Supplemental Figure Legends

Figure S1. Schematic of Translating Ribosomal Affinity Purification.

Figure S2. Etnppl expression across tissues. *Etnppl* mRNA expression in wild-type adult liver (liv), kidney (kid), heart, gWAT, iWAT, sol, plant, gut, brain, and BAT. Data (as mentioned in text) are expressed as mean \pm S.D. Represented data analyzed using multiple student's two-tailed t-tests. Outliers were removed after using Grubb's outlier test. * α = 0.05; ** α = 0.01; *** α = 0.001; **** α = 0.0001; ns, not significant.

Figure S3. Impact of dexamethasone in primary astrocytes on glucocorticoid responsive genes. mRNA expression of glucocorticoid-responsive genes in wild-type P2 1° astrocytes after a 24- or 72-hour exposure the glucocorticoid agonist dexamethasone. [dexamethasone] = 100nM. (n = 3). Data (as mentioned in text) are expressed as mean \pm S.D. Represented data analyzed using multiple student's two-tailed t-tests. Outliers were removed after using Grubb's outlier test. * α = 0.05; ** α = 0.01; *** α = 0.001; **** α = 0.0001; ns, not significant.

Figure S4. Impact of EtnppI loss on PC metabolites in the hippocampal metabolome. Relative abundances of PC-associated metabolites in whole hippocampus from 18-hour fasted 9-week-old EtnppI^{KO} and WT (n = 6). Data in A are expressed as mean \pm S.D. Represented data analyzed using multiple student's two-tailed t-tests. Statistical significance of represented metabolites in B determined using two-stage false discovery rate (FDR) method of Benjamini, Krieger, and Yekutieli with a FDR (Q) of 10%. Fold changes in green boxes are significantly increased, fold changes in red boxes are significantly decreased, and fold changes in yellow boxes are not significantly affected by genotype. * α = 0.05; ** α = 0.01; *** α = 0.001; **** α = 0.0001; ns, not significant.

Figure S5. PE abundance and composition is altered in cortex after loss of Etnppl.

Relative abundance in PE species in cortex from 18-hour fasted, 9-week-old Etnppl^{KO} and WT mice. (n = 5) Data are expressed as mean \pm S.D. Represented data analyzed using multiple student's two-tailed t-tests. * α = 0.05; ** α = 0.01; *** α = 0.001; **** α = 0.0001; ns, not significant.

Figure S6. PC abundance and composition is altered in cortex after loss of Etnppl.

Relative abundance in PC species in cortex from 18-hour fasted, 9-week-old Etnppl^{KO} and WT mice. (n = 5) Data are expressed as mean \pm S.D. Represented data analyzed using multiple student's two-tailed t-tests. * α = 0.05; ** α = 0.01; *** α = 0.001; **** α = 0.0001; ns, not significant.