Supplementary Information

Light-driven decarboxylative deuteration enabled by a divergently

engineered photodecarboxylase

Jian Xu^{1,2,4}*, Jiajie Fan^{1,4}, Yujiao Lou^{1,4}, Weihua Xu^{1,4}, Zhiguo Wang^{3,4}, Danyang Li¹, Haonan Zhou¹, Xianfu Lin¹

& Qi Wu¹*

¹ Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China. *e-mail: wuqi1000@163.com or llc123@zju.edu.cn.

²College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China. *e-mail: jianxu@zjut.edu.cn.

³ Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, P. R. China. ⁴ These authors contributed equally.

Supplementary Figures

Supplementary Fig. 1. Dependence of cosolvent in the CvFAP catalyzed decarboxylative	3
activity of the second	
decarboxylative deuteration.	4
Supplementary Fig. 3. The progress curve of CvFAP catalyzed decarboxylative deuteration.	5
Supplementary Fig. 4. Effect of water content in the enzyme system on the D- incorporation.	6
Supplementary Fig. 5. Screening results of the FRISM library using the model decarboxylation of nonanoic acid.	7
Supplementary Fig. 6. Recovered times of D_2O in the CvFAP catalyzed decarboxylative deuteration.	8
Supplementary Fig. 7. SDS-PAGE of WT-CvFAP and mutants.	9
Supplementary Fig. 8. Derivatization of 5d to (+)-Igmesine-d1 with reported methods.	10
Supplementary Fig. 9-14. Comparison of the distance between the carboxyl of substrates and the N5 atom of FAD in variants by MD simulation.	11-16
Supplementary Fig. 15-25. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4a-4k.	17-27
Supplementary Fig. 26. NMR spectra of 2-(Hexadecyloxy)acetic acid (11).	28
Supplementary Fig. 27. NMR spectra of 2-(Dodecyloxy)acetic acid (2K).	29
Supplementary Fig. 28-36. NMR spectra of 4A-4I.	30-38
Supplementary Fig. 37-47. NMR (or/and HRMS) spectra of 1a-1k.	39-56
Supplementary Fig. 48-58. NMR (or/and HRMS) spectra of 2a-2k.	57-71
Supplementary Fig. 59-66. HRMS spectra of 3a-3h.	72-79
Supplementary Fig. 67-77. NMR (or/and HRMS) spectra of 4a-4k.	80-90
Supplementary Fig. 78-88. NMR (or/and HRMS) spectra of 5a-5k.	91-103
Supplementary Tables	
Supplementary Table 1 List of primers.	104
Supplementary Table 2 The ratio of M-1 peak to M peak in HRMS of various hydrocarbons with low boiling points.	105
<i>Supplementary Table 3 Evaluation of the difference of D-incorporation determined by NMR and HRMS.</i>	106
Supplementary Table 4 Protein sequence of CvFAP.	107
Supplementary Table 5 DNA sequence of CvFAP.	108
Supplementary Table 6 Characterization data of prepared substrates and products.	109
Supplementary References	117

Supplementary References

Supplementary Figures

Supplementary Fig. 1. Dependence of cosolvent in the *CvFAP* **catalyzed decarboxylative deuteration.** Reaction conditions: palmitic acid (0.40 mmol), crude enzyme powder (containing *CvFAP* about 20 mg), D₂O (4 mL), cosolvent (1 mL), 450 nm LED, 20 °C, 2 h, yields are determined by GC.

Supplementary Fig. 2. The effect of substrate concentration on the *Cv***FAP catalyzed decarboxylative deuteration.** Reaction conditions: palmitic acid (1-100 mM), crude enzyme powder (containing *Cv*FAP about 20 mg), D₂O (4 mL), DMSO (1 mL), 450 nm LED, 20 °C, 2 h. Yields are determined by GC.

Supplementary Fig. 3. The progress curve of *Cv***FAP catalyzed decarboxylative deuteration.** Reaction conditions: palmitic acid (100 mM), crude enzyme powder (containing *Cv*FAP about 20 mg), D₂O (4 mL), DMSO (1 mL), 450 nm LED, 20 °C, 1-16 h, yields are determined by GC.

Supplementary Fig. 4. Effect of water content in the enzyme system on the D- incorporation. a) the D- incorporation of **1a** obtained from WT *Cv*FAP treated with different freeze-drying time. **b)** the D- incorporation of **1c** obtained from WT *Cv*FAP treated with different freeze-drying time. **c)** Effect of water content in WT *Cv*FAP on the D- incorporation of **1a**. Reaction conditions: substrate (0.40 mmol), crude enzyme powder (containing *Cv*FAP about 20 mg), D₂O (4 mL), DMSO (1 mL), 450 nm LED, 20 °C, 12 h, yields are determined by GC. D-inc. data are determined by ¹H NMR or HRMS.

Supplementary Fig. 5. Screening results of the FRISM library using the model decarboxylation of nonanoic acid. Reaction conditions: nonanoic acid (0.02 mmol), 1 mL crude enzyme solutions of different mutants (1 g wet cell in 10 mL pH 8.5 phosphate buffer), DMSO (0.2 mL), 450 nm LED, 20 °C, 12 h, yields are determined by GC.

Supplementary Fig. 6. Recovered times of D₂O in the *CvFAP* **catalyzed decarboxylative deuteration.** D₂O was recovered by vacuum distillation. Reaction conditions: palmitic acid (100 mM), crude enzyme powder (containing *CvFAP* about 20 mg), D₂O (4 mL), DMSO (1 mL), 450 nm LED, 20 °C, 12 h, yield is determined by GC, D-inc. was determined by HRMS.

Supplementary Fig. 7 SDS-PAGE of WT-*Cv***FAP and mutants expressed in** *E. coli***.** Lane 1 and 8: protein markers. Lane 2-7: cell extract of WT *Cv*FAP, I398L, G462A, I398R, G462F, and Y466A. Lane 9-14: protein of WT *Cv*FAP, I398L, G462A, I398R, G462F, and Y466A after purification. Three experiment was repeated independently with similar results.

Supplementary Fig. 8. Derivatization of 5d to (+)-**Igmesine**-*d*₁ **with reported methods**.^{1,2} Reagents and conditions: a) whole-cell culture medium of ketoreductase with glucose, 30 °C, over night; b) iPr₂NCOCl (1.05 equiv), NEt₃ (1.1 equiv), CH₂Cl₂, reflux, 24 h; c) *sec*-butyllithium (1.1 equiv), -78°C, 20 min; then cinnamyl boronic acid pinacol ester (1.2 equiv), -78°C, 1 h; then 1M MgBr₂ in MeOH (1.2 equiv), -78°C, 10 min, then RT, 16 h; then 1M aq KH₂PO₄; d) 4.5m aq KHF₂ (2.5 equiv), MeOH, RT, 30 min, evaporation; then 50% aq MeOH, 10 min and evaporation (5x); e) SiCl₄, (2 equiv), DCE, RT, 1 h; *c*PrCH₂N₃ (2 equiv), 80°C, 30 min; then 2M aq NaOH, RT, 1 h; f) 37% aq CH₂O, NaHB(OAc)₃, DCE, RT, 16 h.

Supplementary Fig. 9. Comparison of the distance between the carboxyl of nonanoic acid (2A) and the N5 atom of FAD in WT-*Cv*FAP and I398L by MD simulation.

Supplementary Fig. 10. Comparison of the distance between the carboxyl of propionic acid (3A) and the N5 atom of FAD in WT-*Cv*FAP and G462A by MD simulation.

Supplementary Fig. 11. Comparison of the distance between the carboxyl of (R)- and (S)- 2-(heptan-3-yloxy) acetic acid (4A) and the N5 atom of FAD in I398R by MD simulation.

Supplementary Fig. 12. Comparison of the distance between the carboxyl of (R)- and (S)- 2-(heptan-3-yloxy) acetic acid (4A) and the N5 atom of FAD in G462F by MD simulation.

Supplementary Fig. 13. Comparison of the distance between the carboxyl of (S)- 3-phenylbutanoic acid ((S)-5A) and the N5 atom of FAD in WT-*Cv*FAP and Y466A by MD simulation.

Supplementary Fig. 14. Comparison of the distance between the carboxyl of (R)- 3-phenylbutanoic acid ((R)-5A) and the N5 atom of FAD in WT-CvFAP and Y466A by MD simulation.

Supplementary Fig. 15. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4a. Agilent CP-chirasil-Dex CB, $T_R = 12.47$ min, $T_S = 12.87$ min, Temperature conditions: initial temperature 40 °C, holding

15 min, then 40 °C/min to 200 °C, holding 1 min.

Supplementary Fig. 16. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4b. Agilent CP-chirasil-Dex CB, $T_R = 17.52$ min, $T_S = 18.19$ min, Temperature conditions: initial temperature 40 °C, holding 20 min, then 40 °C/min to 200 °C, holding 1 min

Supplementary Fig. 17. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4c. Agilent CP-chirasil-Dex CB, $T_R = 20.21$ min, $T_S = 20.75$ min, Temperature conditions: initial temperature 50 °C, holding 22 min, then 40 °C/min to 200 °C, holding 1 min.

Supplementary Fig. 18. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4d. Agilent CP-chirasil-Dex CB, $T_R = 14.77$ min, $T_S = 15.46$ min, Temperature conditions: initial temperature 40 °C, holding 20 min, then 40 °C/min to 200 °C, holding 1 min.

Supplementary Fig. 19. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4E. Agilent CP-chirasil-Dex CB, $T_R = 10.58$ min, $T_S = 10.79$ min, Temperature conditions: initial temperature 100 °C, $2 \,^{\circ}$ C/min to 130 °C, then 35 °C/min to 200 °C, holding 1 min. The e.r. value of 4E was determined after the sulfuric acid-catalyzed derivatization with methyl alcohol, and the e.r. value of 4e was calculated based on the conversion and e.r. of 4E.

Supplementary Fig. 20. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4f. Agilent CP-chirasil-Dex CB, $T_R = 11.91$ min, $T_S = 12.16$ min, Temperature conditions: initial temperature 40 °C, holding 7 min, 1 °C /min to 50 °C, then 50 °C /min to 200 °C, holding 1 min.

Supplementary Fig. 21. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4g. Agilent CP-chirasil-Dex CB, $T_R = 12.47$ min, $T_S = 12.87$ min, Temperature conditions: initial temperature 40 °C, holding 15 min, then 40 °C /min to 200 °C, holding 1 min.

Supplementary Fig. 22. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4h. Agilent CP-chirasil-Dex CB, $T_R = 17.53$ min, $T_S = 18.20$ min, Temperature conditions: initial temperature 40 °C, holding 20 min, then 40 °C /min to 200 °C, holding 1 min.

Supplementary Fig. 23. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4i. Agilent CP-chirasil-Dex CB, $T_R = 19.78$ min, $T_S = 20.73$ min, Temperature conditions: initial temperature 50 °C, holding 8 min, then 50 °C /min to 200 °C, holding 1 min.

Supplementary Fig. 24. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4j. Agilent CP-chirasil-Dex CB, $T_R = 15.24$ min, $T_S = 15.67$ min, Temperature conditions: initial temperature 80 °C, holding 5 min, 2 °C /min to 110 °C, then 45 °C /min to 200 °C, holding 1 min. The e.r. value of 4j were determined after the derivatization with butyryl chloride.

Supplementary Fig. 25. Chiral GC chromatogram of the enantioselective decarboxylative deuteration of 4k. Agilent CP-chirasil-Dex CB, $T_R = 31.73$ min, $T_S = 32.11$ min. Temperature conditions: initial temperature 80 °C, holding 5 min, 5 °C /min to 160 °C, then 40 °C /min to 200 °C, holding 1 min. The e.r. value of 4k were determined after the derivatization with butyryl chloride.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

Supplementary Fig. 26. NMR spectra of 2-(Hexadecyloxy)acetic acid (11).

Supplementary Fig. 27. NMR spectra of 2-(Dodecyloxy)acetic acid (2K).

Supplementary Fig. 28. NMR spectra of 2-(Heptan-3-yloxy)acetic acid (4A).

Supplementary Fig. 29. NMR spectra of 2-(Octan-2-yloxy)acetic acid (4B).

Supplementary Fig. 30. NMR spectra of 2-(Oct-1-en-3-yloxy)acetic acid (4C).

Supplementary Fig. 31. NMR spectra of 2-(Heptan-2-yloxy)acetic acid (4D).

Ю 2.01 3.19 5.10 6.19 2.00-.16 6.0 f1 (ppm) 12.0 11.0 7.0 5.0 4.0 3.0 2.0 1.0 0. 10.0 9.0 8.0 77.48 CDCl3 77.17 CDCl3 76.96 76.85 CDCl3 -65.28 - 175.73 38.89 36.33 27.83 23.07 22.51 19.12 соон С **4**E 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 Ċ

Supplementary Fig. 32. NMR spectra of 2-((6-Methylheptan-2-yl)oxy)acetic acid (4E).

Supplementary Fig. 33. NMR spectra of 2-((2-Methylhexan-3-yl)oxy)acetic acid (4F).

Supplementary Fig. 34. NMR spectra of 2-(Heptan-3-yloxy)acetic-2,2-d2 acid (4G).

Supplementary Fig. 35. NMR spectra of 2-(Octan-2-yloxy)acetic-2,2-d2 acid (4H).

Supplementary Fig. 36. NMR spectra of 2-(Oct-1-yn-3-yloxy)acetic acid (4I).

Supplementary Fig. 37. NMR and HRMS spectra of Pentadecane-1-d (1a). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 38. NMR and HRMS spectra of Heptadecane-1-d (1b). The splitting of C-D coupling in ¹³C-

NMR was shown with an enlarged view.

Supplementary Fig. 39. NMR and HRMS spectra of Octadecane-1-d (1c). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 40. NMR spectra of (Z)-Heptadec-8-ene-1-d (1d). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 41. NMR and HRMS spectra of (E)-Heptadec-8-ene-1-d (1e). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 42. NMR and HRMS spectra of (6Z,9Z)-Heptadeca-6,9-diene-17-d (1f). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 43. NMR spectra of Heptadecan-17-d-7-ol (1g). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 44. NMR and HRMS spectra of Methyl tetradecanoate-14-d (1h). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

52

Supplementary Fig. 45. NMR spectra of 1-(Methoxy-d)hexadecane (1i). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 46. NMR and HRMS spectra of Tridecane-1,13-d2 (1j). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 47. NMR spectra of Heptadecan-7-yl-17-d acetate (1k). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 48. HRMS spectrum of Octane-1-d (2a).

Supplementary Fig. 49. NMR and HRMS spectra of Undecane-1-d (2b). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 50. NMR spectra of Decan-10-d-1-ol (2c). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 51. NMR and HRMS spectra of 1-Bromodecane-10-d (2d). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 52. NMR spectra of Heptan-7-d-1-ol (2e). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 53. HRMS spectrum of Heptane-1,7-d2 (2f).

Supplementary Fig. 54. NMR spectra of *tert***-Butyl (pentyl-5-d)carbamate (2g).** The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 55. NMR spectra of Decyl-10-d acetate (2h). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 56. NMR and HRMS spectra of Methyl octanoate-8-d (2i). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 57. NMR and HRMS spectra of Dec-1-ene-10-d (2j). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 58. NMR spectra of 1-(Methoxy-d)dodecane (2k). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 59. HRMS spectra of Ethane-d (3a) and Ethane without deuterium.

Supplementary Fig. 60. HRMS spectra of Hexane-1-d (3b) and Hexane without deuterium.

Supplementary Fig. 61. HRMS spectrum of 1-Chlorobutane-4-d (3c).

Supplementary Fig. 62. HRMS spectrum of 2, 2, 4-Trimethylpentane-5-d (3d).

Supplementary Fig. 63. HRMS spectrum of Butan-2-one-4-d (3e).

TOF MS EI+ 7.03e+001 44.0621 100-43.0546 H %-43.9895 44.10 0-43.30 43.10 43.40 43.60 43.70 43.80 43.20 43.50 43.90 44.00 5.00 100.00 Minimum: Maximum: -1.5 50.0 2.0 10.0 i-FIT Mass RA Calc. Mass mDa PPM DBE Formula 1.4 -0.2 -0.3 1.0 -0.5 $\begin{array}{r}
 1.0 \\
 0.5 \\
 2.0 \\
 0.5 \\
 0.0 \\
\end{array}$ 42.7 2773047.8 5546025.5 2773014.0 5546026.5 C3 1H5 C3 1H7 C 02 C3 1H6 C3 1H8 43.0546 80.68 43.0532 32.5 2H 43. 0532 43. 0548 43. 9898 44. 0611 44. 0626 -4.6 -6.8 22.7 -11.3 43. 9895 36.02 44.0621 100.00 2H

Supplementary Fig. 64. HRMS spectra of Propane-1-d (3f) and Propane without deuterium.

0	55.125	29	55.4110	00.4422		55.7799		50.1724	m/z
55.00		55.20	55.40		55.60	55.80	56	.00 56.20	56.40
Minimum: Maximum:	5.00 100.00		2.0	10.0	-1.5 50.0				
Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
55. 0551 56. 0620	41.23 100.00	55.0548 56.0626	0.3 -0.6	5.4 -10.7	$1.5 \\ 1.0$	2775181.0 5547987.0	C4 H7 C4 H8		

Supplementary Fig. 65. HRMS spectra of But-1-ene-4-d (3g) and Butene without deuterium.

58.0766

60.05

Supplementary Fig. 66. HRMS spectra of Isobutane-1-d (3h) and Isobutane without deuterium.

Supplementary Fig. 67. NMR spectra of 3-(Methoxy-d)heptane (4a). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 68. NMR spectra of 2-(Methoxy-d)-octane (4b). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 69. NMR spectra of 3-(Methoxy-d)oct-1-ene (4c). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 70. NMR spectra of 2-(Methoxy-d)heptane (4d). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 71. NMR spectra of 2-(Methoxy-d)-6-methylheptane (4e). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 72. NMR spectra of 3-(Methoxy-d)-2-methylhexane (4f). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 f1 (ppm)

Supplementary Fig. 73. NMR spectra of 3-(Methoxy-d3)heptane (4g). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

Supplementary Fig. 74. NMR spectra of 2-(Methoxy-d3)octane (4h). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 75. HRMS spectra of 3-(Methoxy-d)oct-1-yne (4i) and the corresponding 3-(Methoxy)oct-1yne without deuterium. The D-incorporation of 4i was determined by the comparation of HRMS between the H- and D-4i.

Supplementary Fig. 76. NMR spectra of Octan-8-d-4-ol (4j). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 77. NMR spectra of Undecan-1-d-4-ol (4k). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 78. NMR and HRMS spectra of (Propan-2-yl-1-d)benzene (5a). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 79. NMR spectra of (Propyl-2-d)benzene (5b). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 80. NMR and HRMS spectra of (Propyl-3-d)benzene (5c). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 81. NMR spectra of 1-Phenyl-1-propanone-3-d (5d). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

8.01 7.99 7.97 7.15 7.15 7.12 7.12 7.10

2.92 2.92 2.92 2.92 2.92 2.92 1.78 1.78 1.78 1.78 1.78 1.78 0.099 0.097 0.097 0.097

Supplementary Fig. 82. NMR spectra of 1-(4-Fluorophenyl)butan-1-one-4-d (5e). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 83. HRMS spectrum of Methylcyclohexane-1-d (5f).

Supplementary Fig. 84. HRMS spectrum of (Methyl-d)cyclohexane (5g).

Supplementary Fig. 85. NMR spectra of 1,4-dimethyl-2-((4-methylpentyl-4-d)oxy)benzene (5h). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 86. NMR spectra of (E)-7-hydroxy-5-methoxy-4-methyl-6-(3-methylpent-2-en-1-yl-5-d)isobenzofuran-1(3H)-one (5i). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Fig. 87. NMR spectra of 2-(ethyl-1-d)dibenzo[b,f]thiepin-10(11H)-one (5j). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view. The signal at δ 4.34 for two protons on C11 (labeled with star) shows reduced intensity, indicating some deuteration also occurs at this position due to tautomeric exchange of the substrate with the solvent. The D-inc. on C11 of 5j was 66% according to the signal intensity at δ 4.34.

Supplementary Fig. 88. NMR spectra of (4aS,10aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-

octahydrophenanthrene-1-d (5k). The splitting of C-D coupling in ¹³C-NMR was shown with an enlarged view.

Supplementary Tables

Supplementary Table 1 List of primers.

Mutant	Sequence					
A128L	GTTAAAATTCCG <u>CTG</u> GCAATTACCCG					
A128F	GTTAAAATTCCG <u>TTT</u> GCAATTACCCG					
A171L	TAGCAGCGCAACCAAT <u>CTG</u> ACCCTGTATCATCG					
A171F	TAGCAGCG CAACCAATTTTACCCTGTATCATCG					
T172A	GCAACCAATGCA <u>GCG</u> CTGTATCATCG					
T172L	GCAACCAATGCA <u>CTG</u> CTGTATCATCG					
T172F	GCAACCAATGCA <u>TTT</u> CTGTATCATCG					
1398A	AAATATGATGGT <u>GCC</u> GCCATCAGCGATCAC					
I398L	AAATATGATGGT <u>CTG</u> GCCATCAGCGATCAC					
I398F	AAATATGATGGT <u>TTT</u> GCCATCAGCGATCAC					
1398R	AAATATGATGGT <u>CGC</u> GCCATCAGCGATCAC					
A399L	TATGATGGTATT <u>CTG</u> ATCAGCGATCACATT					
A399F	TATGATGGTATT <u>TTT</u> ATCAGCGATCACATT					
G431A	CTGACCAGTACC <u>GCG</u> TGTGATCGTGG					
G431L	CTGACCAGTACC <u>CTG</u> TGTGATCGTGG					
G431F	CTGACCAGTACC <u>TTT</u> TGTGATCGTG					
G462A	CTGGATCCGGAT <u>GCG</u> GTTAGCACCTATG					
G462L	CTGGATCCGGAT <u>CTG</u> GTTAGCACCTATG					
G462F	CTGGATCCGGAT <u>TTT</u> GTTAGCACCTATG					
Y466A	GATGGTGTTAGCACC <u>GCG</u> GTTCGTTTTGCAAAA					
Y466L	GATGGTGTTAGCACC <u>CTG</u> GTTCGTTTTGCAAAA					
Y466F	GATGGTGTTAGCACC <u>TTT</u> GTTCGTTTTGCAAAA					
Q486A	GTATTACCATG <u>GCG</u> CTGATTGCATG					
Q486L	GTATTACCATG <u>CTG</u> CTGATTGCATG					
Q486F	GTATTACCATG <u>TTT</u> CTGATTGCATG					
silent reverse primer	GATGCCGGGAGCAGACAAGCCCGTCAGGGCGC					

~ • · · ·	HRMS result				
Substrate	Ratio _M (%)	Ratio _{M-1} (%)			
Ethane	100	66			
Propane	100	80			
Pentane	100	12			
Hexane	100	2			
Heptane	100	<1			
Octane	100	<1			
Decane	100	<1			
Undecane	100	<1			

Supplementary Table 2 The ratio of M-1 peak to M peak in HRMS of various hydrocarbons with low boiling points.

	D-incorporation (%)			
Substrate	Determined by HRMS	Determined by NMR		
1a	91±1	93±2		
1b	94±2	95±2		
1c	95±1	96±1		

Supplementary Table 3 Evaluation of the difference of D-incorporation determined by NMR and HRMS.

Data are presented as mean value \pm SD (standard deviations) of three replicates.

Supplementary Table 4 Protein sequence of *Cv*FAP.

Protein sequence of CvFAP

MGSSHHHHHH S	SGLVPRGSH	MASMTGGQQM	GRGSEFMASI	TSRASARASC	SQANTRAGRV
ALSGGALLRP A	RPARSFVPA	RKQQQGAVRR	GGALSARASA	VEDIRKVLSD	SSSPVAGQKY
DYILVGGGTA A	CVLANRLSA	DGSKRVLVLE	AGPDNTSRDV	KIPAAITRLF	RSPLDWNLFS
ELQEQLAERQ IY	MARGRLLG	GSSATNATLY	HRGAAGDYDA	WGVEGWSSED	VLSWFVQAET
NADFGPGAYH G	SGGPMRVEN	PRYTNKQLHT	AFFKAAEEVG	LTPNSDFNDW	SHDHAGYGTF
QVMQDKGTRA I	OMYRQYLKPV	LGRRNLQVLT	GAAVTKVNID	QAAGKAQALG	VEFSTDGPTG
ERLSAELAPG G	EVIMCAGAV	HTPFLLKHSG	VGPSAELKEF	GIPVVSNLAG	VGQNLQDQPA
CLTAAPVKEK Y	DGIAISDHI	YNEKGQIRKR	AIASYLLGGR	GGLTSTGCDR	GAFVRTAGQA
LPDLQVRFVP G	MALDPDGVS	TYVRFAKFQS	QGLKWPSGIT	MQLIACRPQS	TGSVGLKSAD
PFAPPKLSPG YI	LTDKDGADL	ATLRKGIHWA	RDVARSSALS	EYLDGELFPG	SGVVSDDQID
EYIRRSIHSS NA	ITGTCKMG	NAGDSSSVVD	NQLRVHGVEG	LRVVDASVVP	KIPGGQTGAP
VVMIAERAAA LLT	IGKATIGA SAA	AAPATVAA			

DNA sequence of CvFAP

1	ATGGGCAGCA GCCATCATCA TCATCATCAC AGCAGCGGCC TGGTGCCGCG CGGCAGCCAT
61	ATGGCTAGCA TGACTGGTGG ACAGCAAATG GGTCGCGGAT CCGAATTCAT GGCAAGCATT
121	ACCAGCCGTG CAAGCGCACG TGCAAGCTGT AGCCAGGCAA ATACCCGTGC AGGTCGTGTT
181	GCACTGAGCG GTGGTGCACT GCTGCGTCCG GCACGTCCTG CACGTAGCTT TGTTCCGGCA
241	CGTAAACAGC AGCAGGGTGC AGTTCGTCGT GGTGGTGCCC TGAGCGCACG TGCCAGCGCA
301	GTTGAAGATA TTCGTAAAGT TCTGAGCGAT AGCAGCAGTC CGGTTGCAGG TCAGAAATAT
361	GATTATATTC TGGTTGGTGG TGGCACCGCA GCATGTGTTC TGGCAAATCG TCTGAGCGCA
421	GATGGTAGCA AACGTGTTCT GGTTCTGGAA GCAGGTCCGG ATAATACCAG CCGTGATGTT
481	AAAATTCCGG CAGCAATTAC CCGTCTGTTT CGTAGTCCGC TGGATTGGAA CCTGTTTAGC
541	GAACTGCAAG AACAGCTGGC AGAACGTCAG ATTTATATGG CACGTGGTCG TCTGCTGGGT
601	GGTAGCAGCG CAACCAATGC AACCCTGTAT CATCGTGGTG CAGCCGGTGA TTATGATGCA
661	TGGGGTGTTG AAGGTTGGAG CAGCGAAGAT GTTCTGAGCT GGTTTGTTCA GGCAGAAACC
721	AATGCAGATT TTGGTCCGGG TGCATATCAT GGTAGCGGTG GTCCGATGCG TGTTGAAAAT
781	CCGCGTTATA CCAATAAACA GCTGCATACC GCATTTTTCA AAGCAGCAGA AGAAGTTGGT
841	CTGACCCCGA ATAGCGATTT TAATGATTGG AGCCATGATC ATGCAGGTTA TGGCACCTTT
901	CAGGTTATGC AGGATAAAGG CACCCGTGCA GATATGTATC GTCAGTATCT GAAACCGGTT
961	CTGGGTCGTC GTAATCTGCA GGTTCTGACC GGTGCAGCAG TTACCAAAGT TAATATTGAT
1021	CAGGCAGCAG GTAAAGCACA GGCACTGGGT GTTGAATTTT CAACCGATGG TCCGACCGGT
1081	GAACGTCTGA GTGCAGAACT GGCACCGGGT GGTGAAGTTA TTATGTGTGC CGGTGCAGTT
1141	CATACCCCGT TTCTGCTGAA ACATAGCGGT GTTGGTCCGA GCGCAGAACT GAAAGAATTT
1201	GGTATTCCGG TTGTTAGCAA TCTGGCAGGC GTTGGTCAGA ATCTGCAGGA TCAGCCTGCA
1261	TGTCTGACCG CAGCACCGGT TAAAGAAAAA TATGATGGTA TTGCCATCAG CGATCACATT
1321	TATAACGAAA AAGGTCAGAT TCGCAAACGT GCAATTGCAA GCTATCTGCT GGGAGGTCGT
1381	GGTGGTCTGA CCAGTACCGG TTGTGATCGT GGTGCATTTG TTCGTACCGC AGGTCAGGCA
1441	CTGCCGGATC TGCAGGTACG TTTTGTTCCG GGTATGGCAC TGGATCCGGA TGGTGTTAGC
1501	ACCTATGTTC GTTTTGCAAA ATTTCAGAGC CAGGGTCTGA AATGGCCGAG CGGTATTACC
1561	ATGCAGCTGA TTGCATGTCG TCCGCAGAGC ACCGGTAGCG TTGGTCTGAA AAGCGCAGAT
1621	CCGTTTGCAC CGCCTAAACT GAGTCCGGGT TATCTGACCG ATAAAGATGG TGCAGATCTG
1681	GCAACCCTGC GTAAAGGTAT TCATTGGGCA CGTGATGTTG CACGTAGCAG CGCACTGAGC
1741	GAATATCTGG ATGGTGAACT GTTTCCGGGT AGCGGTGTTG TTAGTGATGA TCAGATTGAT
1801	GAATATATCC GTCGCAGCAT TCATAGCAGC AATGCAATTA CCGGCACCTG TAAAATGGGT
1861	AATGCCGGTG ATAGCAGCAG CGTTGTTGAT AATCAGCTGC GTGTTCATGG TGTGGAAGGT
1921	CTGCGTGTTG TTGATGCAAG CGTTGTTCCG AAAATTCCGG GTGGTCAGAC AGGTGCACCG
1981	GTTGTTATGA TTGCAGAACG TGCAGCAGCA CTGCTGACCG GTAAAGCAAC CATTGGTGCA
2041	AGCGCAGCAG CACCGGCAAC CGTTGCAGCA TGA
Supplementary Table 6 Characterization data of prepared substrates and products.

Compounds	Characterization data
	¹ H NMR (400 MHz, CDCl ₃) δ 4.09 (s, 2H), 3.57 (t, J = 6.7 Hz, 2H), 1.67 – 1.60 (m,
\sim	2H), 1.28 (s, 26H), 0.88 (t, 3H).
HOOC	¹³ C NMR (100 MHz, CDCl ₃) δ 172.64, 72.23, 67.74, 31.95, 29.71, 29.67, 29.60,
2-(Hexadecyloxy)acetic acid (11)	29.56, 29.42, 29.38, 25.91, 22.71, 14.14.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₈ H ₃₆ O ₃ 300.2665; Found 300.2669.
	¹ H NMR (400 MHz, CDCl ₃) δ 4.12 (s, 2H), 3.55 (t, J = 6.7 Hz, 2H), 1.72 – 1.57 (m,
	2H), 1.26 (m, 18H), 0.88 (t, <i>J</i> = 6.7 Hz, 3H).
Сосон	¹³ C NMR (100 MHz, CDCl ₃) δ 174.78, 72.20, 67.73, 31.93, 29.66, 29.64, 29.59,
2-(Dodecyloxy)acetic acid (2K)	29.56, 29.43, 29.40, 29.36, 25.91, 22.70, 14.12.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₄ H ₂₈ O ₃ 244.2038; Found 244.2039.
	¹ H NMR (400 MHz, CDCl ₃) δ 4.04 (s, 2H), 3.29 (m, 1H), 1.55 – 1.36 (m, 4H), 1.35 –
	1.16 (m, 4H), 0.89 – 0.80 (m, 6H).
∽∽∽∽о́соон	¹³ C NMR (100 MHz, CDCl ₃) δ 173.68, 82.51, 65.85, 32.70, 27.41, 26.02, 22.80,
2-(Heptan-3-yloxy)acetic acid (4A)	14.02, 9.36.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₈ O ₃ 174.1256; Found 174.1257.
	¹ H NMR (400 MHz, CDCl ₃) δ 4.25 – 4.03 (m, 2H), 3.55 (m, 1H), 1.68 – 1.39 (m,
	2H), 1.39 – 1.21 (m, 8H), 1.19 (d, J = 6.1 Hz, 3H), 0.94 – 0.83 (m, 3H).
Сосоон	¹³ C NMR (100 MHz, CDCl ₃) δ 174.27, 77.29, 65.48, 36.21, 31.78, 29.32, 25.36,
2-(Octan-2-yloxy)acetic acid (4B)	22.61, 19.32, 14.09.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₂₀ O ₃ 188.1412; Found 188.1411.
	¹ H NMR (400 MHz, CDCl ₃) δ 5.65 (ddd, <i>J</i> = 17.1, 10.2, 8.1 Hz, 1H), 5.26 (dd, <i>J</i> =
	10.3, 1.6 Hz, 1H), 5.27 – 5.17 (m, 1H), 4.14 (q, <i>J</i> = 16.9 Hz, 2H), 3.76 (m, 1H), 1.77
Сострание и составители и составите составители и составитес	- 1.48 (m, 2H), 1.41 - 1.29 (m, 6H), 0.92 - 0.85 (m, 3H).
2-(Oct-1-en-3-yloxy)acetic acid	¹³ C NMR (100 MHz, CDCl ₃) δ 176.07, 137.63, 118.52, 82.56, 64.79, 35.00, 31.65,
(4C)	24.80, 22.49, 13.93.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₁₈ O ₃ 186.1256; Found 186.1253.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.97 (m, 2H), 3.37 (m, 1H), 1.45 – 1.15 (m, 2H), 1.15
	- 1.09 (m, 6H), 1.02 (d, J = 6.2 Hz, 3H), 0.72 (t, J = 6.9 Hz, 3H).
	¹³ C NMR (100 MHz, CDCl ₃) δ 174.25, 77.29, 65.48, 36.17, 31.83, 25.06, 22.59, 1.32,
2-(Heptan-2-yloxy)acetic acid	14.02.
(4D)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₈ O ₃ 174.1256; Found 174.1259.
	¹ H NMR (400 MHz, CDCl ₃) δ 10.65 (s, 1H), 4.25 – 4.04 (m, 2H), 3.54 (m, 1H), 1.57
	(ddt, <i>J</i> = 26.3, 13.3, 6.6 Hz, 2H), 1.48 – 1.25 (m, 3H), 1.18 (m, 5H), 0.87 (d, <i>J</i> = 6.7
~~~~соон	Hz, 6H).
2-((6-Methylheptan-2-	¹³ C NMR (100 MHz, CDCl ₃ ) δ 175.73, 76.96, 65.28, 38.89, 36.33, 27.83, 23.07,
yl)oxy)acetic acid (4E)	22.51, 22.47, 19.12.
	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{10}H_{20}O_3$ 188.1412; Found 188.1409.
$\overline{\mathbf{Y}}$	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 10.41 (s, 1H), 4.07 (d, $J$ = 2.4 Hz, 2H), 3.08 (m, 1H),
∕о_соон	1.89 – 1.72 (m, 1H), 1.51 – 1.16 (m, 4H), 0.84 (m, 9H).

2-((2-Methylhexan-3-yl)oxy)acetic	¹³ C NMR (100 MHz, CDCl ₃ ) δ 175.43, 86.21, 66.76, 32.21, 30.37, 18.82, 18.12,
acid (4F)	17.70, 14.16.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₈ O ₃ 174.1256; Found 174.1255.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 4.10 (m, 0.25H), 3.36 (m, 1H), 1.65 – 1.43 (m, 4H),
Соон	1.42 – 1.26 (m, 4H), 0.91 (m, 6H).
2-(Heptan-3-vloxy)acetic-2.2-d2	¹³ C NMR (100 MHz, CDCl ₃ ) δ 174.00, 82.39, 65.53 (t, C-D), 32.70, 27.40, 26.02,
( <b>P</b> ⁽¹⁾ - <b>J</b> -	22.81, 14.04, 9.37.
acid (4G)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₆ D ₂ O ₃ 176.1382; Found 176.1385.
/	¹ H NMR (400 MHz, CDCl ₃ ) δ 6.91 (s, 1H), 4.00 (m, 0.33H), 3.50 (p, 1H), 1.45 – 1.27
$\left( \begin{array}{c} \\ \\ \\ \\ \end{array} \right) \xrightarrow{D} D$	(m, 2H), 1.27 – 1.16 (m, 8H), 1.13 (d, J = 5.1 Hz, 3H), 0.89 – 0.76 (m, 3H).
✓ ✓ `0´ `СООН	¹³ C NMR (100 MHz, CDCl ₃ ) δ 173.03, 76.16, 63.71, 35.23, 30.77, 28.30, 24.34,
2-(Octan-2-yloxy)acetic-2,2-d2	21.59, 18.31, 13.06.
acid (4H)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₁₈ D ₂ O ₃ 190.1538; Found 190.1540.
	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 9.76 (s, 1), 4.50 – 4.01 (m, 3H), 2.43 (d, <i>J</i> = 2.1 Hz,
	1H), 1.84 – 1.59 (m, 2H), 1.49 – 1.34 (m, 2H), 1.33 – 1.15 (m, 4H), 0.88 – 0.72 (m,
	3H).
2-(Oct-1-yn-3-yloxy)acetic acid	¹³ C NMR (100 MHz, CDCl ₃ ) δ 175.75, 81.40, 75.11, 70.03, 64.91, 35.24, 31.38,
( <b>4I</b> )	24.66, 22.48, 13.96.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₁₆ O ₃ 184.1099; Found 184.1101.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 1.26 (m, 26H), 0.88 (m, 5H).
	93% D-inc. calculated from ¹ H NMR. 91% D-inc. calculated from HRMS.
D	¹³ C NMR (100 MHz, CDCl ₃ )δ 31.95, 31.92, 29.73, 29.68, 29.39, 22.72, 22.63, 14.14-
Pentadecane-1-d (1a)	13.65(- <u>C</u> H ₂ -D, - <u>C</u> H ₃ ).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₅ H ₃₁ D 213.2567; Found 213.2593.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 1.26 (m, 30H), 0.92 – 0.86 (m, 5H).
$\sim \sim \sim \sim$	95% D-inc. calculated from ¹ H NMR. 94% D-inc. calculated from HRMS.
	¹³ C NMR (100 MHz, CDCl ₃ ) δ 31.95, 31.92, 29.72, 29.68, 29.39, 22.72, 22.68, 22.63,
Heptadecane-1-d (1b)	14.14-13.65(- <u>C</u> H ₂ -D, - <u>C</u> H ₃ ).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C17H35D 241.2880; Found 241.2880.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 1.29 – 1.26 (m, 32H), 0.90-0.86 (m, 5H).
	96% D-inc. calculated from ¹ H NMR. 95% D-inc. calculated from HRMS.
	¹³ C NMR (100 MHz, CDCl3) δ 31.96, 31.93, 29.74, 29.70, 29.40, 22.72, 22.63,
Octadecane-1-d (1c)	14.11-13.62 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃ ).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₈ H ₃₇ D 255.3036; Found 255.3036.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 5.28 (m, 2H), 1.99 – 1.90 (m, 4H), 1.20 (m, 22H), 0.81
~~~~	(m, 5H).
	91% D-inc. calculated from ¹ H NMR.
(7) Hantadaa 9 1 J (1 J)	¹³ C NMR (100MHz, CDCl ₃) δ 128.90, 30.91, 30.86, 28.78, 28.53, 28.32, 28.28,
(L)-Heptadec-o-ene-1-d (1d)	28.24, 26.20, 21.68, 21.59, 13.10-12.61 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₇ H ₃₃ D 239.2723; Found 239.2719.
	¹ H NMR (400 MHz, CDCl ₃) δ 5.38 (m, 2H), 1.96 (q, J = 6.7 Hz, 4H), 1.26 (s, 22H),
	0.90 – 0.86 (m, 5H).
	¹³ C NMR (100 MHz, CDCl ₃) δ 130.38, 32.63, 31.92, 31.87, 31.61, 29.68, 29.52,
(E)-Heptadec-8-ene-1-d (1e)	29.34, 29.23, 29.19, 29.15, 22.70, 22.68, 22.61, 14.14-13.64 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃).

	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{17}H_{33}D$ 239.2723; Found 239.2729.
	96% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃) δ 5.35 (m, 4H), 2.78 (t, <i>J</i> = 6.5 Hz, 2H), 2.05 (q, <i>J</i> = 6.9
	Hz, 4H), 1.43 – 1.18 (m, 16H), 0.88 (m, 5H).
	¹³ C NMR (100 MHz, CDCl ₃) δ 130.21, 127.97, 31.87, 31.56, 29.71, 29.38, 29.31,
(6Z,9Z)-Heptadeca-6,9-diene-17-d	29.25, 27.26, 27.22, 25.64, 22.60, 14.13-13.63 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃).
(1f)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₇ H ₃₁ D 237.2567; Found 237.2567.
	93% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.52 (m, 1H), 1.36 (m, 8H), 1.20 (m, 20H), 0.82 (m,
ОН	5H).
	87% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃) δ 72.05, 37.51, 31.89, 29.73, 29.64, 29.39, 29.35, 25.67,
Heptadecan-17-d-7-01 (1g)	25.63, 22.62, 14.09-13.63 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₇ H ₃₅ DO 257.2829; Found 257.2514.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.67 (s, 3H), 2.30 (t, <i>J</i> = 7.6 Hz, 2H), 1.62 (m, 2H),
O II	1.25 (m, 20H), 0.90 – 0.83 (m, 2H).
	¹³ C NMR (100 MHz, CDCl ₃) δ 174.41, 51.47, 34.14, 31.91, 29.69, 29.66, 29.62,
	29.47, 29.38, 29.28, 29.17, 24.98, 22.62, 14.03-13.65 (- <u>C</u> H ₂ -D).
Methyl tetradecanoate-14-d (1h)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₅ H ₂₉ DO ₂ 243.2309; Found 243.2311.
	96% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.36 (t, J = 6.6 Hz, 2H), 3.34 – 3.30 (m, 2H), 1.60 –
~~~~~	1.50 (m, 2H), 1.25 (m, 26H), 0.88 (t, <i>J</i> = 6.8 Hz, 3H).
	96% D-inc. calculated from ¹ H NMR.
1 (M-4h d)h d (1*)	$^{13}\text{C}$ NMR (100 MHz, CDCl_3) $\delta$ 72.97, 58.55-58.04 (-OCH_2–D), 31.94, 29.71, 29.67,
1-(Methoxy-u)nexadecane (11)	29.62, 29.53, 29.38, 26.16, 22.71, 14.13.
	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{17}H_{35}DO$ 257.2829; Found 257.2849.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 1.26 (m, 22H), 0.90 – 0.82 (m, 4H).
D	$^{13}\text{C}$ NMR (100 MHz, CDCl_3) $\delta$ 31.92, 29.73, 29.69, 29.40, 22.63, 14.13-13.64 (-
	$\underline{C}$ H ₂ -D).
- Tridagano 1 12 d2 (1i)	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{13}H_{27}D$ 185.2254; Found 185.2250.
111uecane-1,15-u2 (1J)	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{13}H_{26}D_2$ 186.2317; Found 186.2319.
	91% 2D-inc. calculated from HRMS.
	$^1\text{H}$ NMR (400 MHz, CDCl_3) $\delta$ 4.79 (m, 1H), 1.97 (s, 3H), 1.43 (m, 4H), 1.19 (s, 24H),
p ~~~~~	0.81 (t, J = 6.7 Hz, 5H).
	83% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃ ) δ 170.97, 74.48, 34.13, 31.89, 31.76, 29.61, 29.59,
Heptadecan-7-yl-17-d acetate (1k)	29.55, 29.34, 29.22, 25.32, 25.28, 22.59, 21.30, 14.06-13.62 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃ ).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₉ H ₃₇ DO ₂ 299.2935; Found 299.2944.
$\sim$	HRMS (EI-TOF) m/z [.] [M]+ Calcd for C ₈ H ₂ D 115 1471 [.] Found 115 1473
	98% D-inc. calculated from HRMS
Octane-1-d (2a)	
$\sim$	¹ H NMR (400 MHz, CDCl ₃ ) δ 1.26 (m, 18H), 0.88 (m, 5H).
	¹³ C NMR (100 MHz, CDCl ₃ ) δ 31.95, 31.92, 29.73, 29.68, 29.39, 22.71, 22.63, 14.12-
	13.64 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃ ).

Undecane-1-d (2b)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₁ H ₂₃ D 157.1941; Found 157.1944.
	95% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 3.62 (t, J = 6.7 Hz, 2H), 1.96 (m, 1H), 1.55 (m, 2H),
	1.27 (m, 14H), 0.92 – 0.81 (m, 2H).
	90% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃ ) δ 62.94, 32.77, 31.90, 31.87, 29.63, 29.57, 29.46, 29.34,
Decan-10-d-1-ol (2c)	25.76, 22.67, 22.59, 14.08-13.59 (- <u>C</u> H ₂ -D).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₂₁ DO 159.1733; Found 159.1724.
	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 3.40 (t, <i>J</i> = 6.9 Hz, 2H), 1.85 (m, 2H), 1.42 (m, 2H),
Dr	1.27 (s, 12H), 0.88 (t, <i>J</i> = 6.8 Hz, 2H).
	¹³ C NMR (100 MHz, CDCl ₃ )δ 34.01, 32.87, 31.90, 31.87, 29.53, 29.47, 29.32, 28.80,
D	28.21, 22.69, 22.61, 14.12-13.63 (- <u>C</u> H ₂ -D).
1-Bromodecane-10-d (2d)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₂₀ DBr 221.0889; Found 221.0898.
	99% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 4.61 (s, 1H), 3.67 (t, <i>J</i> = 6.9 Hz, 2H), 1.55 (p, <i>J</i> = 6.8
	Hz, 2H), 1.23 (m, 8H), 0.87 – 0.75 (m, 2H).
но	87% D-inc. calculated from ¹ H NMR.
D	¹³ C NMR (100 MHz, CDCl ₃ )δ 64.00, 32.01, 31.77, 31.74, 29.02, 25.52, 22.57, 22.49,
Heptan-7-d-1-ol (2e)	14.02-13.53 (-CH ₂ -D).
	HRMS (EI-TOF) m/z; $[M]$ + Calcd for C ₇ H ₁₅ DO 117.1264; Found 117.1264.
	HRMS (EI-10F) m/z: $[M]$ + Calcd for $C_7H_{15}D$ 101.1315; Found 101.1301.
	HRMS (EI-10F) m/2: [M]+ Calcd for $C_7H_{14}D_2$ 102.1378; Found 102.1384.
Heptane-1,7-d2 (2f)	97% 2D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃ ) δ 4.68 (s, 1H), 3.11 (m, 2H), 1.48 (m, 2H), 1.44 (s, 9H),
	1.30 (m, 4H), 0.95 – 0.84 (m, 2H).
	82% D-inc. calculated from ¹ H NMR.
Tert-butyl (pentyl-5-d)carbamate	¹³ C NMR (100 MHz, CDCl ₃ )δ 155.99, 78.84, 40.55, 29.72, 28.91, 28.38, 22.32,
(2g)	22.23, 13.95-13.46 (- <u>C</u> H ₂ -D).
	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{10}H_{20}DNO_2$ 188.1635; Found 188.1643.
	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 4.1 (t, <i>J</i> = 6.8 Hz, 2H), 2.0 (s, 3H), 1.6 (t, <i>J</i> = 7.1 Hz,
0	2H), 1.3 (d, <i>J</i> = 3.5 Hz, 14H), 0.9 – 0.8 (m, 2H).
	85% D-inc. calculated from ¹ H NMR.
$\sim$ $\sim$ $\sim$ Decyl 10 d ecotate (2h)	¹³ C NMR (100 MHz, CDCl ₃ ) δ 171.30, 64.69, 31.90, 31.87, 29.54, 29.32, 29.27, 28.61,
Decyi-10-u acciate (211)	25.92, 22.69, 22.60, 21.04, 14.12-13.63 (- <u>C</u> H ₂ -D).
	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{12}H_{23}DO_2$ 201.1839; Found 201.1841.
	¹ H NMR (400 MHz, CDCl ₃ ) $\delta$ 3.60 (s, 3H), 2.23 (t, <i>J</i> = 15.1 Hz, 2H), 1.59 – 1.51 (m,
0 	2H), 1.25 – 1.14 (m, 8H), 0.85 – 0.76 (m, 2H).
	¹³ C NMR (100 MHz, CDCl ₃ ) δ 173.38, 50.43, 33.11, 30.64, 30.61, 28.10, 27.91, 23.95,
	21.49, 13.10-12.55 (- <u>C</u> H ₂ -D).
Methyl octanoate-8-d (2i)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₇ DO ₂ 159.1370; Found 159.1375.
	93% D-inc. calculated from HRMS.
~~~	¹ H NMR (400 MHz, CDCl ₃ ) δ 5.82 (m, 1H), 5.10 – 4.87 (m, 2H), 2.12 – 1.97 (m,
D	2H), 1.37 (m, 2H), 1.27 (m, 10H), 0.88 (m, 2H).

Dec-1-ene-10-d (2j)	¹³ C NMR (100 MHz, CDCl ₃) δ 139.31, 114.09, 33.84, 31.88, 29.49, 29.31, 29.18,
	28.97, 22.60, 14.12-13.63 (- <u>C</u> H ₂ -D).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₁₉ D 141.1628; Found 141.1617.
	92% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.36 (m, 2H), 3.33 – 3.28 (m, 2H), 1.56 (m, 2H), 1.29
$\sim \sim \sim$	(s, 18H), 0.88 (t, J = 6.7 Hz, 3H).
	95% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃) δ 72.97, 58.47-58.04 (-O <u>C</u> H ₂ -D), 31.94, 29.65, 29.62,
1-(Methoxy-d)dodecane (2k)	29.53, 29.36, 26.16, 22.70, 14.13.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₃ H ₂₇ DO 201.2203; Found 201.2219.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₂ H ₅ D 31.0532; Found 31.0558.
Ethane-d (3a)	98% D-inc. calculated from HRMS.
D	HRMS (EI-TOF) m/z: $[M]$ + Calcd for C ₆ H ₁₃ D 87.1158; Found 87.1156.
Hexane-1-d (3b)	97% D-inc. calculated from HRMS.
CI	
D	HRMS (EI-TOF) m/z: $[M]$ + Calcd for C ₄ H ₈ DCl 93.0456; Found 93.0453.
1-Chlorobutane-4-d (3c)	83% D-inc. calculated from HRMS.
	HRMS (EI-10F) m/z: $[M]$ + Calcd for C ₈ H ₁₇ D 115.14/1; Found 115.14/5.
2, 2, 4-Trimethylpentane-5-d (3d)	99% D-inc. calculated from HRMS.
0	UDMS (ELTOE) m/m [M] + Calad for C II DO 72 0629; Found 72 0642
[⊥] ∕_D	HRMS (EI-10F) $m/2$: [M]+ Calcd for C ₄ H ₇ DO 73.0638; Found 73.0642.
Butan-2-one-4-d (3e)	92% D-inc. calculated from HKMS.
∕D	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₃ H ₇ D 45.0689; Found 45.0692.
Propane-1-d (3f)	88% D-inc. calculated from HRMS.
D	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₄ H ₇ D 57.0689; Found 57.0689.
But-1-ene-4-d (3g)	99% D-inc. calculated from HRMS.
	HPMS (ELTOE) m/r: [M]+ Coled for C H D 50 0945; Found 50 0947
	000/ D inc calculated from HDMS
Isobutane-1-d (3h)	9976 D-Inc. calculated from FIKWIS.
	$^1{\rm H}$ NMR (400 MHz, CDCl_3) δ 3.35 – 3.28 (m, 2H), 3.08 (m, 1H), 1.56 – 1.40 (m,
\mathbf{i}	4H), 1.40 – 1.26 (m, 4H), 0.90 (q, J = 7.4, 7.0 Hz, 6H).
	99% D-inc. calculated from ¹ H NMR.
2 (M-th J)ht (A-)	¹³ C NMR (100 MHz, CDCl ₃) δ 82.07, 57.41-56.33 (-O <u>C</u> H ₂ -D), 53.45 (DCM), 32.70,
3-(Methoxy-d)neptane (4a)	27.55, 25.82, 22.94, 14.13, 9.37.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₈ H ₁₇ DO 131.1420; Found 131.1411.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.34 – 3.20 (m, 3H), 1.54 – 1.45 (m, 2H), 1.28 (m,
	8H), 1.12 (d, <i>J</i> = 6.1 Hz, 3H), 0.92 – 0.84 (t, 3H).
	99% D-inc. calculated from ¹ H NMR.
2-(Methoxy-d)octane (4b)	¹³ C NMR (100 MHz, CDCl ₃) δ 76.87, 55.86-55.44 (-O <u>C</u> H ₂ -D), 53.44 (DCM), 36.36,
	31.88, 29.46, 25.44, 22.64, 19.04, 14.11.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₉ DO 145.1577; Found 145.1581.

	¹ H NMR (400 MHz, CDCl ₃) δ 5.64 (ddd, J = 16.9, 10.6, 7.8 Hz, 1H), 5.25 – 5.09 (m,
	2H), 3.48 (m, 1H), 3.30 – 3.19 (m, 2H), 1.60 – 1.38 (m, 2H), 1.37 – 1.19 (m, 6H),
	0.88 (t, J = 6.8 Hz, 3H).
	93% D-inc. calculated from ¹ H NMR.
3-(Methoxy-d)oct-1-ene (4c)	¹³ C NMR (100 MHz, CDCl ₃) δ 138.97, 117.04, 83.13, 56.14-55.64 (-O <u>C</u> H ₂ -D), 53.46
	(DCM), 35.32, 31.84, 29.72, 24.99, 22.63, 14.08.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₇ DO 143.1420; Found 143.1425.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.37 – 3.20 (m, 3H), 1.59 – 1.36 (m, 2H), 1.29 (m,
	6H), 1.12 (d, <i>J</i> = 6.1 Hz, 3H), 0.89 (t, <i>J</i> = 6.8 Hz, 3H).
	99% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃) δ 76.87, 55.86-55.43 (-O <u>C</u> H ₂ –D), 36.31, 32.01, 25.15,
2-(Methoxy-d)heptane (4d)	22.67, 19.04, 14.08.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₈ H ₁₇ DO 131.1420; Found 131.1420.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.32– 3.29 (m, 3H), 1.57 – 1.48 (m, 2H), 1.26 (m, 5H),
	1.12 (d, <i>J</i> = 6.1 Hz, 3H), 0.90 – 0.86 (m, 6H).
	97% D-inc. calculated from ¹ H NMR.
2-(Methoxy-d)-6-methylheptane	¹³ C NMR (100 MHz, CDCl ₃) δ 60.45, 55.89-55.45 (-O <u>C</u> H ₂ -D), 53.47 (DCM), 39.11,
(4e)	36.57, 30.99, 27.99, 23.24, 22.62, 19.04.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₉ DO 145.1577; Found 145.1580.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.37 – 3.28 (m, 2H), 2.93 – 2.83 (m, 1H), 1.91 – 1.76
\searrow	(m, 1H), 1.48 – 1.29 (m, 4H), 0.90 (m, 9H).
	96% D-inc. calculated from ¹ H NMR.
3-(Methoxy-d)-2-methylhexane	¹³ C NMR (100 MHz, CDCl ₃) δ 86.10, 57.67-57.15 (-O <u>C</u> H ₂ -D), 53.44 (DCM),
(4f)	40.95(DMSO), 32.47, 30.31, 19.02, 18.17, 17.94, 14.36.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₈ H ₁₇ DO 131.1420; Found 131.1429.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.67 (m, 0.27H), 3.01 (m, 1H), 1.46 – 1.36 (m, 4H),
	1.28 – 1.15 (m, 4H), 0.87 – 0.69 (m, 6H).
CD ₂ D	98% D-inc. calculated from ¹ H NMR.
3-(Methoxy-d3)heptane (4g)	¹³ C NMR (100 MHz, CDCl ₃) δ 80.97, 54.68-54.26 (-O <u>C</u> D ₃), 31.70, 26.53, 24.81,
	21.93, 13.09, 8.34.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₈ H ₁₅ D ₃ O 133.1546; Found 133.1544.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.28 (m, 1H), 1.59 – 1.36 (m, 2H), 1.28 (m, 8H), 1.12
	(d, J = 6.1 Hz, 3H), 0.94 - 0.84 (m, 3H).
CD ₂ D	94% D-inc. calculated from ¹ H NMR.
~ ~ 0 -	¹³ C NMR (100 MHz, CDCl ₃) δ 76.77, 55.24-54.81 (-O <u>C</u> D ₃), 36.35, 31.87, 29.45,
2-(Methoxy-d3)octane (4h)	25.43, 22.63, 19.03, 14.09.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₇ D ₃ O 147.1702; Found 147.1703.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₅ DO 141.1264; Found 141.1252.
3-(Methoxy-d)oct-1-yne (4i)	97% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.59 – 3.48 (m, 1H), 1.41 – 1.19 (m, 10H), 0.90 – 0.80
	(m, 5H).
	92% D-inc. calculated from ¹ H NMR.
Octan-8-d-4-ol (4i)	

	$(-\underline{C}H_2-D, -\underline{C}H_3).$
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₈ H ₁₇ DO 131.1420; Found 131.1424.
	¹ H NMR (400 MHz, CDCl ₃) δ 3.60 (m, 1H), 1.43 (m, 6H), 1.29 (m, 10H), 0.88 (m,
он	5H).
	83% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃) δ 71.78, 39.65, 37.52, 31.85, 29.69, 29.32, 25.67, 22.67,
Undecan-1-d-4-ol (4k)	18.75, 14.11-13.65 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₁ H ₂₃ DO 173.1890; Found 173.1899.
	¹ H NMR (400 MHz, CDCl ₃) δ 7.26 – 7.07 (m, 5H), 2.83 (m, 1H), 1.18 (m, 5H).
	¹³ C NMR (100 MHz, CDCl ₃) δ 148.89, 128.32, 126.44, 125.77, 34.05, 24.00-23.53 (-
	<u>C</u> H ₂ -D, - <u>C</u> H ₃).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₁ D 121.1002; Found 121.1002.
(Propan-2-yi-1-d)benzene (5a)	93% D-inc. calculated from HRMS.
	$^{1}\mathrm{H}\ \mathrm{NMR}\ (400\ \mathrm{MHz}, \mathrm{CDCl}_{3})\ \delta\ 7.29\text{-}7.24\ (m,\ 2\mathrm{H}),\ 7.21\text{-}7.14\ (m,\ 3\mathrm{H}),\ 2.62-2.54\ (d,\ 3\mathrm{H}),\ 2.62-2.54\ (d,$
D	2H), 1.69 – 1.55 (m, 1H), 0.98 – 0.83 (d, 3H).
	94% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃)δ 142.75, 128.51, 128.25, 125.63, 38.03, 30.36, 24.64-
(Propyi-2-a)benzene (5b)	24.06 (- <u>C</u> HD-), 13.79.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₁ D 121.1002; Found 121.0998.
	¹ H NMR (400 MHz, CDCl ₃) δ 7.31 – 7.23 (m, 2H), 7.22 – 7.12 (m, 3H), 2.62 – 2.54
	(t, 2H), 1.71 – 1.57 (m, 2H), 0.92 (m, 2H).
	¹³ C NMR (100 MHz, CDCl ₃)δ 140.87, 126.63, 126.37, 123.76, 36.22, 22.68, 12.01-
(Propyl 2 d)honzono (50)	11.52 (- <u>C</u> H ₂ -D).
(rropyi-3-a)benzene (Sc)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₁₁ D 121.1002; Found 121.0999.
	96% D-inc. calculated from HRMS.
	¹ H NMR (400 MHz, CDCl ₃) δ 7.95 – 7.79 (m, 2H), 7.51 – 7.41 (m, 1H), 7.37 (m,
0	2H), 3.08 – 2.71 (m, 2H), 1.17 – 1.08 (m, 2H).
D	86% D-inc. calculated from ¹ H NMR.
	¹³ C NMR (100 MHz, CDCl ₃) δ 199.90, 135.88, 131.87, 127.53, 126.96, 30.75, 7.21-
1-Phenyl-1-propanone-3-d (5d)	6.76 (- <u>C</u> H ₂ -D).
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₉ H ₉ DO 135.0794; Found 135.0801.
0	¹ H NMR (400 MHz, CDCl ₃) δ 7.99 (dd, J = 8.7, 5.6 Hz, 2H), 7.12 (t, J = 8.6 Hz, 2H),
	2.92 (t, J = 7.3 Hz, 2H), 1.84 – 1.69 (m, 2H), 1.09 – 0.93 (m, 2H).
F	87% D-inc. calculated from ¹ H NMR.
1-(4-Fluorophenyl)butan-1-one-4-	¹³ C NMR (100 MHz, CDCl ₃) δ 198.82, 166.91, 164.38, 133.55, 133.52, 130.70,
• / • \	130.61, 128.84, 128.76, 115.73, 115.51, 40.41, 17.66, 13.86-13.37 (- <u>C</u> H ₂ -D).
d (5e)	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₀ H ₁₀ DOF 167.0857; Found 167.0863.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₇ H ₁₃ D 99.1158; Found 99.1188.
\checkmark	97% D-inc. calculated from HRMS.
Methylcyclohexane-1-d (5f)	
D	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₇ H ₁₃ D 99.1158; Found 99.1161.
\checkmark	90% D-inc. calculated from HRMS.
(Methyl-d)cyclohexane (5g)	

	¹ H NMR (400 MHz, CDCl ₃) δ 7.00 (d, J = 7.4 Hz, 1H), 6.69 – 6.60 (m, 2H), 3.92 (t, J
	= 6.5 Hz, 2H), 2.31 (s, 3H), 2.18 (s, 3H), 1.85 – 1.73 (m, 2H), 1.43 – 1.29 (m, 2H),
	0.92 (s, 6H).
	91% D-inc. calculated from ¹ H NMR.
1,4-dimethyl-2-((4-methylpentyl-	¹³ C NMR (100 MHz, CDCl ₃) δ 157.15, 136.46, 130.27, 123.65, 120.55, 112.01, 68.18,
4-d)oxy)benzene (5h), from	53.46, 35.20, 27.80-27.11 (- <u>C</u> -D, - <u>C</u> -H), 22.62, 22.49, 21.44, 15.82.
Gemfibrozil.	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₄ H ₂₁ DO 207.1733; Found 207.1736.
	¹ H NMR (400 MHz, CDCl ₃) δ 7.67 (s, 1H), 5.20 (s, 2H), 5.21 – 5.14 (m, 1H), 3.77 (s,
	3H), 3.40 (d, J = 6.9 Hz, 2H), 2.15 (s, 3H), 1.98 (t, J = 7.4 Hz, 2H), 1.79 (s, 3H), 1.01
V Y V N	– 0.90 (m, 2H).
(E)-7-hydroxy-5-methoxy-4-	91% D-inc. calculated from ¹ H NMR.
methyl-6-(3-methylpent-2-en-1-yl-	¹³ C NMR (100 MHz, CDCl ₃) δ 173.02, 163.73, 153.72, 143.89, 137.78, 122.66, 120.42,
5-d)isobenzofuran-1(3H)-one (5i),	116.72, 106.38, 70.07, 61.03, 32.28, 22.59, 16.15, 12.50-12.15 (- <u>C</u> H ₂ -D, - <u>C</u> H ₃), 11.59.
from Mycophenolic acid.	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{16}H_{19}DO_4$ 277.1424; Found 277.1423.
	¹ H NMR (400 MHz, CDCl ₃) δ 8.19 (dd, J = 7.9, 1.7 Hz, 1H), 7.59 (dd, J = 7.9, 1.3
0	Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.41 (td, J = 7.6, 1.7 Hz, 1H), 7.35 – 7.24 (m, 2H),
[66%]	7.03 (dd, J = 7.9, 2.0 Hz, 1H), 4.34 (s, 0.67 H), 2.69 – 2.56 (m, 1H), 1.32 – 1.17 (d,
	3H).
2 (athyl 1 d)dihanga[h fithianin	93% D-inc. calculated from ¹ H NMR.
2-(ethyl-1-a)albenzo[b,r]thephi-	¹³ C NMR (100 MHz, CDCl ₃) δ 191.78, 146.66, 140.71, 137.51, 136.18, 132.43,
Toltoprofor	131.51, 131.32, 131.19, 130.78, 128.94, 126.79, 126.69, 51.06-50.52 (-C(O)- <u>C</u> -D ₂ , -
Zanoproien.	C(O)- <u>C</u> H-D, -C(O)- <u>C</u> H ₂), 28.54 - 28.01 (- <u>C</u> H-D, - <u>C</u> H ₂ -), 15.42, 15.34.
	HRMS (EI-TOF) m/z: [M]+ Calcd for $C_{16}H_{11}D_3OS$ 257.0964; Found 257.0916.
	¹ H NMR (400 MHz, CDCl ₃) δ 7.16 (d, J = 8.1 Hz, 1H), 6.99 (dd, J = 8.2, 2.1 Hz, 1H),
	6.89 (s, 1H), 2.88 (td, J = 7.0, 2.1 Hz, 2H), 2.84 – 2.76 (m, 1H), 2.28 – 2.15 (m, 1H),
	2.02 – 1.88 (m, 1H), 1.85 – 1.69 (m, 2H), 1.68 (dd, J = 12.8, 2.3 Hz, 1H), 1.56 (tt, J =
	10.0, 2.4 Hz, 3H), 1.48 (dtd, J = 15.3, 5.6, 4.7, 2.5 Hz, 1H), 1.38 (td, J = 13.2, 3.6 Hz,
DH	1H), 1.23 (d, J = 7.0, 1.8 Hz, 6H), 1.17 (s, J = 0.8 Hz, 3H), 0.99 (s, 3H).
(4aS, 10aS)-7-isopropyl-1,4a-	90% D-inc. calculated from ¹ H NMR.
dimethyl-1,2,3,4,4a,9,10,10a-	¹³ C NMR (100 MHz, CDCl ₃) δ 147.19, 145.45, 135.11, 127.00, 124.33, 123.83,
octahydrophenanthrene-1-d (5k),	44.35, 38.62, 37.26, 33.48, 32.97, 30.38, 25.59, 24.55, 24.04, 24.02, 22.81-20.41 (-
from Dehydroabietic acid.	<u>C</u> -D, - <u>C</u> -H), 18.07, 15.05.
	HRMS (EI-TOF) m/z: [M]+ Calcd for C ₁₉ H ₂₇ D 257.2254; Found 257.2258.

Supplementary References

1. Xu, J., Arkin, M., Peng, Y. Z., Xu, W. H., Yu, H. L., Lin, X. F., Wu, Q. Enantiocomplementary decarboxylative hydroxylation combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process. *Green Chem* **21**, 1907-1911 (2019).

2. Bagutski, V., Elford, T.G., Aggarwal, V.K. Synthesis of highly enantioenriched C-tertiary amines from boronic esters: application to the synthesis of Igmesine. *Angew. Chem. Int. Edit.* **50**, 1080-1083 (2011).