
Supplementary Material II: Computation of Local GA Growth Rates 

In this study, we computed local GA growth rates following the approach previously proposed by our 

group.1 In this approach, GA growth is treated as an interface propagation problem, wherein the lesion 

margin expands according to a specified partial differential equation. Specifically, with Ω ⊂ ℝ2 the image 

domain, let 𝐺𝐺(𝑡𝑡) ⊂ Ω be the GA area at time 𝑡𝑡 and 𝜕𝜕𝜕𝜕(𝑡𝑡) be its corresponding margin. To accommodate 

lesion merging (i.e., merging of margin segments of the same lesion focus and/or merging of margin 

segments of different lesion foci), we utilize the level set method,2 whereby the GA margin is represented 

as the zero level set of a higher dimensional function 𝜙𝜙. In particular, 𝐺𝐺(𝑡𝑡) = {𝜙𝜙(𝒙𝒙, 𝑡𝑡) ≤ 0} and 𝜕𝜕𝜕𝜕(𝑡𝑡) =

{𝜙𝜙(𝒙𝒙, 𝑡𝑡) = 0}, with 𝒙𝒙 ∈ Ω. The evolution of 𝜙𝜙 is governed by the partial differential equation: 

 𝜕𝜕𝑡𝑡𝜙𝜙(𝒙𝒙, 𝑡𝑡) + 𝐹𝐹(𝜙𝜙,𝒙𝒙, 𝑡𝑡)||𝛻𝛻𝜙𝜙(𝒙𝒙, 𝑡𝑡)|| = 0 (1) 

where 𝐹𝐹 describes the forces driving GA expansion. In this study we set: 

 𝐹𝐹(𝜙𝜙,𝒙𝒙, 𝑡𝑡) = 𝛼𝛼 − 𝛽𝛽𝛽𝛽(𝜙𝜙) (2) 

where 𝛼𝛼 and 𝛽𝛽 are positive constants and 𝜅𝜅 is the curvature. The same model parameter values of 𝛼𝛼 = 1 

and 𝛽𝛽 = 0.75 that were used in our previous study1 were used in the current study. As described in Moult 

et al.,1 the curvature term causes concave margin segments to expand more rapidly than convex 

segments. Let  𝑡𝑡𝑏𝑏 be the time of the baseline visit and 𝑡𝑡𝑓𝑓 be the time of the follow-up visit. For any given 

visit pair, we measure 𝜕𝜕𝜕𝜕(𝑡𝑡𝑏𝑏) and 𝜕𝜕𝜕𝜕(𝑡𝑡𝑓𝑓), which serve as our boundary conditions. In terms of the level 

set function, we require: 

 {𝜙𝜙(𝒙𝒙, 𝑡𝑡𝑏𝑏) = 0} = 𝜕𝜕𝜕𝜕(𝑡𝑡𝑏𝑏)    and    {𝜙𝜙(𝒙𝒙, 𝑡𝑡𝑓𝑓) = 0} = 𝜕𝜕𝜕𝜕(𝑡𝑡𝑓𝑓)   (3) 

To satisfy these constraints we define the following signed distance functions: 

 
𝜙𝜙𝑏𝑏(𝒙𝒙) ≡ �

−𝑑𝑑�𝒙𝒙,𝜕𝜕𝜕𝜕(𝑡𝑡𝑏𝑏)�    if 𝒙𝒙 ∈ 𝐺𝐺(𝑡𝑡𝑏𝑏)
+𝑑𝑑�𝒙𝒙,𝜕𝜕𝜕𝜕(𝑡𝑡𝑏𝑏)�    if 𝒙𝒙 ∈ 𝐺𝐺𝑐𝑐(𝑡𝑡𝑏𝑏)

  and   𝜙𝜙𝑓𝑓(𝒙𝒙) ≡ �
−𝑑𝑑(𝒙𝒙,𝜕𝜕𝜕𝜕(𝑡𝑡𝑓𝑓))    if 𝒙𝒙 ∈ 𝐺𝐺(𝑡𝑡𝑓𝑓)

+𝑑𝑑(𝒙𝒙,𝜕𝜕𝜕𝜕(𝑡𝑡𝑓𝑓))    if 𝒙𝒙 ∈ 𝐺𝐺𝑐𝑐(𝑡𝑡𝑓𝑓)  (4) 

where 𝑑𝑑 is the Euclidean distance function, and 𝐺𝐺𝑐𝑐 is the complement of 𝐺𝐺. With this, we set the boundary 

conditions on 𝜙𝜙 as: 



 𝜙𝜙(𝒙𝒙, 𝑡𝑡𝑏𝑏) = 𝜙𝜙𝑏𝑏(𝒙𝒙)   and    𝜙𝜙(𝐱𝐱, 𝑡𝑡𝑓𝑓) = 𝜙𝜙𝑓𝑓(𝒙𝒙) (5) 

During the evolution of 𝜙𝜙 we ensure that the second condition of Eq. 5 is satisfied by enforcing  

 𝜙𝜙𝑓𝑓(𝒙𝒙) ≤ 𝜙𝜙(𝒙𝒙, 𝑡𝑡)  ∀𝑡𝑡 (6) 

after every iteration. Equation 2 was solved numerically using the toolset developed by Mitchell.3 With 

Eq. 2 solved, for each position 𝒙𝒙𝑏𝑏 ∈ 𝜕𝜕𝐺𝐺(𝑡𝑡𝑏𝑏) we constructed a growth trajectory 𝛾𝛾(𝒙𝒙𝑏𝑏 , 𝑡𝑡) via: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝛾𝛾(𝒙𝒙𝑏𝑏 , 𝑡𝑡) = −𝜕𝜕𝑡𝑡𝜙𝜙(𝒙𝒙, 𝑡𝑡)

𝛻𝛻𝜙𝜙(𝒙𝒙, 𝑡𝑡)
‖𝛻𝛻𝜙𝜙(𝒙𝒙, 𝑡𝑡)‖

 (7) 

on the time interval 𝑡𝑡 ∈ [𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑓𝑓] subject to the initial condition that 𝛾𝛾(𝒙𝒙𝑏𝑏, 𝑡𝑡𝑏𝑏) =  𝒙𝒙𝑏𝑏. As in our previous 

work, growth trajectories that merged/collided with other growth trajectories were excluded. The local 

growth distance, 𝛤𝛤(𝒙𝒙𝑏𝑏), was computed as: 

 
𝛤𝛤(𝒙𝒙𝑏𝑏) = � ‖𝛾̇𝛾(𝒙𝒙𝑏𝑏, 𝑡𝑡)‖𝑑𝑑𝑑𝑑

𝑡𝑡𝑓𝑓

𝑡𝑡𝑏𝑏
 (8) 

Finally, the local growth rate associated with position 𝒙𝒙𝑏𝑏 was computed by dividing 𝛤𝛤(𝒙𝒙𝑏𝑏) by the inter-

visit time, 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑏𝑏. 
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