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Figure S1. Cas9-VLPs mediate homology-directed repair (HDR), Related to Figure 2. (A) Schematic of
nucleofection of Cas9-VLPs and single-stranded DNA homology-directed repair templates (HDRT, purple). (B)
Assessment of different Lonza nucleofection buffers and pulse codes, 5 days post treatment. Cas9-VLPs packaging
BFP-targeting RNPs were mixed with 80 pmol HDRT and nucleofected using the indicated nucleofection buffers
and pulse codes. Nucleofected HDRT/Cas9-VLPs were subsequently used to treat a BFP-to-GFP HDR reporter
HEK293 cell line (Richardson et al., 2016) where BFP knockout is indicative of non-homologous end joining and
GFP expression is representative of HDR. (C) HDR-mediated GFP expression induced treatment with Cas9-VLPs
nucleofected (Lonza, CM-150) with 500 pmol HDRT in different buffers, 7 days post treatment. (D) HDR-mediated
GFP expression with varying concentrations of HDRT nucleofected (Lonza, CM-150) with Cas9-VLPs in SE buffer
(Lonza), 7 days post treatment. (E) Pre-nucleofection of Cas9-VLPs and HDRT enhances HDR activity. Cas9-VLPs
(2.59x10° pg CA) and 500pmol HDRT were mixed in SE buffer and either directly added to BFP-to-GFP reporter
cells or subjected to nucleofection (Lonza, CM-150) prior to cell treatment. BFP-positive and GFP-positive cells
were quantitated by flow cytometry at 7 days post treatment. All error bars represent standard error of the mean.
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Figure S2. All Cas9-VLP formulations mediate genome editing, Related to Figure 2. Jurkat or A549 cells were



treated with B2M-Cas9-VLP formulations A-E and transduction (mNeonGreen+) and B2M expression were
assessed by flow cytometry 6 days post treatment. Of note, cells transfected to produce B2M-targeted Cas9-VLPs
themselves undergo genome editing (DNA isolated 3 days post transfection). n = 3 technical replicates were
performed at each Cas9-VLP treatment dose and error bars represent standard error of the mean.
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Figure S3. Traceless Cas9-VLPs mediate genome editing without viral transgene insertion and hybrid

Cas9-VLPs do not require a lentiviral-encoded guide RNA expression cassette, Related to Figure 2. (A)
Schematic of plasmids used for the production of traceless Cas9-VLPs. GP = glycoprotein. (B) Schematic of an
immature, pre-proteolytically processed Cas9-VLP, produced through transient transfection and lacking a lentiviral
genome. An HIV-1 protease cleavable linker containing SQNY/PIVQ was inserted between the c-termini of Gag and
the n-termini of Cas9 to promote the separation during proteolytic virion maturation. (C) Western blot of Cas9-VLP
content when various ratios of Gag-pol to Gag-Cas9 plasmids are used for production. An anti-Flag antibody was



used for Cas9 detection and an anti-HIV-1 capsid (CA) antibody was used to detect Cas9-VLP production. A’ is used
to indicate VLP formulation “A” lacking a packaged lentiviral genome. (D) Flow cytometry quantification of B2M
expression in A549 and Jurkats 6 days post treatment with traceless Cas9-VLPs. Non-targeting control = Cas9-VLPs
packaging the tdTom298 sgRNA. n = 3 technical replicates were performed at each Cas9-VLP treatment dose and
error bars indicate standard error of the mean. (E) Schematic of plasmids used for the production of Cas9-VLPs that
co-package Cas9 RNPs and a lentiviral genome that lacks a guide RNA expression cassette (“hybrid Cas9-VLPs”).
(F) Optimization of hybrid Cas9-VLPs. Cas9-VLPs were produced as indicated and used to treat Jurkat cells.
Targeted protein disruption (% of cells negative for B2M expression) and transduction (% of cells mCherry positive)
was quantified at day 7. LV-B2M-CAR-P2A-mCherry = lentiviral transfer plasmid that encodes the U6-promoter
driven expression of a B2M-targeting guide RNA and the EF1a-promoter driven expression of a CAR-P2A-mCherry
transgene. LV-CAR-P2A-mCherry = lentiviral transfer plasmid that encodes the CAR-P2A-mCherry expression
cassette alone. U6-B2M = a transient guide RNA expression plasmid.
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Figure S4. Targeted integration of the lentiviral genome into the Cas9 RNP target site, Related to Figure 2.
(A) Schematic of hypothetical lentiviral insertion at the Cas9 RNP-induced double-stranded DNA break. (B) PCR to
assess targeted lentiviral integration. DNA was isolated from 293T cells 3 days post treatment with B2M-targeting
or non-targeting Cas9-VLPs and the indicated primer pairs were used for analysis. (C) MiSeq analysis of the
targeted “forward” lentiviral integration in cells treated with B2M Cas9-VLPs. Reads mapped to the hypothetical
B2M-lentiviral junction are shown. (D) MiSeq analysis of the targeted “reverse” lentiviral integration in cells treated

with B2M Cas9-VLPs. Reads mapped to the hypothetical B2M-lentiviral junction are shown. Amplicon sizes
include Illumina adaptor sequences, see Table S2.
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Figure S5. Representative flow cytometry gating strategy for quantifying genome editing in primary human T
cells, Related to Figure 3. (A) Flow cytometry gating strategy to assess surface-expressed B2M in primary human
T cells after no treatment, nucleofection of Cas9 RNPs, and treatment with Cas9-VLPs from donor 1. (B) Flow
cytometry gating strategy to assess surface-expressed B2M in primary human T cells after no treatment,
nucleofection of Cas9 RNPs, and treatment with Cas9-VLPs from donor 2.
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Figure S6. Optimization of CAR-Cas9-VLP production & representative flow cytometry gating strategy for
Cas9-VLP-mediated multiplexed genome engineering of primary human CAR-T cells, Related to Figure 3.
(A) Flow cytometry gating strategy to assess the dual knockout of surface-expressed TCR and B2M by simultaneous
treatment with Cas9-VLPs targeting TRAC and Cas9-VLPs targeting B2M in two independent T cell donors.



Cas9-VLPs optimized for simultaneous CAR transgene insertion and B2M knockout were used (Fig. S5B). (B)
Optimization of Cas9-VLP production to maximize simultaneous CAR transgene integration and genome editing.
Cas9-VLPs were produced with various ratios of plasmids encoding the Gag-Cas9 and Gag-pol structural proteins,
and with various ratios of plasmids encoding a lentiviral transfer plasmid (encoding expression cassettes for
U6-B2M CAR-P2A-mCherry) and a U6-B2M guide RNA expression plasmid. Jurkats were treated, passed at day 4
post treatment to maintain subconfluent culture conditions and flow cytometry was performed at 6 days post
treatment to quantify B2M expression (B, left) and CAR-P2A-mCherry expression (B, right). Cas9-VLPs produced
through transient transfection with the following plasmids were most efficient at mediating simultaneous knockout
of B2M and CAR-P2A-mCherry transgene expression: 1pug VSV-G, 3.3nug Gag-Cas9, 6.7ug Gag-pol plasmid, 2.5ug
LV-B2M, and 7.5ug U6-B2M. n = 2 replicates per treatment, error bars represent standard error of the mean. (C)
Flow cytometry gating strategy to assess the knockout of surface-expressed TCR and expression of
CAR-P2A-mCherry in primary human T cells by treatment with Cas9-VLPs. (D) Flow cytometry gating strategy to
assess the knockout of surface-expressed B2M and expression of CAR-P2A-mCherry in primary human T cells by
treatment with Cas9-VLPs.
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Figure S7. Cas9-VLP genome editing as a function of MOI and quantity of CA, Related to Figure 3. (A)
Cas9-VLPs co-packaging B2M-targeting Cas9 RNPs and a lentiviral genome encoding mNeonGreen were generated
(as used in Figure 3) and (B) Cas9-VLPs optimized to co-package B2M-targeting Cas9 RNPs and a lentiviral
genome encoding CAR-P2A-mCherry were produced. The transducing units/mL (TU/mL) titer and capsid (CA)
content were quantified for each Cas9-VLP preparation. Primary T cells from two human donors were treated with
indicated multiplicity of infection (MOI) and picogram (pg) CA and cells negative for B2M protein were quantified

by flow cytometry at day 7.
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Figure S8. Functional cytokine production and surface receptor expression in Cas9-VLP generated CAR-T
cells, Related to Figure 3. Cytokine and surface receptor expression were quantified in stimulated and unstimulated
CAR-T cells generated from Cas9-VLPs at 24 h. For all, n = 2 biological replicates from independent donors were
used and error bars indicate standard error of the mean.



A

Normalized to mode

-

mNeonGreen —— —»

(7]

Env Cas9-VLPs

100

e Gag-Cas9 polypeptide
N
—r—- T I | —
CAG — RN
HIV-1 pro FLAG
cleavable NLS
linker
Gag- .
Cagg Plasmid
transfection &
X supernatant
Gag- collection
pol
SgRNA
Structural proteins
L somn — L smagereen— Gag  WDEIE
Gag-pol WAEIRE
)
o
2 R
Q.G Y
= NI
5 o
:% wa P @'5)
8 2so— | ! Gag-Cas9, 215 kDa veeem-ff}
U Cas9, 160 kDa .
VSV-G Bald 25— d— —
CasO-VLP  Cas9-VLP HIV-1 CA, 24 kDa
HEK293T Jurkat CCRF-CEM HuT 78
100 = 100 100
“\
80 50 fl
‘ 0.0% 4.48% f
1 650 = 60 = J
] | 0.0% 0.0% H
1
b / 20 [/ 20 ”
y | | /
gy vy # o iy gy L T S e
1w 1wt ot w1 wf w10 1w w owt ot owt owt o wf ' 1wt wr 1wt et wf o
CD4-FITC -
Unstained CD4-FITC
HEK293T Jurkat CCRF-CEM HuT 78
E! 10° 3 10° 3 10° 3
0.0% 3 0.073% 14.4% 16.8%
4 10°
E m"é
103_;
mz-é
b m]é
T T T T T 10" ] T T T T T 1““ T T T T T “'D T T T T T
o 200K 400K BO0K BOOK 1o0M o 200K 400K 600K 800K oM o 200K 400K 600K B0OK oM o 200K 400K 600K BOOK 1oM
FSC-A 3
All Events Lymphocytes Single Cells Single Cells Live Cells CD4+ Cells CD8+ Cells
soox so0c s00¢] Live cells
<« oo < g /7 E 911% g
- Single cells o0k Single cells 2o0cd |
96.1% 82.8% |
o 200K 400k ‘f: 00K 1.0 o 2o '":séﬁ: 800K Lo o 200¢ ":;Kséw'; 0K 10w w” m'ﬁ ﬂé’u‘i’;yé“; mm*m‘ 10 1! cg; éu“”;“ e LTy .\u:“ Iiv;o ':w‘ 1010 w° 10’ m:“ ﬁw;o ':a‘ 0w



Figure S9. Characterization of bald and HIV-1 Env pseudotyped Cas9-VLPs, Related to Figure 4. (A)
Production of “bald” Cas-VLPs. Schematic of plasmids used for the production of bald Cas9-VLPs that lack a
glycoprotein. (B) Schematic of an immature, pre-proteolytically processed Cas9-VLP produced through transient
transfection. (C) Quantification of Cas9-VLP production by CA ELISA. Amount of CA produced per transfected
p100 dish is shown. (D) Western blot of Cas9-VLP content. An anti-Flag antibody was used for Cas9 detection and
an anti-HIV-1 capsid (CA) antibody was used to detect Cas9-VLP production. (E) Env-Cas9-VLPs are specific for
CDA4+ cells. Cell surface expression of CD4 in HEK293T, Jurkat, CCRF-CEM, and HuT 78 cell lines. (F)
Transduction of Cas9-VLPs pseudotyped with the HIV-1 envelope correlates with cellular CD4 expression. (G)
Representative flow cytometry gating strategy to assess the cell-type specificity of B2M knockout by
Env-Cas9-VLPs within a mixed population of primary human T cells.



Table S1. Protospacer sequences for mammalian genome editing, Related to STAR Methods.

Target Spacer sequence PAM
B2M 5-GAGTAGCGCGAGCACAGCTA AGG
TRAC 5-AGAGTCTCTCAGCTGGTACA CGG
BFP 5-GCTGAAGCACTGCACGCCAT GGG
Control (tdTom298) 5-AAGTAAAACCTCTACAAATG TGG
Control (non-targeting 5-GTATTACTGATATTGGTGGG

guide used for

integration site analysis)




Table S2. Genomic amplification and sequencing primers, Related to STAR Methods.

Target

Sequence

B2M_Sanger F

5’-TCACCCAGTCTAGTGCATGC

B2M_Sanger R

5’-GACGCTTATCGACGCCCTAA

TRAC_Sanger_F

5’-CATCACTGGCATCTGGACTCCA

TRAC_Sanger_R

5-TGCTCTTGAAGTCCATAGACCTCA

B2M_NGS1_F 5-GCTCTTCCGATCTTGCGGGCCTTGTCCTGATTG
B2M_NGS1_R 5-GCTCTTCCGATCTAGATCCAGCCCTGGACTAGC
B2M_NGS2_F 5’-GCTCTTCCGATCTAAGCTGACAGCATTCGGGC
B2M_NGS2_R 5-GCTCTTCCGATCTGAAGTCACGGAGCGAGAGAG

Integration_a_F

5’-GCTCTTCCGATCTTGCGGGCCTTGTCCTGATTG

Integration_a_R

5-GTTCGGGCGCCACTGCTAGA

Integration_b_F

5’-TTAAGCCTCAATAAAGCTTGCC

Integration_b_R

5'-GCTCTTCCGATCTAGATCCAGCCCTGGACTAGC

Integration_c_F

5-GCTCTTCCGATCTTGCGGGCCTTGTCCTGATTG

Integration_c_R

5’-TTAAGCCTCAATAAAGCTTGCC

Integration_d_F

5-GTTCGGGCGCCACTGCTAGA

Integration_d_R

5-GCTCTTCCGATCTAGATCCAGCCCTGGACTAGC

Integration_e F

5'-GCTCTTCCGATCTTGCGGGCCTTGTCCTGATTG

Integration_e_R

5-GCTCTTCCGATCTAGATCCAGCCCTGGACTAGC

Integration_f F

5'-GCTCTTCCGATCTTGCGGGCCTTGTCCTGATTG

Integration_f R

5’-TACTGACGCTCTCGCACCCAT

Integration_g F

5’-TACTGACGCTCTCGCACCCAT

Integration_g_R

5-GCTCTTCCGATCTAGATCCAGCCCTGGACTAGC

Integration_NGS fwd_F

5-GCTCTTCCGATCTAAGCTGACAGCATTCGGGC

Integration_NGS fwd_R

5'-GCTCTTCCGATCTGAGAGCTCCTCTGGTTTCCC

Integration NGS rev_F

5’-GCTCTTCCGATCTGAGAGCTCCTCTGGTTTCCC




Integration_NGS rev_R | 5-GCTCTTCCGATCTGAAGTCACGGAGCGAGAGAG

Integration_Nested 1 F | 5-TCACCCAGTCTAGTGCATGC

Integration_Nested_1_R | 5-GACGCTTATCGACGCCCTAA

Integration_Nested 2 F [5-GCTCTTCCGATCTAGGTCCGAGCAGTTAACTGG

Integration_Nested_2_R | 5-GCTCTTCCGATCTACTTAGCGGGCGCCTAGA

lllumina adapter sequences used for library prep are in bold.

Table S3. HDR template, Related to Fig. S1, STAR Methods.

Target Sequence

CATGA

5’-GCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCA
BFP_GFP_HDRT CCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACC
CTGACGTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCA

Table S4. Primary human T cell donors, Related to STAR Methods.

Treatment

Figures

Number of Donors

Nucleofection

Fig. 4, Supp. Fig. 5

2 (Donors A-B)

VSV-G Cas9-VLP

Fig. 4, Supp. Fig. 5, Supp. Fig. 7

4 (Donors A-D)

Env Cas9-VLP

Fig. 4, Supp. Fig. 9

2 (Donors A-B)

B2M Cas9-VLP + TRAC Cas9-VLP

Fig. 4, Supp. Fig. 6

2 (Donors E-F)

B2M CAR-P2A-mCherry Cas9-VLP

Fig. 4, Supp. Fig. 6, Supp. Fig. 7

4 (Donors C-D, E-F)

TRAC CAR-P2A-mCherry
Cas9-VLP

Fig. 4, Supp. Fig. 6

2 (Donors E-F)




