.0, 14.0 Hz), 2.45 (1H, dd, *J* = 6.0, 14.0 Hz), 4.94 (1H, m), 1.23-1.63 (16H, m), 0.85 (3H, t, *J* = 6.5 Hz); δ_C 169.3 (CO), 39.9, 72.0, 22.1-33.2, 13.9. C₃₃H₅₉N₅O₇, ESIMS *m/z* 638.4532 [M+H]⁺.

No.	$\delta_{\rm H}(J \text{ in Hz})$	δc	No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
Acid		-	δ^1	0.78, t (7.0)	11.1, CH ₃
CO		168.5, C	NH	6.88, d (9.4)	-
α	4.99, dd (5.0,10.0)	71.1, CH	N-MeVal		-
β	1.74, ddd (4.0, 5.0,12.0) 2.11, td (10.0,12.0)	33.3, CH ₂	СО		170.5, C
γ	2.46, ddq (4.0,6.9,10.0)	34.9, CH	α	5.00, d (12.0)	57.1, CH
δ^2	1.14, d (6.9)	17.2, CH ₃	β	2.18, dqq(6.4,6.4,12.0)	26.7, CH
δ^1		176.7, C	γ^1	0.84, d (6.4)	19.1, CH ₃
MePro		-	γ^2	0.87, d (6.4)	19.1, CH ₃
CO		170.3, C	N-CH ₃	3.13, s	30.5, CH ₃
α	3.96, d (2.0)	66.6, CH	N-MeAla		-
β	2.47, m	36.4, CH	CO		169.0, C
β-Me	1.05, d (7.0)	18.7, CH ₃	α	5.17, q (6.6)	54.8, CH
γ	1.64, m; 1.94, m	30.5, CH ₂	β	1.17, d (6.6)	15.4, CH ₃
δ	3.68, m; 3.77, m	44.7, CH ₂	N-CH ₃	2.54, s	27.7, CH ₃
Ile	-	-	Ala		-
CO	-	173.1, C	CO		173.2, C
α	4.76, dd (6.7, 9.4)	52.5, CH	α	2.35,dd (11.1, 18.2) ; 2.75, dd (4.0, 18.0)	34.0, CH ₂
β	1.83, m	36.9, CH	β	2.93, ddd (2.0,11.0,11.1) 3.85, dt (4.0,11.0)	32.9, CH ₂
γ^2	0.77, d (5.6)	15.1, CH	NH	8.09, dd (2.0, 11.0)	
γ^1	1.23, m; 1.39, m	23.9, CH ₂			

Table S1. The ¹H and ¹³C NMR data of **1** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
Acid		-	δ^1	0.77, t (7.0)	11.2, CH ₃
CO		168.7, C	NH	6.86, d (9.4)	-
α	4.96, dd (2.0, 11.0)	71.7, CH	N-MeVal	-	-
	1.74, ddd (2.0,				
β	11.0,12.0)	33.4, CH ₂	CO	-	170.5, C
	1.95, ddd (4.0,11.0,12.0)				
γ	2.57, m	34.9, CH	α	4.99, m	57.1, CH
δ^2	1.15, d (6.9)	17.8, CH ₃	β	2.18, m	26.6, CH
δ^1		176.6, C	γ^1	0.83, d (6.4)	19.1, CH ₃
MePro		-	γ^2	0.87, d (6.4)	19.1, CH ₃
CO		170.2, C	N-CH ₃	3.13, brs	30.5, CH ₃
α	3.97, m	66.3, CH	N-MeAla	-	-
β	2.46, m	36.6, CH	CO	-	169.0, C
β-Me	1.03, d (7.0)	18.7, CH ₃	α	5.17, q (6.6)	54.7, CH
γ	1.69, m; 1.95, m	30.5, CH ₂	β	1.16, d (6.6)	15.4, CH ₃
δ	3.68, m; 3.75, m	44.6, CH ₂	N-CH ₃	2.54, s	27.7, CH ₃
Ile		-	Ala	-	-
CO		173.0, C	CO	-	173.3, C
a	171 dd (67 03)	52.5 CH	a	2.35, dd (11.1, 18.0)	34.0 CH2
u	4.74, uu(0.7, 7.5)	52.5, CH	u	2.78, dd (4.0, 18.0)	J4.0, C112
ß	1.84 m	367 CH	ß	2.92, ddd (2.0,11.0,11.5)	32 9 CH2
Ч	1.07, III	50.7, 011	Ч	3.84, ddd (4.0,11.0,11.5)	52.7, 0112
γ^2	0.76, d (5.6)	15.1, CH	NH	8.07, dd (2.0, 11.0)	-
γ^1	1.22, m; 1.39, m	23.9, CH ₂			

Table S2. The ¹H and ¹³C NMR data of **2** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
Acid		-	γ^1	1.23, m; 1.37, m	23.7, CH ₂
CO		169.1, C	δ^1	0.78, t (7.0)	11.2, CH ₃
α	5.10, dd (5.8, 9.0)	71.0, CH	NH	6.93, d (9.5)	-
β	1.75, m; 1.97, m	33.4, CH ₂	N-MeVal	-	-
γ	3.36, m	34.9, CH	CO	-	170.5, C
ү-ОН	4.98, m	-	α	5.03, d (10.9)	57.1, CH
δ	3.17, m; 3.27, m	65.8, C	β	2.18, m	26.3, CH
δ-ОН	4.68, m	-	γ^1	0.84, d (6.4)	19.1, CH ₃
MePro	-	-	γ^2	0.87, d (6.4)	19.1, CH ₃
CO	-	170.2, C	N-CH ₃	3.13, brs	30.5, CH ₃
α	4.00, m	66.6, CH	N-MeAla	-	-
β	2.46, m	36.6, CH	CO	-	169.0, C
β-CH ₃	1.03, d (7.0)	18.8, CH ₃	α	5.16, q (6.6)	54.8, CH
γ	1.65, m; 1.93, m	30.2, CH ₂	β	1.17, d (6.6)	15.4, CH ₃
δ	3.76, m; 3.98, m	44.5, CH ₂	N-CH ₃	2.54, brs	27.7, CH ₃
Ile	-	-	Ala	-	-
CO	-	173.0, C	CO	-	173.4, C
α	4.81, dd (6.4, 9.4)	52.4, CH	α	2.34, m; 2.77, m	34.2, CH ₂
β	1.82, m	36.7, CH	β	2.94, m; 3.84, m	32.9, CH ₂
γ^2	0.76, d (5.6)	15.2, CH	NH	8.10, dd (2.3, 9.8)	-

Table S3. The ¹H and ¹³C NMR data of **3** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
Acid	-	-	γ^1	1.25, m; 1.40, m	23.9, CH ₂
CO	-	169.4, C	δ^1	0.78, m	11.2, CH ₃
α	5.12, dd (3.0, 10.1)	70.4, CH	NH	6.92, d (9.4)	-
β	1.52, m; 1.93, m	34.7, CH ₂	N-MeVal	-	-
γ	3.60, m	67.3, CH	CO	-	170.5, C
ү-ОН	4.83, m	-	α	4.99, d (11.0)	57.1, CH
δ	3.25, m; 3.37, m	65.7, C	β	2.19, m	26.7, CH
δ-ОН	4.64, m	-	γ^1	0.84, d (6.4)	19.1, CH ₃
MePro	-	-	γ^2	0.87, d (6.4)	19.1, CH ₃
CO	-	170.3, C	N-CH ₃	3.13, brs	30.5, CH ₃
α	3.98, m	66.3, CH	N-MeAla	-	-
β	2.47, m	36.5, CH	CO	-	169.0, C
β-CH ₃	1.03, d (7.1)	18.7, CH ₃	α	5.18, q (6.6)	54.8, CH
γ	1.68, m; 1.95, m	30.5, CH ₂	β	1.17, d (6.6)	15.4, CH ₃
δ	3.71, m	44.6, CH ₂	N-CH ₃	2.54, brs	27.7, CH ₃
Ile	-	-	Ala	-	-
CO	-	173.1, C	CO	-	173.4, C
α	4.75, dd (6.9, 9.3)	52.5, CH	α	2.37, m; 2.76, m	34.0, CH ₂
β	1.86, m	36.8, CH	β	2.94, t (12.3); 3.87, m	32.9, CH ₂
γ^2	0.77, m	15.1, CH	NH	8.10, dd (2.2, 9.9)	-

Table S4. The ¹H and ¹³C NMR data of **4** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
Acid	-	-	δ^1	0.78, t (7.0)	11.1, CH ₃
СО	-	169.3, C	NH	6.93, d (9.3)	-
α	5.10, m	72.0, CH	N-MeVal	-	-
β	1.56, m; 1.71, m	34.0, CH ₂	CO	-	170.5, C
γ	1.70, m	31.5, CH	α	4.98, m	57.1, CH
δ^2	0.91, d (6.5)	17.8, CH ₃	β	2.19, m	26.6, CH
δ^1	3.28, m; 3.25, m	65.4, CH ₂	γ^1	0.84, d (6.4)	19.1, CH ₃
MePro	-	-	γ^2	0.87, d (6.4)	19.1, CH ₃
CO	-	170.2, C	N-CH ₃	3.13, brs	30.5, CH ₃
α	3.97, m	66.4, CH	N-MeAla	-	-
β	2.48, m	36.4, CH	CO	-	169.0, C
β-CH ₃	1.03, d (7.0)	18.6, CH ₃	α	5.17, q (6.6)	54.7, CH
γ	1.66, m; 1.93, m	30.4, CH ₂	β	1.17, d (6.6)	15.4, CH ₃
δ	3.66, m; 3.76, m	44.6, CH ₂	N-CH ₃	2.54, brs	27.7, CH ₃
Ile	-	-	Ala	-	-
CO	-	173.0, C	CO	-	173.0, C
α	4.75, dd (6.7, 9.2)	52.7, CH	α	2.36, m; 2.76, m	34.0, CH ₂
β	1.85, m	36.7, CH	β	2.93, m; 3.86, dd	32.9, CH ₂
γ^2	0.77, d (5.6)	15.1, CH	NH	8.09, dd (2.2, 9.8)	-
γ^1	1.25, m; 1.40, m	23.9, CH ₂			

Table S5. The ¹H and ¹³C NMR data of **5** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
Leu	-	-	NH	8.96, d (8.0)	-
CO	-	172.5, C	N-MeVal	-	-
α	4.51, m	51.4, CH	CO	-	169.0, C
β	1.56, m; 1.29, m	37.7, CH ₂	α	4.75, d (10.6)	56.5, CH
γ	1.91, m	24.2, CH	β	2.03, m	25.8, CH
δ^1	0.88, d (6.6)	19.8, CH ₃	γ^1	0.56, d (6.5)	18.1, CH ₃
δ^2	0.97, d (6.7)	23.6, CH ₃	γ^2	0.11, d (6.4)	17.8, CH ₃
NH	8.33, d (2.5)	-	N-CH ₃	2.54, brs	40.4, CH ₃
Pro	-	-	N-MePhe	-	-
CO	-	171.9, C	CO	-	168.0, C
α	4.08, dd (1.0, 8.4)	60.2, CH	α	5.19, dd (6.0, 8.1)	61.1, CH
β	2.01, m; 2.05, m	31.5, CH ₂	β	2.83, m; 3.28, m	35.4, CH ₂
γ	1.09, m; 1.67, m	21.6, CH ₂	γ	-	137.8, C
δ	3.26, m; 3.30, m	46.6, CH ₂	δ	7.30, m	128.6, CH
Phe	-	-	3	7.26, m	128.1, CH
CO	-	172.5, C	ζ	7.21, m	126.4, CH
α	4.50, m	53.2, CH	N-CH ₃	2.89, brs	29.1, CH ₃
β	2.86, m; 2.99, m	34.2, CH ₂	Ala	-	-
γ	-	137.6, C	CO	-	171.5, C
δ	7.31, m	129.1, CH	α	2.23, m; 2.41, m	34.5, CH ₂
3	7.26, m	128.5, CH	β	3.32, m; 3.54, m	35.4, CH ₂
ζ	7.22, m	126.7, CH	NH	8.33, d (2.5)	-

Table S6. The ¹H and ¹³C NMR data of **6** in DMSO- d_6 (δ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

No.	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$	No.	$\delta_{\rm H}(J \text{ in Hz})$	δc
Acid	-	-	NH	7.81, m	-
1	-	169.7, C	Leu	-	-
2	2.25, m; 2.54, m	37.2, CH ₂	CO	-	171.1. C
3	4.96, d (7.4)	74.5, CH	α	4.02, m	51.9, CH
4	1.64, m	36.2, CH	β	1.48, m	38.6, CH ₂
5	0.81, m	14.6, CH ₃	γ	1.62, m	24.1, CH
6	1.00, m; 1.33, m	31.5, CH ₂	δ^1	0.81. m	21.1, CH ₃
7	1.24, m	28.7, CH ₂	δ^2	0.89, m	22.9, CH ₃
8	1.23, m	22.3, CH ₂	NH	8.65, d (4.9)	-
9	0.86, m	13.9, CH ₃	Ala	-	-
Gly	-	-	CO	-	171.7, C
CO	-	169.0, C	α	4.18, m	47.6, CH
α	3.41, m; 4.10, m	42.3, CH ₂	β	1.19, m	17.3, CH ₃
NH	7.88, m	-	NH	7.96, d (7.6)	-
Val	-	-	Ala	-	-
CO	-	171.7, C	CO	-	171.7, C
α	4.10, m	58.2, CH	α	4.07, m	48.3, CH
β	1.85, m	30.0, CH	β	1.29, m	16.6, CH ₃
γ^1	0.87, m	18.9, CH ₃	NH	7.79, m	-
γ^2	0.83, m	18.7, CH ₃			

Table S7. The ¹H and ¹³C NMR data of **7** in DMSO- $d_6(\delta$ in ppm) (600 MHz) (key ¹H-¹H COSY and HMBC correlations are shown below)

Clusters	NRPS modules organization	NRPSs in this study	Accession numbers of homologues	Hosts of the homologues
1	AT-C		OBT62387.1	Pseudogymnoascus sp.
2	CAT-C		KPM39273.1	Neonectria ditissima
3		Detx A	KND86507 1	Tolypocladium
5		DetAIT	KI\D00507.1	ophioglossoide
4	AT-CTC		KFH48348.1	Acremonium chrysogenum
5	AT(Te)		RYP68643.1	Monosporascus sp.
6	AT(Te)		OTB16444.1	Daldinia sp.
7	T-CAT-C		KPM35145.1	Neonectria ditissima
8	AT(Te)		POR35295.1	Tolypocladium paradoxum
9	A-CAT-CT-CACT-C		KFH43976.1	Acremonium chrysogenum
10	T-CATE-CAT-CAT-CAT-C	IsrA	KFX41393.1	Talaromyces marneffei
11		IcdA	KND86507 1	Tolypocladium
11	AI-CAIE-CAI-CA(MI)I-CA(MI)I-C	1507	KIND00307.1	ophioglossoide
12	ATE-CAT-CAT-C		OJJ41173.1	Aspergillus wentii
13	Ox-AC		KAF5494064.1	Colletotrichum fructicola
14	CAT-CATE-CATE-CAT-CT-C		PKS08582.1	Lomentospora prolificans
15	AT(Te)		RYP11740.1	Monosporascus sp.
16	ATR		EKG19785.1	Macrophomina phaseolina
17	TCA		EOD43397.1	Neofusicoccum parvum
10	ТСА		VND02421 1	Tolypocladium
10	ICA		KIND92421.1	ophioglossoide
19	CAT-CAT-C		PYI02181.1	Aspergillus sclerotiicarbona
20	CAT-CA(MT)T-CA(MT)T-CA(MT)T-CA(MT)T-CAT-CA(MT)T-CMT)T-CAT-CA(MT)T-CAT-C		CAA82227.1	Tolypocladium inflatum
21	ATR		OLN95656.1	Colletotrichum chlorophyti
22	CAT-CAT-CAT-C		KFH45129.1	Acremonium chrysogenum
23	CAT-CAT-CAT-CAT-C		XP_033604383.1	Pseudovirgaria hyperparasitica

 Table S8. Clusters encoding nonribosomal peptide synthases (NRPSs) (excluding PKS/NRPS hybrids) in *B. felina* SX-6-22

Accession Identity/ Accession Clusters Name/ID Predicted functions Size (bp/aa) numbers of similarity (%) numbers homologues Zinc-type alcohol dehydrogenase-like protein BFSX 00493 1111/346 MW271810 KFH42175 78/86 α -1,2-Mannosidase PNY25799 65/73 BFSX 00492 2317/730 MW271809 BFSX 00491 783/261 MW271808 Putative esterase XP 035318235 67/78 BFSX 00490 1206/367 MW271807 Hypothetical protein KFA76960 28/34 BFSX 00487 1653/551 MW271806 pH signal transduction protein POR32663 70/81 Destruxins-like nonribosomal peptide synthetase 24105/8002 MT990934 KND86507 69/81 *detxA* 2441/ MT990935 Aldo/keto reductase 76/87 detxB XP 007826234 573 1608/ MT990936 Cytochrome P450 monooxygenase 81/90 *detxC* KAF5121804 513 detx 3945/ MT990937 69/83 *detxD* ABC multidrug transporter Mdr1 KFG77710 1295 1229/ MT990938 2-oxoglutarate-Fe(II) type oxidoreductase TVY12977 43/58 *detxE* 377 BFSX 00481 2759/849 MW271815 pH-response regulator protein palA KFH40867 84/91 1595/494 Flotillin domain-containing protein XP 018146344 72/80 BFSX 00480 MW271814 BFSX 00478 1037/326 MW271813 Kinase-like domain KAF4462691 53/60 BFSX 00477 2029/646 MW271812 UDP-glucose 4-epimerase PNY28365 47/55 BFSX 00476 1380/460 MW271811 3'(2'), 5'-bisphosphate nucleotidase XP 035318213 62/71 BFSX 04284 2241/691 MW271825 Calcium channel-like protein KFH43535 70/78 isd Glycoside hydrolase superfamily BFSX 04283 MW271824 KXJ88434 58/69 1463/466

Table S9. Gene annotation for detx, isd and isr clusters

	BFSX_04282	1015/321	MW271823	Putative membrane protein-like protein	KFH45179	72/81
	BFSX_04281	3107/892	MW271822	SH3 domain-containing protein	XP_008098738	71/80
	BFSX_04280	1624/503	MW271821	Leucine permease transcriptional regulator	KAF4458932	73/82
	<i>isdA</i>	24258/8044	MT990939	Destruxins-like nonribosomal peptide synthetase	KND86507	65/78
	<i>isdB</i>	1413/385	MT990940	Aldo/keto reductase	XP_007826234	68/77
	BFSX_04277	2008/653	MW271820	Vacuolar protein-sorting-associated protein	TVY72203	73/82
	BFSX_04276	1140/380	MW271819	CENP-B homolog protein	GFP57757	79/90
	BFSX_04274	939/291	MW271818	Mitochondrial fission process protein-like protein	KFH45208	79/90
	BFSX_04273	927/309	MW271817	AN1-type zinc finger protein-like protein	KFH45196	85/94
	BFSX_04272	3115/1021	MW271816	DNA repair protein-like protein	KFH45197	76/84
	BFSX_03676	3189/1006	MW271830	Armadillo-like helical protein	XP_018174607	68/77
	BFSX_03674	2583/708	MW271829	High-affinity glucose transporter-like protein	KFH42623	81/87
	BFSX_03673	1689/473	MW271828	DUF89 domain-containing protein	KID97754	81/90
	BFSX_03672	1593/488	MW271827	Pisatin demethylase-like protein (P450)	KFH47378	73/87
	BFSX_03670	1380/386	MW271826	Integral membrane protein	KZL68594	49/70
	<i>isrA</i>	22331/7398	MT990941	Nonribosomal peptide synthetase	KFX41393	38/56
	isrB	2194/574	MT990942	AMP dependent CoA ligase	XP_006666503	56/72
lSF	isrC	1446/482	MT990943	Acyltransferase easC	C8VPT2	50/67
	isrD	8006/2544	MT990944	Polyketide synthase	KIA75545	60/74
	BFSX_03665	1598/503	MW271835	Aminoglycoside phosphotransferase	PNY25379	56/72
	BFSX_03664	1625/410	MW271834	Integral membrane protein	KAF4342798	55/67
	BFSX_03663	9785/2981	MW271833	Polyketide synthase	PMD36174	75/85
	BFSX_03662	1138/357	MW271832	Putative zinc-binding dehydrogenase	PMD36173	80/92
	BFSX_03661	1758/542	MW271831	Cytochrome P450	PMD36172	78/88
out of cluster	SX-p5cr1	926/287	MT990945	Pyrroline-5-carboxylate reductase	TVY57756	50/67
out of cluster	SX-p5cr2	942/313	MT990946	Pyrroline-5-carboxylate reductase	KFH48959	81/89

NRPSs	A dom ains	Sut	ostrate	selecti	vity-o	confe	rring	codes	5			Predicted substrates based on analysis by NRPSsp ^[4]	Substrates based on natural products structures
		1	2	3	4	5	6	7	8	9	10	1	
GrsA-A		D	А	W	Т	Ι	А	А	Ι	С	Κ	Phe	L-Phe
	A ₁	D	Ι	F	Y	А	Ι	Т	Т	А	Κ	Phe	β-Ala
	A ₂	G	А	Ν	L	Ι	G	Α	Т	V	Κ	Trp	L-HIC
Daty A	A ₃	D	М	Н	D	Ι	G	Ι	Н	Ι	Κ	Pro	β-Me-L-Pro
DetXA	A ₄	D	G	L	F	Ι	G	Ι	Р	V	Κ	Pro	L-Ile
	A ₅	D	А	W	F	Y	G	G	Т	F	Κ	Leu	L-Val
	A ₆	D	V	W	Ι	Y	Α	Α	V	Ι	Κ	Leu	L-Ala
	A_1	D	Ι	F	Y	А	Ι	Т	Т	А	Κ	Pro	β -Ala
	A_2	G	А	Ν	L	Ι	G	А	Т	V	Κ	Trp	L-HIC
IndA	A ₃	D	М	Н	D	Ι	G	Ι	Н	V	Κ	Pro	L-Pro
ISUA	A_4	D	G	F	L	Ι	С	Y	Р	Α	Κ	Pro	L-Phe
	A_5	D	А	W	F	V	G	G	S	F	Κ	Leu	L-Val
	A ₆	D	Μ	W	Т	Y	G	А	А	Ι	Κ	Leu	L-Phe
	A ₂	D	Ι	Q	G	Ι	L	А	М	Q	Κ	Pro	Gly
	A ₃	D	А	S	Q	V	G	G	Ι	Y	Κ	Phe	L-Val
IsrA	A ₄	D	А	Н	F	Ι	G	А	Ι	М	Κ	Pro	L-Leu
	A5	D	V	М	С	G	А	S	V	L	Κ	Pro	L-Ala
	A ₆	D	А	А	V	Ι	Ι	G	Ι	Ι	Κ	Val	L-Val

Table S10. The substrate selectivity-conferring codes of A domains in DetxA, IsrA and IsdA

Table S11. Primers used in this stud	dy
--------------------------------------	----

Primers	Sequence (5'-3')					
Plasmids construction (CRISPR/Cas9) for gene deletion of <i>detxA</i> , <i>detxE</i> , <i>isdA</i> , <i>isrA</i> , <i>p5cr1</i> and <i>p5cr2</i> (uppercase sequences indicate protospacer of sgRNA and its complementary ribozyme region)						
detxA_sg-F	accgGGTAGCcctgatgagtccgtgaggacgaaacgagtaagctcgtcGCTACCCTGAAGTT AGCTCC					
detxA_sg-R	aaacGGAGCTAACTTCAGGGTAGCgacgagettactcgtttcgtcctcacggactcatcagg GCTACC					
detxE_sg-F	accgTGACACcctgatgagtccgtgaggacgaaacgagtaagctcgtcGTGTCAACGGCGG TAAGGAG					
detxE_sg-R	aaacCTCCTTACCGCCGTTGACACgacgagcttactcgtttcgtcctcacggactcatcaggG TGTCA					
isdA_sg-F	accgGATGCCcctgatgagtccgtgaggacgaaacgagtaagctcgtcGGCATCTTGAATTG TCGTCG					
isdA_sg-R	aaacCGACGACAATTCAAGATGCCgacgagcttactcgtttcgtcctcacggactcatcaggg gcatcGGCATC					
isrA_sg-F	accgTATACCcctgatgagtccgtgaggacgaaacgagtaagctcgtcGGTATACCGTATACC CAACG					
isrA_sg-R	aaacCGTTGGGTATACGGTATACCgacgagcttactcgtttcgtcctcacggactcatcagggg catcGGTATA					
p5cr1_sg-F	accgTGGAGAcctgatgagtccgtgaggacgaaacgagtaagctcgtcTCTCCAGGTTCTG GCTCGCC					
p5cr1_sg-R	aaacGGCGAGCCAGAACCTGGAGAgacgagcttactcgtttcgtcctcacggactcatcagg ggcatcTCTCCA					
p5cr2_sg-F	accgGGCTGCcctgatgagtccgtgaggacgaaacgagtaagctcgtcGCAGCCGAGCAGG ATGATGT					
p5cr2_sg-R	aaacACATCATCCTGCTCGGCTGCgacgagcttactcgtttcgtcctcacggactcatcaggg gcatcGCAGCC					

dDNAs construction for gene deletion of *detxA*, *detxE*, *isdA*, *isrA*, *p5cr1* and *p5cr2* (lowercase sequences indicate overlap region)

detxA_5f-F	CCGGACTCGCTGCCTGATTTAA
detxA_5f-R	AGAAGTCGGCTGCCGTTTCT
detxA_3f-F	a gaa a cgg c cg a ctt ct CAGAGCGTCGCTGACTACCTGAAT
detxA_3f-R	CTGAGCTCCGGTGGTGAATGA
detxA-NF	GGATGATGTGAACCGGTGGTGG
detxA-NR	CTGCTGCGTATCTCGGTGATGAA
detxE_5f-F	ATCACAGTAGGGTACAGCGCAG
detxE_5f-R	CATGGCGCTTACACGGTGG
detxE_3f-F	caccgtgtaagcgccatgTGATGCCGGCAATTCCCTTTC
detxE_3f-R	AGAGCACCGCCATCATGCTT
detxE-NF	GTATGTATCCAGTGCACCCAGG

detxE-NR	CCACGACTACCGGTCTCACAT				
isdA_5f-F	GTAGCTCGCCTCCTGGATCCAA				
isdA_5f-R	ccaactttctggctcggagaCCTCTTAGATATCGGCTGCCG				
isdA_3f-F	TCTCCGAGCCAGAAAGTTGGG				
isdA_3f-R	CGTCATCTGTGACGACGACAT				
isdA-NF	GTAAACATCTACGGACCCGCC				
isdA-NR	GCTCGCCTCCACTTGTTGAAT				
isrA_5f-F	CTGGAGACTCTTGTCCTTGGTG				
isrA_5f-R	tcgcccacgctttgagTCTCTGTCGCCGTGACTGGTTTGA				
isrA_3f-F	GAGACTCAAAGCGTGGGCGAA				
isrA_3f-R	TAGATGACAAGCGCAGCGTTG				
isrA-NF	AACGGATACGGGCCCTCAGA				
isrA-NR	TGAGGAACCTTACCCTCAAAGG				
isrA_check-F	ACTCTATCACGGTGGTTGCAT				
isrA_check-R	GTTTGCCTTCAGTCTTCGGAT				
p5cr1_5f-F	CTCATCATGATCGAGGCGACG				
p5cr1_5f-R	GAGCAAGTTTACATAGGGAGTCACCC				
p5cr1_3f-F	tgactccctatgtaaacttgctcGCGACTGTCAAGTTCTCGGAC				
p5cr1_3f-R	CATTCCTGCTGAACATGTCCCAG				
p5cr1-NF	CTACGAGAACGTTGGCGTCATC				
p5cr1-NR	GTCACAGTGGGAGCTGTTGC				
p5cr1_check-F	GGTCATTTACATTGGTGCTGGTGTC				
p5cr1_check-R	ACATTGATGCCTACGAGCAAGTGTG				
p5cr2_5f-F	GTTGAGGTGTTGGAGCTGGGA				
p5cr2_5f-R	aggcagctttggcgtctcTAGGAGCTGACATGCTGGCTACT				
p5cr2_3f-F	TAGAGACGCCAAAGCTGCCTAAG				
p5cr2_3f-R	GGAATTCCTGCGGAAGATGGC				
p5cr2-NF	AACCTCATGCGGACCTCGAAC				
p5cr2-NR	CACCTCGACACCAGTGTCACT				
p5cr2_check-F	CATATAATCTGTGACGCCGAAACACC				
p5cr2_check-R	CTCAACATCTCGCAACCGATATCGTA				
Plasmids construction for protein purification (lowercase sequences indicate overlap region)					
LIC_DetxE-F	tacttccaatccaatgcaATGGGTTCCACAAGCCCCAATG				
LIC_DetxE-R	ttatccacttccaatgTCAGTACGCAGTGGCAACACG				
LIC_P5CR1-F	tacttccaatccaatgcaATGTCCGAGAACTTGACAGTCGC				
LIC_P5CR1-R	ttatccacttccaatgCTATGTAAACTTGCTCATGTTTCTCATTCTATCCG				
LIC_P5CR2-F	tacttccaatccaatgcaATGGGTATTGCCATCGTCGGT				
LIC P5CR2-R	ttatccacttccaatgCTAGTTTGGCGGCTGGTTGGT				

Table S12.	Plasmids	and	strains	used	in	this	study
------------	----------	-----	---------	------	----	------	-------

Name	Descri	References					
Plasmids							
pYBC-01a	Initial any sg	[1]					
pMM1029	Modif	Modified pYBC-01a with sgRNA sequence for <i>detxA</i> deletion					
pMM1030	Modif	Modified pYBC-01a with sgRNA sequence for <i>isdA</i> deletion					
pMM1031	Modif	Modified pYBC-01a with sgRNA sequence for <i>isrA</i> deletion					
pMM1032	Modif	ied pYBC-01a with sgRNA sequence for <i>detxE</i> deletion	This study				
pMM1033	Modif	ied pYBC-01a with sgRNA sequence for <i>p5cr1</i> deletion	This study				
pMM1034	Modif	Modified pYBC-01a with sgRNA sequence for p5cr2 deletion					
pMCSG7	Plasm	Plasmid with His ₆ tag for protein purification					
pMCSG19	Plasm	Plasmid with MBP tag for protein purification					
pMM1035	Modif	Modified pMCSG7 with <i>detxE</i> for purification of DetxE					
pMM1036	Modif	Modified pMCSG19 with <i>p5cr1</i> for purification of P5CR1					
pMM1037	pMM1037 Modified pMCSG19 with <i>p5cr2</i> for purification of P5CR2						
<i>E. coli</i> strai	ins						
E. coli DH5a		For plasmid construction Beijing TransGen B	iotech Co., Ltd				
<i>E. coli</i> BL21(DE3) For protein		For protein overproduction Beijing TransGen B	ansGen Biotech Co., Ltd				
Fungi strai	ns						
B. felina SX-6-22		Wild-type strain for destruxins, isaridins and isariins production This stu	Γhis study				
MM10024		<i>B. felina</i> SX-6-22 with <i>detxA</i> deletion This stu	dy				
MM10025		<i>B. felina</i> SX-6-22 with <i>isdA</i> deletion This stu	This study				
MM10026		B. felina SX-6-22 with isrA deletion This stu	This study				
MM10027		<i>B. felina</i> SX-6-22 with <i>detxE</i> deletion This stu	This study				
MM10028		<i>B. felina</i> SX-6-22 with <i>p5cr1</i> deletion This stu	This study				
MM10029		<i>B. felina</i> SX-6-22 with <i>p5cr2</i> deletion This stu	This study				

Figure S1. Representative natural products that contain (3S/3R)-methyl-L-proline moieties. Neoefrapeptin F,^[1] scytalidamide B,^[2] paraherquamide E^[3] and peniciherquamide C^[4] contain (3*S*)-methyl-L-proline moieties. The (3*S*)-methyl-L-proline is used as a building block in the biosynthesis of UCS1025A.^[5] Pentaminolarin^[6] and bottromycin A₂^[7] contain (3*R*)-methyl-L-proline moieties. The 3-methyl-L-proline moieties are labelled in red.

Figure S2. Morphological feature and phylogenetic analysis of *Beauveria felina* SX-6-22. (a) *B. felina* SX-6-22 isolated from marine sponge *Xestospongia testudinaria*. (b) The phylogenetic analysis of *B. felina* SX-6-22 based on ITS sequences (accession numbers were shown in parentheses).

а

0.05

Figure S3. HPLC chromatograph and ¹H NMR spectrum for EtOAc extract of *B. felina* SX-6-22. (a) HPLC profile of EtOAc extract of *B. felina* SX-6-22. (b) ¹H NMR spectrum of the crude extract and characteristic signals related to peptides.

Figure S4. Global Natural Product Social Molecular Networking (GNPS) based on LC-MS data. The clusters marked in green, red and blue were related to destruxins' group, isaridins' group and isariins' group, respectively. The isolated compounds (1-26) were labeled with solid triangles (\blacktriangle) while the compounds (27-30) predicted by MS² analysis were labeled with hollow triangles (\bigtriangleup).

Figure S5. MS/MS spectra of known compounds (12, 20, 23, 27-30) detected from total ion chromatogram (TIC).

a. MS/MS spectrum of destruxin A (12)

b. MS/MS spectrum of isaridin A (20)

c. MS/MS spectrum of isoisariin B (23)

d. MS/MS spectrum of isaridin D (27)

e. MS/MS spectrum of isaridin B (28)

f. MS/MS spectrum of desmethylisaridin C (29)

g. MS/MS spectrum of desmethylisaridin A (30)

desmethylisaridin A (30)

Figure S6. The Marfey's analysis for the determination of absolute configuration of **6**, based on the comparison of the HPLC retention times of the FDAA derivatives of **6**'s hydrolysates with FDAA derivatives of standard amino acids.

а

Figure S7. Schematic diagrams of gene deletion of *detxA*, *isdA*, *isrA*, *detxE*, *SX-p5cr1* and *SX-p5cr2* and PCR confirmation for mutants. (a) Schematic diagrams of gene deletion process by CRISPR/Cas9 system. (b) PCR confirmation for each of the mutants. Some gels were spliced to remove unrelated lanes among the molecular weight markers (labeled with "M"), lanes for wild-type (WT), and lanes for mutants.

b 2989 bp ∆detxA WT M primer: detxA_5f-F WT genomic DNA $detxA-A_3$ $detxA-T_3 + detxA-C_4$ $detxA-A_4$ primer: detxA_3f-R 4 kb 3 kb 2 kb 1831 bp primer: detxA_5f-F 1 kb $\Delta detxA$ genomic DNA \longrightarrow $detxA-A_3$ $detxA-A_4$ primer:detxA_3f-R 2917 bp M ∆isdA WT primer: isdA_5f-F WT genomic DNA = isdA-A. isdA-T_+ isdA-C. isdA-A primer: isdA_3f-R 4 kb 3 kb 1753 bp 2 kb primer: isdA_5f-F ∆isdA genomic DNA isdA-A3 isdA-A4 -1 kb --primer: isdA_3f-R 3397 bp ∆isrA WT M primer: isrA_check-F isrA-T₃ + isrA-C₄ isrA-A₄ WT genomic DNA = isrA-Aa 4 kb 3 kb primer: isrA_check-R 2212 bp 2 kb primer: isrA_check-F ∆isrA genomic DNA ______isrA-A₂ ____isrA-A₄ ____ 1 kb _ primer: isrA_check-R 2921 bp WT∆*detxE* M primer: detxE_5f-F WT genomic DNA \equiv 5'-flank detxE 3'-flank primer: detxE 5f-R 4 kb 3 kb 1695 bp 2 kb primer: detxE_5f-F ∆detxE genomic DNA _____ 5'-flank 3'-flank - 1 kb primer: detxE_5f-R 5018 bp M ∆p5cr1 M WT primer: p5cr1_check-F WT genomic DNA = 5'-flank p5cr1 3'-flank primer: p5cr1_check-R 6 kb 5 kb 3 kb 3 kb 4132 bp primer: p5cr1_check-F 2 kb ∆p5cr1 genomic DNA _____5'-flnak 3'-flank = _ primer: p5cr1_check-R 1 kb 4768 bp WT ∆p5cr2 M primer: p5cr2_check-F WT genomic DNA = 5'-flank p5cr2 3'-flank primer: p5cr2_check-R 5 kb 4 kb 3 kb 3708 bp primer: p5cr2_check-F 2 kb ∆p5cr2 genomic DNA _____5'-flnak 3'-flank primer: p5cr2_check-R 1 kb

Figure S8. LC-MS analysis of compounds accumulated in wild-type strain and mutants including $\Delta detxA$, $\Delta isdA$ and $\Delta isrA$. Compounds 1/2, 3/4, 5/8, 21/22 and 7/25 are isomers.

Figure S11. SDS-PAGE analysis of purified DetxE, SX-P5CR1 and SX-P5CR2.

Figure S12. The UPLC profile of DetxE reaction with *o*-AB derivatization using L-isoleucine as the substrate.

Figure S13. The HPLC profiles of DetxE reaction with Fmoc-Cl derivatization. Lane I, the reaction of DetxE with L-isoleucine as the substrate; lane II, the reaction of boiled DetxE with L-isoleucine as the substrate; lane III, the reaction of DetxE with D-isoleucine as the substrate; lane IV, the reaction of DetxE with L-*allo*-isoleucine as the substrate.

Figure S14. The EIC analysis of DetxE reactions without Fmoc-Cl derivatization. Lane I, the reaction of DetxE with L-isoleucine as the substrate; lane II, the reaction of boiled DetxE with L-isoleucine as the substrate; lane III, the reaction of DetxE with D-isoleucine as the substrate; lane IV, the reaction of DetxE with L-*allo*-isoleucine as the substrate. The m/z 148 ions were selected for the detection of 5-hydroxyisoleucine and m/z 132 ions were selected for the detection of L-isoleucine, D-isoleucine and L-*allo*-isoleucine.

Figure S15. The biosynthetic process of (4R)-methyl-L-proline reported in previous literature.^[8]

Figure S16. The EIC analysis of DetxE combined with P5CR1/P5CR2 reactions, using L-isoleucine as the substrate and derivatized with Fmoc-Cl. Lane I, standare L-isoleucine; lane II, standard (3S)-methyl-L-proline; lane III, the reaction of DetxE; lane IV, the reaction of DetxE with SX-P5CR1 and NADH; lane V, the reaction of DetxE with SX-P5CR1 and NADH; lane VI, the reaction of DetxE with SX-P5CR2 and NADH; lane VII, the reaction of DetxE with SX-P5CR1 and SX-P5CR2 and NADH; lane VIII, the reaction of DetxE with both SX-P5CR1 and SX-P5CR2 added. The peaks (m/z 352) labelled with asterisk represent the in-situ dehydration product of **33** generated in the ESIMS experiments.

Figure S17. Detection of lysosome acidification of A549 cells and the uncropped NS5 production inhibition images. (A) Detection of lysosome acidification of A549 cells treated by compounds **5**, **9**, **10** and **16**. Two inhibitors chloroquine and bafilomycin were used as positive control and DMSO was used as negative control. Fluorescence was observed by confocal microscopy using a $60 \times$ objective lens. "BF" represents the view taken for cells in brightfield, "Fluorescence" represents the view of Lysotracker Red fluorescence, and "Merged" represents the view with BF merged with fluorescence. The images of "BF", "Merged" and "Fluorescence" have the same scale bars; and the images of "Amplified region" have the same scale bars. (B) The amplified presentation of the two images in the red dashed box in (A), showing the scale bars with measurement units. (C) and (D) The uncropped NS5 production inhibition images (corresponding to Figure 3B and 3C).

А

Figure S20. ¹H-¹H COSY spectrum of compound **1**.

Figure S21. HSQC spectrum of compound 1.

Figure S22. HMBC spectrum of compound 1.

Figure S23. NOESY spectrum of compound 1.

Figure S24. IR of compound 1.

Figure S29. HSQC spectrum of compound 2.

Figure S31. NOESY spectrum of compound 2.

68

Figure S37. HSQC spectrum of compound 3.

Figure S38. HMBC spectrum of compound 3.

Figure S39. NOESY spectrum of compound 3.

Figure S44. ¹H-¹H COSY spectrum of compound **4**.

Figure S45. HSQC spectrum of compound 4.

Figure S46. HMBC spectrum of compound 4.

Figure S52. HSQC spectrum of compound 5.

Figure S53. HMBC spectrum of compound 5.

Figure S58. ¹H-¹H COSY spectrum of 6.

94

Figure S60. HMBC spectrum of 6.

Figure S69. NOESY spectrum of 7.

Figure S70. IR spectrum of 7.

Mass	Calc.Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
568.3708	568.3710	-0.2	-0.4	6.5	250.4	0.018	98.20	$C_{28}H_{50}N_5O_7$

Figure S73. ¹H and ¹³C NMR and ESIMS spectra of roseotoxin B (9).

ESIMS spectrum of 9.

108

Figure S74. ¹H and ¹³C NMR and ESIMS spectra of roseotoxin A (10)

Figure S75. ¹H and ¹³C NMR and ESIMS spectra of [β -MePro] destruxin E chlorohydrin (11). ¹H NMR spectrum of 11 (400 MHz, DMSO-*d*₆).

Figure S76. ¹H and ¹³C NMR and ESIMS spectra of destruxin A (12).

Figure S79. ¹H and ¹³C NMR and ESIMS spectra of destruxin Ed (15).

Figure S80. ¹H and ¹³C NMR and ESIMS spectra of destruxin F (16).

Figure S81. ¹H and ¹³C NMR and ESIMS spectra of destruxin Chl (17).

117

Figure S83. ¹H and ¹³C NMR and ESIMS spectra of isaridin C (19).

Figure S84. ¹H and ¹³C NMR and ESIMS spectra of isaridin A (20).

Figure S85. ¹H and ¹³C NMR and ESIMS spectra of isariin G1 (21).

Figure S86. ¹H and ¹³C NMR and ESIMS spectra of isariin G2 (22).

Figure S87. ¹H and ¹³C NMR and ESIMS spectra of isoisariin B (23).

Figure S88. ¹H and ¹³C NMR and ESIMS spectra of isariin E (24).

Figure S90. ¹H and ¹³C NMR and ESIMS spectra of isariin A (26).

References:

[1] A. Fredenhagen, L. P. Molleyres, B. Bohlendorf, G. Laue, J Antibiot (Tokyo) 2006, 59, 267.

[2] L. T. Tan, X. C. Cheng, P. R. Jensen, W. Fenical, J Org Chem 2003, 68, 8767.

[3]E. M. Stocking, J. F. Sanz-Cervera, R. M. Williams, C. J. Unkefer, *J Am Chem Soc* **1996**, *118*, 7008.

[4] S. Nishikori, K. Takemoto, S. Kamisuki, S. Nakajima, K. Kuramochi, S. Tsukuda, M. Iwamoto, Y. Katayama, T. Suzuki, S. Kobayashi, K. Watashi, F. Sugawara, *J Nat Prod* **2016**, *79*, 442.

[5] L. Li, M. C. Tang, S. Tang, S. Gao, S. Soliman, L. Hang, W. Xu, T. Ye, K. Watanabe, Y. Tang, *J Am Chem Soc* **2018**, *140*, 2067.

[6] S. Noppawana, W. Mongkolthanarukb, N. Suwannasaic, T. Senawongd, P. Moontragoone, J. Boonmakf, S. Youngmef, S. McCloskeya, *Nat Prod Res* **2018**, *34*, 464.

[7] H. Shimamura, H. Gouda, K. Nagai, T. Hirose, M. Ichioka, Y. Furuya, Y. Kobayashi, S. Hirono, T. Sunazuka, S. Omura, *Angew Chem Int Ed Engl* **2009**, *48*, 914.

[8] P. Lukat, Y. Katsuyama, S. Wenzel, T. Binz, C. Konig, W. Blankenfeldt, M. Bronstrup, R. Muller, *Chem Sci* **2017**, *8*, 7521.