
iScience, Volume 24
Supplemental information
Pan-genomic matching statistics

for targeted nanopore sequencing

Omar Ahmed,Massimiliano Rossi, SamKovaka,Michael C. Schatz, Travis Gagie, Christina
Boucher, and Ben Langmead



S. aureus E. faecalis L. monocytogenes B. subtilis Salmonella E. E. coli P. aeruginosa Yeast
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

P
ro

po
rti

on
 o

f R
ea

ds
Distribution of Reads Across Species in Simulated Mock Community Dataset

Supplementary Figure 1: Proportion of reads from each species in mock community in the simu-
lated mock community dataset which is related to Section 2.3.2.

Number of Genomes Included in Each Mock Community Index
Species\Reference: One Genome Ref. Pan-genome Ref.

Staphylococcus aureus 1 574
Enterococcus faecalis 1 49

Listeria monocytogenes 1 225
Bacillus subtitlis 1 165

Salmonella enterica 1 880
Escherichia coli 1 1370

Pseudomonas aeruginosa 1 274
Saccharomyces cerevisiae 1 1

Table S1: Number of genomes for each species in the different references used for the mock com-
munity experiment which is related to Section 2.3.2.

1



86 88 90 92 94 96 98
Simulated Read Accuracy (%)

70

75

80

85

90

95

100

F1
-S

co
re

a

SPUMONI with One Genome Ref
SPUMONI with Pan-genome Ref

SPUMONI-ms with One Genome Ref
SPUMONI-ms with Pan-genome Ref

minimap2 with One Genome Ref
minimap2 with Pan-genome Ref

86 88 90 92 94 96 98
Simulated Read Accuracy (%)

10
4

10
5

10
6

Th
ro
ug

hp
ut
 (b

p/
se

c)

b

Supplementary Figure 2: Visualization of (a) F1-score, (b) throughput with varying simulated
base-call accuracies which is related to Table 2.

0 20 40 60 80 100
Matching Statistic Length (bp)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

a Staphylococcus aureus

Positive
Null

0 25 50 75 100 125 150 175 200
Matching Statistic Length (bp)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

b Salmonella enterica

Positive
Null

0 25 50 75 100 125 150 175
Matching Statistic Length (bp)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

c Escherichia coli 

Positive
Null

0 5 10 15 20 25
Matching Statistic Length (bp)

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

d Saccharomyces cerevisiae

Positive
Null

Supplementary Figure 3: Distribution of matching statistics against positive and null indexes for
three randomly chosen reads of (a) Staphylococcus aureus, (b) Salmonella enterica, (c) Escherichia coli,
and (d) Saccharomyces cerevisiae. Each density curve is based on the first 720 bases (∼ 1.6 seconds)
of ReadUntil data for each read, which is related to Section 2.3.3.

2



0 100 200 300 400 500 600 700
Number of Bases Into Read

0.1

0.2

0.3

0.4

0.5

K
S
-s
ta
t f
ro
m
 K
S
-te

st

KS-stat Between Positive and Null Matching Statistic Distributions of Reads from Different Species

Staphylococcus aureus
Salmonella enterica
Escherichia coli
Saccharomyces cerevisiae

Supplementary Figure 4: Each line represents the average of the Kolmogorov-Smirnov statistic
(KS-stat) across all reads from that respective species in the mock community. The figure (related
to Section 2.3.3) shows that for bacterial species (Staphylococcus aureus, Salmonella enterica, and
Escherichia coli) the KS-stat is relatively larger at ∼ 0.5 since the reads are matching to sequence in
the positive index. While for the yeast reads, the KS-stat is small at ∼ 0.1 since the distribution of
positive and null matching statistics are quite similar to each other.

3



Algorithm 1 Matching Statistics
given text T and a pattern p
//first pass: get pointers

1: j ← 1, pos← SA[j]
2: for i← p.len to 1 do
3: if p[i] 6= BWT[j] then
4: if j < Thr(j, p[i]) then
5: j ← BWT.pred(j, p[i])
6: else
7: j ← BWT.succ(j, p[i])
8: pos← SA[j]− 1
9: else

10: pos← pos− 1

11: pointers[i]← pos
12: j ← LF(j)

//second pass: get lengths
13: `← 0
14: for i← 1 to pointers.len do
15: pos← pointers[i] + `, j ← i+ `
16: while j < p.len and p[j] = T [pos] do
17: `← `+ 1
18: pos← pos+ 1, j ← j + 1

19: ms[i]← `
20: `← max(`− 1, 0)

21: Return ms

Algorithm 2 Pseudo Matching Lengths
given text T and a pattern p
//first pass: get pointers and pmls

1: j ← 1, `← 0
2: for i← p.len to 1 do
3: if p[i] 6= BWT[j] then
4: if j < Thr(j, p[i]) then
5: j ← BWT.pred(j, p[i])
6: else
7: j ← BWT.succ(j, p[i])
8: `← 0
9: else

10: `← `+ 1

11: pml[i]← `
12: j ← LF(j)

13: Return pml

Supplementary Figure 5: Matching statistics (Algorithm 1) and Pseudo Matching Lengths (Algo-
rithm 2) computation using the thresholds (which is related to Section 11.2.2). Given an array a,
a.len refers to the length of the array. Given a position j in the BWT, LF(j) is the LF-mapping, SA
is the suffix array sampled at run boundaries, BWT.pred(j, c) is the position in the BWT of the
first character c preceding position j, BWT.succ(j, c) is the position in the BWT of the first char-
acter c following position j, Thr(j, c) is the position of the threshold for the character c between
the run of c preceding and following position j in the BWT. To avoid overloading the notation,
we consider the variable pos to be (pos mod T.len)+ 1. Furthermore, note that if BWT.pred(j, c),
the threshold value is guaranteed to be smaller than or equals to j, i.e., Thr(j, c) = 0. Similarly, if
BWT.succ(j, c), the threshold value is guaranteed to be greater than j, i.e., Thr(j, c) = T.len+ 1.

4


