Appendix A. Supplementary data

Crystal structure of a homotrimeric verrucomicrobial exo- β -1,4-mannosidase active in the hindgut of the wood-feeding termite *Reticulitermes flavipes*

Dayanand C. Kalyani^{1#}, Tom Reichenbach^{1#}, Markus M. Keskitalo¹, Julian Conrad^{2,3}, Henrik Aspeborg¹, Christina Divne¹

1 - School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-11421 Stockholm, Sweden.

2 - Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.

3 - Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, SE-17165 Solna, Sweden.

[#] These authors contributed equally to this work. **Correspondence to Christina Divne:** divne@kth.se

Figure S1. Molecular mass of *Op5***Man5**. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of recombinant *Op5*Man5 gives a molecular mass of 66,824 g/mol. The inset panel shows an SDS-PAGE gel of purified *Op5*Man5 with different amounts of protein loaded in the two lanes. M, molecular weight reference proteins.

```
Figure S2
```


Figure S2. SEC analysis of *Op5***Man5.** (A) Standard curve at pH 7.5 (R^2 =0.9954) based on the reference proteins (black filled circles), and the extrapolated molecular weights of the *Op5*Man5 hexamer (peak I; ~434 kDa; red open circle) and trimer (peak II; ~214 kDa; red filled circle). SEC profiles of *Op5*Man5 at different pH values (red curve) overlaid with the profiles of the reference proteins: (B) pH 5.5; (C) pH 6.0; (D) pH 6.5; (E) pH 7.5; (F) pH 8.0; and (G) pH 8.5. The SEC profile in (E) shows two distinct species: peak I (hexamer) and peak II (trimer).

Figure S3. Chemical cross-linking of *Op5***Man5.** Results of the crosslinking reaction as a function of time as represented by a Coomassie-stained SDS-PAGE. At t = 0, only the monomer band is present.

Figure S4. Transglycosylation products. TLC analysis of products from incubating M2 with methanol (lane 1), ethanol (lane 2), 1-propanol (lane 3), and hexanol (lane 4). Reference mannooligosaccharides: M1-M6 (lane M), and M2 (lane 5). Alkyl β -mannosides are indicated by arrows.

Figure S5. Oligomeric species. Electron micrograph showing two distinct species of *Op5*GH5, a hexameric or heptameric assembly (1) and the trimeric species (2).

Figure S6. Topological similarity of *Op5***Man5**, *Ra***BGal and** *Bs***164**. The N-terminal folds as a TIM barrel (domain A; red), and continues into a Rossmann-like mixed-sheet domain (domain B; blue). Except for a helical extension (orange) in the A-domain of *Ra*BGal and *Bs***164**, and an additional peripheral α -helix in the B domain of *Op5*Man5, the topology of the A and B domains are identical in the three enzymes. The C-terminal domain (domain C; green) in *Ra*BGal and *Bs***164** features a Greek-key fold that is not present in *Op5*Man5. Two β -strands in the Greek-key domain of *Ra*BGal are partly disordered, which is indicated as dashed arrows. The unmodeled region in *Op5*Man5 comprising residues 210-221 is shown as a dashed, unfilled rectangle indicating a possible α -helix that is either very flexible or partly unfolded. A second unmodeled region is the linker peptide between domains A and B in *Op5*Man5 (residues 366-382). Note that the deposited *Bs*164 models have a sequence offset of +10 residues relative the sequence deposited in UniProt (entry I9SUA3), and the numbering used in the topology diagram is that of the models.

Figure S7. Structural comparison of *Op5***Man5,** *Ra***BGal and** *Bs***164.** Overview of the trimer and monomer structure of *Op5*Man5 (this work), *Ra*BGal (PDB code 5E9A) and *Bs*164 (PDB code 6T75). The same colors are used as in Fig. S5.

Figure S8. Comparison of the catalytic TIM-barrel domains of GH5 exo- β **-1,4-mannosidases.** (A) Structure-based sequence alignment of the catalytic TIM-barrel domains of *Op5*Man5, *Ca*Man5 (PDB 6GVB³¹), *BI*Man5B (PDB 6MPA⁴⁷), *Cm*Man5A (PDB 1UUQ²⁰) and *Rm*Man5B (PDB 4LYP¹⁷). Surface representations of the TIM-barrel domains are shown to highlight the differences in shape of the entrance to the binding pockets.

Figure S9. Phylogenetic tree. The Op5Man5 sequence (AHF90519, UniProt W0J1H8) is highlighted.

Figure S10. GH genes in the *Opitutaceae* **bacterium strain TAV5 genome.** The distribution of GH genes in the genome of *Opitutaceae* bacterium strain TAV5 according to GH family.

Figure S11. Quality of the cryo-EM and final X-ray map. Comparison of the map quality in the region of the active site. The 3.7 Å cryo-EM map (A) is of good overall quality, especially for aromatic residues, but lacks detectable signal for some side chains (E156, D196, E335), for which the 2.2 Å $2F_o$ - F_c electron-density map (B) provided additional information.

Table S1. Reported activity on pNP-βMan for a selection of retaining glycoside hydrolases with exo-β-1,4-mannosidase activity (EC 3.2.1.25).

Enzyme name	Gene name	Organism name	UniProt accession	CAZy subfamily	[°] Molecular weight (g mol ⁻¹)	PDB accession	Oligomeric state	^b K _m	$b \mathbf{k}_{cat}$	$b \mathbf{k}_{cat} / \mathbf{K}_m$	Specific activity	Transglycosylatic	n Reference	Digital object identifier
								(mM)	(s ⁻¹)	(s ⁻¹ mM ⁻¹)	U mg⁻¹	activity	Reference	Digital object definition
GH5 (Bacteria)														
Op5Man5	OPIT5_10225	Opitutaceae bacterium strain TAV5, Verrucomicrobia	W0J1H8	-	66,062	This work	homotrimer / hexamer	1.0	238.9	238.9	-	Yes	This work	
TthMan5	Theth_0949	Pseudothermotoga (Thermotoga) thermarum strain DSM 5069, Thermotogae	F7YX66	19	70,687	۴n.a.	oligomer	4.4	1924	441	-	n.a.	Shi et al. 2013	10.1186/1472-6750-13-83
CaMan5_18	PAZ_c15370	Cutibacterium acnes (Propionibacterium acnes), Actinobacteria	A0A2B7I7A6	18	45,701	6GVB	homodimer	10.4	7.8	0.75	-	n.a.	Reichenbach et al. 2018	10.1371/journal.pone.0204703
BlMan5B	BLD_0195 (BL1333)	Bifidobacterium longum strain DJO10A, Actinobacteria	B3DQP5	18	47,441	6MPA	homodimer	^d n.a.	^d n.a.	^d n.a.	-	n.a.	Cordeiro et al 2019	10.1016/j.jmb.2018.12.017
CmMan5A	man5A	Cellvibrio mixtus strain NCIMB 8633, Proteobacteria	Q6QT42	7	51,623	IUUQ	monomer	1.6	0.033	0.021	-	Yes	Dias et al 2004	10.1074/jbc.M401647200
GH5 (Eukaryota, Fungi)														
RmMan5B	man5B	Rhizomucor miehei strain CAU432, zygomycete fungus	A0A075C6T6	7	51,321	4LYP, 4LYQ	monomer	n.a.	n.a.	n.a.	1.93	Yes	Zhou et al 2014	10.1107/S1399004714019762
LrMan5B	LRAMOSA04528	Lichtheimia ramosa, zygomycete fungus	A0A077WZ93	-	50,996	n.a.	n.a.	1.38	19.7	14.3	-	n.a.	Xie et al. 2019	10.1016/j.jbiosc.2019.04.007
AcMan5	acman5	Lichtheimia (Absidia) corymbifera strain D1, zygomycete fungus	A0A141PG32	-	49,797	n.a.	n.a.	n.a.	n.a.	n.a.	2.65	Yes	Li et a 2015	10.1016/j.molcatb.2015.09.018
GH2 (Bacteria)														
BtMan2A	BT_0458	Bacteroides thetaiotaomicron strain VPI-548, Bacteroidetes	Q8AAK6	-	99,506	2JE8	homodimer	0.19	128	667	-	No	Tailford et al. 2007	10.1074/jbc.M610964200
TmMan2	TM_1624	Thermotoga maritima strain MSB8, Thermotogae	Q9X1V9	-	92,373	n.a.	monomer	0.49	8.4	17.2	-	Yes	Zhang et al. 2009	10.1016/j.molcatb.2009.04.005
TnMan2	man2	Thermotoga neapolitana strain DSM 5068, Thermotogae	Q93M25	-	92,197	n.a.	homodimer	3.1	67.8	24.2	-	n.a.	Duffaud et al. 1997	10.1128/AEM.63.1.169-177.1997
ManB	manB	Thermobifida (Thermomonospora) fusca strain TM5, Actinobacteria	Q8KL19	-	94,228	n.a.	n.a.	0.18	9.34	51.9	-	Yes	Beki et al. 2003	10.1128/aem.69.4.1944-1952.2003
CfMan2A	man2	Cellulomonas fimi strain ATCC 484, Actinobacteria	Q9XCV4	-	93,696	n.a.	monomer	0.3	°167	^d 500	-	n.a.	Stoll et al. 1999	10.1128/AEM.65.6.2598-2605.1999
Man2S27	bma	Streptomyces sp. S27, Actinobacteria	D2DFB5	-	92,580	n.a.	n.a.	0.23	305	1320	-	Yes	Shi et al. 2011	10.1016/j.enzmictec.2011.06.003
NixH	XCC2891	Xanthomonas campestris pv. campestris strain ATCC 3391, Proteobacteria	Q8P6S4	-	100,196	n.a.	n.a.	7.4	1552	209.8	-	n.a.	Dupoiron et al. 2015	10.1074/jbc.M114.624593
DtMan	DICTH_1692	Dictyoglomus thermophilum strain DSM 3960, Firmicutes	B5YAN4	-	96,130	5N6U	homodimer	0.47	298	617	-	n.a.	Guillotin et al. 2017	10.1016/j.biochi.2017.03.020
-	-	Paenibacillus polymyxa (Bacillus polymyxa) strain A-8, Firmicutes	U5N3E2	-	96,836	n.a.	n.a.	n.a.	n.a.	n.a.	38	n.a.	Bai et al. 2014	10.1371/journal.pone.0111622
-	-	Paenibacillus polymyxa (Bacillus) strain A-8, Firmicutes, recombinant	U5N3E2	-	96,836	n.a.	n.a.	n.a.	n.a.	n.a.	0.7	n.a.	Bai et al. 2014	10.1371/journal.pone.0111622
GH2 (Eukaryot	GH2 (Eukaryota)													
MndA	mndA	Aspergillus niger strain ATCC 46890, ascomycete fungus	Q9UUZ3	-	104,390	n.a.	homodimer	0.30	67.5	225	-	Yes	Ademark et al. 1999	10.1016/s0168-1656(99)00172-8
MndA	mndA	Aspergillus niger strain ATCC 46890, ascomycete fungus	Q9UUZ3	-	104,390	n.a.	homodimer	0.46	67.5	217	-	Yes	Reddy et al. 2013	10.1016/j.febslet.2013.08.029
MndB	mndB	Aspergillus (Emericella) nidulans strain ATCC 38163, ascomycete fungus	Q5B7W2	-	96,367	n.a.	n.a.	0.22	1.32	6.0	-	n.a.	Reddy et al. 2013	10.1016/j.febslet.2013.08.029
bMann9	man9	Thermothelomyces thermophilus strain C1, ascomycete fungus	I2C092	-	97,352	n.a.	n.a.	0.41	15	37	-	n.a.	Dotsenko et al. 2012	10.1134/S0006297912110090
TrMan2A	-	Hypocrea jecorina (Trichoderma reesi) strain Z12, ascomycete fungus	n.a.	-	n.a.	n.a.	homodimer, putative	0.12	¹ 5.2	°43	-	n.a.	Kulminskaya et al. 1999	10.1016/S0141-0229(99)00056-3
ThMan2A	-	Hypocrea lixii (Trichoderma harzianum) strain IOC-3844, ascomycete fungus	A0A075B5H6	-	105,388	4CVU	monomer	n.a.	n.a.	n.a.	3.2	Yes	Nascimento et al. 2014	10.1111/febs.12894
ManbA	Manba	Mus musculus (lysosomal)	Q8K2I4	-	100,831	6DDU	monomer	1.42	72.2	51	-	n.a.	Gytz et al. 2019	10.1111/febs.14731
-	manba	Capra hircus (lysosomal), goat kidney	Q95327	-	101,386	n.a.	n.a.	9	n.a.	n.a.	1.08	n.a.	Frei et al. 1982	10.1042/bj2490871
-	manba	Homo sapiens (lysosomal), human serum	n.a.	-	(90,000)	n.a.	n.a.	2.7	n.a.	n.a.	n.a.	n.a.	Bernard et al. 1986	10.1016/0020-711x(86)90255-7
_	manba	Homo sapiens (lysosomal), human urine	n.a.	-	(100,000)	n.a.	n.a.	2.4	n.a.	n.a.	n.a.	n.a.	Bernard et al. 1986	10.1016/0020-711x(86)90255-7
-	manba	Homo sapiens (lysosomal), human placenta	O00462	-	(75,000)	n.a.	n.a.	2.2	n.a.	n.a.	n.a.	n.a.	Noeske & Mersmann 198	3 10.1515/bchm2.1983.364.2.1645
-	manba	Homo sapiens (lysosomal), human placenta	O00462	-	100,895	n.a.	n.a.	2.5	n.a.	n.a.	12.7	n.a.	Samra & Athar 2008	Acta Biochim. Pol. 55, 479-490, 2008
AkMnsd	AkMnsd	Aplysia kurodai (gut), Kuroda's sea hare	H1AFK3	-	105,059	n.a.	n.d.	0.10	6.2	62	_	n.a.	Zahura et al 2012	10.1016/j.cbpb.2012.02.003

Table S1. Cont.

Enzyme name	Gene name	Organism name	UniProt	CAZy	^a Molecular weight	PDB	Oligomeric state	^b K _m	^b K _{cat}	$b \mathbf{k}_{cat} / \mathbf{K}_m$	Specific activity	Transglycosylatio	n Reference	Digital object identifier
		-	accession	subramily	(g mol ⁻¹)	accession		(mM)	(s ⁻¹)	; (s ^{.1} mM ^{.1})	U mg ⁻¹	activity		
GH1 (Archaea)														
BmnA	bmnA	Pyrococcus furiosus strain DSM 3638	Q51733	-	59,069	n.a.	tetramer	0.79	31	39	-	n.a.	Bauer et al 1996	10.1074/jbc.271.39.23749
PFTG	PF0356	Pyrococcus furiosus strain DSM 3638	Q8U3U9	-	56,327	n.a.	tetramer	0.09	0.30	3.0	-	Yes	Park et al. 2011	10.1016/j.nbt.2011.05.002
BglB	PH0501	Pyrococcus horikoshii strain OT3	O58237	-	56,458	n.a.	tetramer	0.44	4.2	9.8	-	n.a.	Kaper et al. 2002	10.1021/bi011935a
TkβGly	-	Thermococcus kodakarensis strain KOD1	Q9YGB8	-	56,266	n.a.	homodimer	1.1	51	47	-	n.a.	Hwa et al. 2015	10.1016/j.enzmictec.2015.05.002
GH1 (Eukaryota	a, Plantae)													
HvBII	-	Hordeum vulgare subsp. vulgare, barley	B5A496	-	57,425	n.a.	n.a.	0.25	3.1	12.7	-	Yes	Kuntothom et al. 2010	10.1021/bi101112c
Os7BGlu26	OsI_27163	Hordeum vulgare subsp. indica, barley	A2YPH1	-	58,498	4JHO	monomer	0.48	0.35	0.71	-	n.a.	Tankrathok et al. 2013	10.1107/S0907444913020568
LeMside	-	Solanum lycopersicum (Lycopersicon esculentum), tomato	Q8VWL8	-	59,288	n.a.	n.a.	0.55	10	18	-	n.a.	Mo & Bewley 2002	10.1007/s00425-001-0725-x
BGLU44	BGLU44	Arabidopsis thaliana, thale cress	Q9LV33	-	58,984	n.a.	n.a.	0.43	6	14	-	n.a.	Xu et al. 2004	10.1007/s11103-004-0790-1
GH113 (Bacteri	a)													
<i>Ri</i> GH113	ROSINTL182_05483	Roseburia intestinalis strain L1-82		-	36,057	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	La Rosa et al. 2019	10.1038/s41467-019-08812-y
GH164 (Bacteria)														
Bs164	HMPREF1071_03408	Bacteroides salyersiae strain CL02T12C01	I9SUA3	-	76,732	6T5O, 6T75	homotrimer	3.6	40	11	-	n.a.	Armstrong & Davies 2020	10.1074/jbc.RA119.011591
Not classified i	n CAZy													
-	-	Bacillus mannanilyticus strain DSM 16130 (AM-001), bacteria, firmicutes	n.a.	-	(94,000)	n.a.	n.a.	1.3	n.a.	n.a.	38.8	Yes	Akino et al. 1988	10.1080/00021369.1988.10868864
-	-	Tremella fuciformis, basidiomycete fungus	n.a.	-	(140,000)	n.a.	n.a.	2.1	n.a.	n.a.	0.21	n.a.	Sone & Misaki 1978	10.1093/OXFORDJOURNALS.JBCHEM.A132003
-	-	Laetiporus (Polyporus) sulphureus, basidiomycete fungus	n.a.	-	(64,000)	n.a.	n.a.	1.6	n.a.	n.a.	4.2	n.a.	Wan et al. 1976	10.1016/s0021-9258(17)33308-2
-	-	Athelia (Sclerotium) rolfsii, basidiomycete fungus	-	-	(57,500)	n.a.	n.a.	n.a.	n.a.	n.a.	41	n.a.	Gübitz et al. 1996	10.1016/S0960-8524(96)00093-4
GM-1 (isoenzyme	e) –	Phlebia radiata strain ATCC 64658, basidiomycete fungus	n.a.	-	(104,600)	n.a.	n.a.	0.3	74	247	-	n.a.	Prendecka et al. 2007	Pol. J. Microbiol. 56, 139-147, 2007
GM-2 (isoenzyme	e) –	Phlebia radiata strain ATCC 64658, basidiomycete fungus	n.a.	_	(89,500)	n.a.	n.a.	1.8	72	40	-	n.a.	Prendecka et al. 2007	Pol. J. Microbiol. 56, 139-147, 2007
_	-	Thermoascus aurantiacus Miehe, ascomycete fungus	n.a.	_	(99,900)	n.a.	monomer	1.1	6.1	5.5	-	Yes	Gomes et al. 2007	10.1016/j.enzmictec.2006.08.011
_	-	Helix pomatia, Roman snail	n.a.	_	(94,000)	n.a.	n.a.	1.43	159	111	-	n.a.	McCleary 1983	10.1016/0008-6215(83)88314-1
-	-	Helix aspersa Müller (Cornu aspersum), brown garden snail	n.a.	-	(77,800)	n.a.	monomer	0.77	64	83	-	n.a.	Charrier & Rouland 2001	10.1002/jez.1042
-	-	Achatina fulica, giant African snail	n.a.	-	n.a.	n.a.	n.a.	6.5	n.a.	n.a.	6.67	n.a.	Sugahara et al. 1972	10.1016/0005-2744(72)90344-0
_	-	Turbo cornutus, horned turban sea snail	n.a.	_	n.a.	n.a.	n.a.	7.1	n.a.	n.a.	3.8	n.a.	Muramatsu & Egami 1967	10.1093/oxfordjournals.jbchem.a128726
_	-	Aplysia fasciata, mottled sea hare	n.a.	-	(130,000)	n.a.	homodimer	2.4	192	80	-	Yes	Andreotti et al. 2005	10.1016/j.jbiotec.2005.06.003
_	-	Hordeum vulgare, malted barley	n.a.	-	(88,000)	n.a.	n.a.	0.3	n.a.	n.a.	0.6	n.a.	Houston et al. 1974	10.1016/0005-2744(74)90052-7
_	-	Lactuca sativa L. cv. Grand Rapids, garden lettuce	n.a.	_	n.a.	n.a.	n.a.	0.3	n.a.	n.a.	n.a.	n.a.	Ouellette & Bewley 1986	10.1007/BF00392128
_	-	Cyamopsis tetragonolobus (guar seeds)	-	_	(59,000)	n.a.	n.a.	0.5	15	30	15.6	n.a.	McCleary 1982	Meth. Enzymol. 160, 589-595, 1982
-	-	Gallus gallus, hen oviduct	n.a.	-	(100,000)	n.a.	n.a.	2.9	n.a.	n.a.	n.a.	n.a.	Sukeno et al. 1972	10.1021/bi00758a026

a Theoretical molecular weight of a protein monomer derived from the amino-acid sequence. Numbers in soft brackets refer to the experimentally determined molecular weight by SDS-PAGE and is given when the sequence is not available.

^b Italized values were derived estimates calculated from the data reported in the original reference

^c n.a., information not available

^d Activity confirmed but substrate saturation not reached, which prevented deduction of the catalytic constants

e Substrate inhibition was observed and the values are estimates.

^f The derived values assume that the k_{cat} value is 2.95 10⁻³ µmol µg⁻¹ min⁻¹, and not 2.95 10⁻³ µmol min µg⁻¹ as given in the original reference

Table S2. Data collection, phasing and refinement statistics

Data collection ^a								
Synchrotron, beamline	Diamond Light Source, /03							
Wavelength (Å)	0.826561							
Space group / mol per a.s.u.	P2 ₁ 2 ₁ 2 ₁ /3 (one homotrimer)							
Cell dimensions: a, b, c (Å), α, β, γ (°)	102.14, 162.45, 168.18, 90, 90, 90							
Resolution (Å), nominal	49.15–2.20 (2.30–2.20)							
Unique reflections	141664 (17459)							
R _{sym}	0.107 (1.865)							
l / σl	11.9 (1.3)							
Completeness (%)	99.7 (99.4)							
Redundancy	13.3 (12.6)							
<i>CC</i> (1/2) ^b	99.9 (76.8)							
Wilson <i>B</i> factor (Å ²)	45.16							
Refinement								
Resolution (Å)	48.87–2.20 (2.28–2.20)							
Completeness	99.64 (99.39)							
No. reflections work	141605 (13961)							
No. reflections free	2012 (197)							
R _{work}	0.203 (0.385)							
R _{free}	0.227 (0.401)							
Nº. non-hydrogen atoms: all, protein, water	13299, 13134, 165							
Nº. protein residues, all chains	1662							
Missing residues chain A, B, C	41, 38, 41							
Mean <i>B</i> factors protein, water (Å ²)	56.9, 52.0							
R.m.s deviation bond lengths (Å), bond angles (°)	0.008, 0.89							
Ramachandran, MolProbity: allowed, favored, outliers (%)	99.94, 97.14, 0.06							
PDB ID	7BOB							

 ^a Statistics for outer-shell reflections are given in parentheses.
^b Percentage of correlation between intensities from random half-datasets as given by XSCALE. Values given represent correlations significant at the 0.1% level.⁴⁸