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Supplementary Information Text 
 
Note 1: Optical Modeling 
 
Optical Modeling of Light Diffraction: Thorynorrhina flamea beetles have an intricate architecture of 
hierarchical micro- and nano-scale features in the top layers of their cuticles, responsible for the beetles’ 
bright iridescent coloration. The structure consists of hexagonally arranged micro-scale pillars embedded 
within a multilayer morphology. The multilayer determines the structures’ overall spectral reflectivity, while 
the micro-pillars modulate the angular distribution of the reflected light. A sketch of the structures with the 
relevant parameters used for optical modeling is shown in Fig. S27. 

The reflected intensity as a function of color (wavelength), polar angle, and azimuthal angle for this 
structure can be modeled elegantly with wave optics (akin to considering coherent scattering from identical, 
spatially related diffracting apertures). Considering a single pillar and its surrounding multilayer as the 
structure’s fundamental unit element, we first find the diffraction signature of this element and then calculate 
the scattering profile of an array of micro-pillars as the coherent superposition of their individual diffraction 
signatures. 

 
The diffraction signature of a unit element: The unit cell has a cylindrical symmetry, which directly implies 
a circular symmetry of the spatial pattern of reflected light amplitude. This ultimately leads to a circular 
symmetry in the angular distribution of the intensity of reflected light. The unit cell’s radial variation of 
reflected light amplitude for two different wavelengths for a multilayer with a peak wavelength of 645 nm 
(which corresponds to the orange-red beetle in the main manuscript) is shown in Fig. S28. 

 
The following calculations are done for normal incidence of light onto the beetle’s micropillar-laced 

multilayer structure but can also be extended (with some additional mathematical complexity) to inclined 
incidence angles. The spatial distribution of reflected field amplitude (in general a complex number 
accounting for variations in phase) is given by  

𝑔(𝑅) = &𝑟! − 𝑟"#) ∙ circ .
$
$!
/ + 𝑟"#,      (1) 

where R is the radial coordinate, Rp the pillar radius, 𝑟! and 𝑟"#	the complex reflection coefficients of the 
micro-pillars and the multilayer. Here, the time dependency is omitted as it would just represent a constant 
phase term across the whole structure for any given point in time. The far-field amplitude distribution of the 
scattering structure can be described by a Fourier transform, which in spherical coordinates as a function of 
polar and azimuthal angles has the form 
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where the integration is over radius R and azimuthal angle 𝜓. Using the identity of the Bessel function of 
first kind and zeroth order J0 this can be rewritten as 

𝐺(𝜃, 𝜑) = 2𝜋 ∫ 𝑔(𝑅) ∙ 𝑅 ∙ 𝐽0 =2𝜋
+234
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0 𝑑𝑅 .    (2) 
The coherence length of sunlight is around 20 µm (reference (1), p. 576). This means that a fair 

approximation to the integral is to limit the integration over the radius variable to a range of [-10µm, 10µm]. 
Using the variable 𝑅6 = 10 µm and substituting the expression from eq.1 into eq.2 gives, 
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Using a change of variables 𝑅′ = 2𝜋 )*+4
5
𝑅 and ∫ 𝑘′𝐽0(𝑘′) = 𝑘7

0 𝐽8(𝑘), with 𝐽8(𝑘) being the Bessel function 
of first kind and first order, this turns into  
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The diffraction signature of a beetle’s unit cell pillar-multilayer morphology is shown in Supplementary 
Fig. 28, which displays field density and phase, as well as the radiant intensity and angle-dependent color 
resulting from the calculation of 𝐺(𝜃, 𝜑). 

 
The diffraction of a hexagonally packed array of unit elements: With the diffraction signature 𝐺(𝜃, 𝜑) of a 
unit element known, the diffracted light field of a periodic arrangement of unit cells 𝐺<==<>(𝜃, 𝜑)	can be 
calculated by coherent addition (see reference (1) , p.444). The centers of each unit cell are given by	𝑐?,A =

𝑚 ∙ =10> + 𝑛 ∙ .
1/2
√3/2

/ with n, m ∈ Z. The coherence area of sunlight has a diameter of around 20 µm, as 

stated earlier. That means only unit cells within a coherence area of radius 𝑅) = 10 µm need to be added 
coherently to obtain the overall diffraction signature of the beetles’ cuticle architectures. For a pillar-to-pillar 
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The area over which the summation in eq.4 is done is bound by the coherence area of sunlight with a 
radius 𝑅) = 10 µm (Fig. S29a). Features in the coherent reflection of light from the multilayer with periodic 
interruptions through micro-pillars are considerably sharper compared to the diffraction signature of a single 
unit cell. Most intensity is localized in the specular reflection direction, i.e., θ ≈ 0º for normal light incidence 
(Fig. S30a,b).Fig. S31 shows the angular reflection characteristics of hexagonally arranged micro-pillars 
embedded within multilayers for the geometrical parameters of five different beetles. 

One question that can be asked is how the beetles’ cuticle structures compare to theoretically predicted 
structures that maximize the intensity in the first diffraction orders (i.e., at a polar angle of 𝜃 = sin%8(𝜆 𝐿⁄ )). 
Modeling the diffraction of multilayer-pillar structures with reflection spectra corresponding in peak 
reflection wavelength to the beetles’ measured multilayer reflection signatures reveals that the beetles’ pillar 
radii and distances are located very close to the optimum values predicted by the model (Fig. S32). 
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Note 2: Mechanical Modeling  
 
The effective modulus of the beetle’s bilayer structure is calculated based on a hexagonal pillar unit cell 
array. To obtain a theoretical approximate solution, we decompose this problem into a multilayer structure 
(Fig. S33) based on reference (2), pgs. 8-11 and use the rule of mixtures to account for the reinforcement 
effect contributed by the micro-pillars. We primarily focus on mechanical stiffness along the perpendicular 
loading direction, namely, the vertical 𝒆C direction in Fig. S33. The multilayer medium consists of a set of 
uniform infinite lamina, with alternating properties, bonded together across interfaces. Suppose that Young’s 
moduli (𝐸) and Poisson’s ratios (𝜈) are different for each individual material as depicted in Fig. S33. 
Furthermore, suppose that the volume fractions for each of the layers are 𝑐8 and 𝑐&, where 𝑐8 + 𝑐& = 1. 

Assuming both materials in the laminate are isotropic and there exist no interfacial effects between 
surfaces, we can develop a closed-form analytical solution for an infinite composite of such a structure. We 
begin by recalling the stress-strain relation for an isotropic material, 

𝐸𝜖(M = (1 + 𝜈)𝜎(M − 𝜈𝛿(M𝜎77 .      (5) 
where 𝜎(M and 𝜖(M are the stress and strain tensor, respectively, 𝛿(M is the Kronecker delta. 

Thus, the transverse isotropy stress-strain relations can be given in the form, 

𝐸8𝜖88 = 𝜎88 − 𝜈8&𝜎&& − 𝜈8C𝜎CC 

𝐸8𝜖&& = 𝜎&& − 𝜈8&𝜎88 − 𝜈8C𝜎CC 

𝐸8𝜖8& = (1 + 𝜈8&)𝜎8& 

𝐸C𝜖CC = 𝜎CC − 𝜈C8(𝜎88 + 𝜎&&) 

2𝐺8C𝜖8C = 𝜎8C, 2𝐺8C𝜖&C = 𝜎&C 
with interrelation N(-

O(
= N-(

O-
. Now, the first effective modulus 𝐸CPQQ can be obtained by imposing an effective 

stress in the parallel direction given as 𝜎CC = 𝜎cCC throughout the composite. Thus, it is possible to find a field 
such that the strains in the lamina become constant, namely 𝜖88 = 𝜖&& = 𝜖8̅8. The value of 𝜖8̅8 is fixed by the 
requirement that the mean value of the stress component 𝜎88 must be zero. Now, we can look at each lamina 
individually and obtain the governing equations such that: 

𝐸𝜖CC = 𝜎cCC − 2𝜈𝜎88 (6) 

𝐸𝜖8̅8 = (1 − 𝜈)𝜎88 − 𝜈𝜎cCC (7) 
Re-arranging eq. (7) we can get the uniaxial stress as 

𝜎88 =
𝐸

1 − 𝜈 𝜖8̅8 +
𝜈

1 − 𝜈 𝜎cCC. (8)  
Thus, if we require that the mean value of the stress of 𝜎88 to be zero, we obtain the average formulation 

for the strain as (based on linear superposition of the stresses) 

𝜖8̅8 = − e
𝐸

1 − 𝜈f
%8

e
𝜈

1 − 𝜈f𝜎cCC, 
(9)  

where the average is given in terms of the volume fractions ⟨𝜙⟩ = 𝑐8𝜙8 + 𝑐&𝜙& = 𝑓𝜙8 + (1 − 𝑓)𝜙&, 
given 𝑓 = 𝑐8 and 1 − 𝑓 = 𝑐&. If we compare the transverse stress-strain relation to eq. (5), we can see that, 

N(-
.//

O(
.// = e O

8%N
f
%8
e N
8%N

f = N-(
.//

O-
.//. 

Now, if we substitute eq. (9) into eq. (8) together with eq. (6), we obtain the expression for the strain: 

𝜖CC = k
(1 − 2𝜈)(1 + 𝜈)

𝐸(1 − 𝜈) +
2𝜈
1 − 𝜈 e

𝐸
1 − 𝜈f

%8

e
𝜈

1 − 𝜈	f	l 𝜎cCC (10) 

The average of this equation gives, by definition, 𝜎CCPQQ/𝐸CPQQ. Thus, 

𝐸CPQQ = m
(1 − 2𝜈)(1 + 𝜈)

𝐸(1 − 𝜈) +
2𝜈
1 − 𝜈 e

𝐸
1 − 𝜈f

%8

e
𝜈

1 − 𝜈	fn
%8

.    (11)  

which can be rewritten as, 
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𝑘8 = o
𝑓"#𝐸8
1 − 𝜈8

+
(1 − 𝑓"#)𝐸&
1 − 𝜈&

p
%8

 

𝑘& =
𝑓"#𝜈8
1 − 𝜈8

+
(1 − 𝑓"#)𝜈&
1 − 𝜈&

 

𝐸"# =	𝐸CPQQ = o
𝑓"#(1 − 2𝜈8)(1 + 𝜈8)

𝐸8(1 − 𝜈8)
+
(1 − 𝑓"#)(1 − 2𝜈&)(1 + 𝜈&)

𝐸&(1 − 𝜈&)
+
2𝑓"#𝜈8𝑘8𝑘&
1 − 𝜈8

+
2(1 − 𝑓"#)𝜈&𝑘8𝑘&

1 − 𝜈&
p
%8

 

with the multilayer volume fraction of material phase 1 described by 𝑓"# =
B(

B(HB,
= 𝑐8. 

In the above formula, 𝜈8 , 𝐸8 , 𝐿8  are the properties of the layers with material 1 and 𝜈&, 𝐸&,	𝐿&  are 
properties of the layer with material 2. 

Using the above as the solution for the stiffness of the bilayer matrix, we analyze the total composite 
by treating the bilayer as a homogeneous material. Thus, we use the rule of mixtures to obtain a total solution 
for the composite including the vertical micro-pillars and the bilayers as: 

𝐸RPPS#PPQQ = 𝑓!2##𝐸!2## + &1 − 𝑓!2##)𝐸"# 

𝑓!2## =
𝐴"!

𝐴"# + 𝐴"!
 

where, 𝐴"! is the cross-sectional area of all micro-pillars, and 𝐴"# is the cross-sectional area normal to the 
load subtracting the area of the pillar (𝐴"# = 1 − 𝐴"!). This solution assumes that there are no interfacial 
and bonding effects between the micro-pillars and the multilayer substrate. The dependency of the effective 
modulus of the pillar reinforced bilayer structure on the relative pillar radius is shown in Fig. S34.   

To study the effects of the pillar distance and radius on the effective stiffness, we have selected a beetle, 
namely the red colored beetle, and used its material properties to analyze how the effective stiffness varies 
with pillar parameters. As Fig. S35 suggests, the stiffness of the beetle is more sensitive to the pillar radius 
than to the distance. Furthermore, if the relative volume fraction of bilayer material to the pillar is kept 
constant, the effective stiffness will also remain constant. It can be clearly seen that the more pillar mass is 
contained in the structure, the stiffer it becomes. 
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Supplementary Figures 
 
 

 
 
Fig. S1 | Fibrous structure in the endocuticle region. a, A top-viewed SEM image of the 
fractured cuticle, showing the plywood-like structure in the endocuticle layer. b, Fractured cross-
section of individual fibers in the endocuticle layer.  
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Fig. S2 | Subsurface microstructure analysis based on optica images from in-plane polishing. 
a, Schematic diagram of specimen orientation used for in-plane polishing. A square-shaped piece 
of cuticle cut from the elytra was placed in the horizontal orientation, subsequently placed at the 
bottom of the container, and embedded with epoxy. Due to the presence of natural surface 
curvature, a slight incline between the cuticle surface and the sample surface in some regions led 
to the exposure of underlying structures in the polishing. b-f, Representative optical images for 
beetle samples with the color of b red, c orange, d yellow-green, e green, and f purple. The inset 
pictures show the corresponding beetle samples.  
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Fig. S3 | Variation of multilayer spacing in the photonic region. a, An SEM image of a vertical 
cross-section of the micropillar-nanomultilayer photonic structure in the beetle’s exocuticle after 
FIB milling. b, Color map of the multilayer spacing. c, Multilayer spacing profile plotted as a 
function of vertical position from the surface of the cuticle.  
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Fig. S4 | Variation of multilayer orientation in the photonic region. a, An SEM image of a 
vertical cross-section of the micropillar-nanomultilayer photonic structure in the beetle’s exocuticle 
after FIB milling. b, The corresponding color map of orientation. c, Histogram of the multilayer 
orientation. Average ± standard deviation: 5.6 ± 2.9°.  
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Fig. S5 | Morphological changes of the micropillars along the thickness direction in the 
beetle’s cuticle. a, A photograph of an in-plane polished cuticle from a yellow-green T. flammea 
beetle. b, Image acquired with a reflection microscope in the same region. The white boxes in a 
and b indicate the location where the optical image in c was taken. c, A high-magnification optical 
image of the in-plane polished surface, illustrating the gradual transition from the photonic region 
to the underlying non-photonic pillar regions, which are gradually grouped to form fibers of larger-
diameters.  
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Fig. S6 | Quantitative nanomechanical mapping based on AFM measurements. a, AFM height 
image acquired on an in-plane polished specimen, revealing the individual vertical micro-pillars. 
b, Corresponding modulus mapping in the same region as a. c, Statistical distribution of modulus 
based on the modulus map shown in b. Two primary peaks can be identified for the “micro-pillars” 
and the “matrix”. The corresponding averaged elastic modulus for these two phases are 11.0 GPa 
and 8.8 GPa, respectively. d, e, Binarized modulus maps with white color showing the regions of 
d modulus smaller than 9 GPa and e modulus greater than 11 GPa, respectively. The locations of 
the matrix and micro-pillars can be clearly identified in the binary images. 
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Fig. S7 | Schematic diagrams of micro-indentation on the beetle cuticle in a normal and b inclined 
directions. The indentation probe is a conospherical tip with a half angle of 30° and a tip radius of 
5 μm. The inclination angle for the inclined indentation is 16°. Side view of the indentation residues 
for c normal and d inclined indentations based on stereological reconstruction from SEM images 
taken at two different tilt angles. e, Averaged force-depth curves for micro-indentations in both 
normal (n = 6) and inclined (n = 6) directions. The error bars indicate one standard deviation in 
displacement at 80% of maximum force.  
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Fig. S8 | Experimental procedure for acquiring the cross-sectional images of the cuticle after 
micro-indentation tests. a, Original structure after inclined micro-indentation. b, The indentation 
crater was covered with a stripe of platinum protection layer. c, The underlying structure was 
revealed with FIB milling.  
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Fig. S9 | Summary of the mechanical finite element simulation setup. a,b, Schematic diagrams 
of the indenter geometry and indentation orientations. c,d, Schematic diagram of the cuticle 
composite used in the simulation. The dimensions of the multilayer and micropillars are based on 
experimental measurements of the red-colored T. flammea beetle.  
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Fig. S10 | FEM simulation results: normal indentation at maximum load. Three columns from 
left to right represent stress and strain distribution of the pillar-multilayer structure, multilayer 
structure, and a homogeneous material composed of the stiffer phase, respectively. Top to bottom 
rows represent structure, Mises stress, plastic strain (𝜀!), normal stress (𝜎""and 𝜎##), shear stress 
(𝜎"#), normal strain (𝜀""and 𝜀##), and shear strain (𝜀"#), respectively. 
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Fig. S11 | FEM simulation results: normal indentation after unloading.  Three columns from 
left to right represent stress and strain distribution of the pillar-multilayer structure, multilayer 
structure, and a homogeneous material composed of the stiffer phase, respectively. Top to bottom 
rows represent structure, Mises stress, plastic strain (𝜀!), normal stress (𝜎""and 𝜎##), shear stress 
(𝜎"#), normal strain (𝜀""and 𝜀##), and shear strain (𝜀"#), respectively. 



 
 

17 
 

 
Fig. S12 | FEM simulation results: inclined indentation at maximum load.  Three columns from 
left to right represent stress and strain distribution of the pillar-multilayer structure, multilayer 
structure, and a homogeneous material composed of the stiffer phase, respectively. Top to bottom 
rows represent structure, Mises stress, plastic strain (𝜀!), normal stress (𝜎""and 𝜎##), shear stress 
(𝜎"#), normal strain (𝜀""and 𝜀##), and shear strain (𝜀"#), respectively. 
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Fig. S13 | FEM simulation results: inclined indentation after unloading.  Three columns from 
left to right represent stress and strain distribution of the pillar-multilayer structure, multilayer 
structure, and a homogeneous material composed of the stiffer phase, respectively. Top to bottom 
rows represent, structure, Mises stress, plastic strain (𝜀!), normal stress (𝜎""and 𝜎##), shear stress 
(𝜎"#), normal strain (𝜀""and 𝜀##), and shear strain (𝜀"#), respectively. 
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Fig. S14 | A comparison of the load-displacement curves for three different material 
microstructures under a normal and b inclined direction indentations from FEM simulation. The 
pillar-multilayer structure is stiffer, has higher yield stress and greater elastic recovery displacement 
(along the loading direction) than the multilayer structure without micro-pillars. The magnitudes 
of the elastic recovery displacements are marked by the arrows. 
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Fig. S15 | FEM simulation results: mapping of the recovery displacement from the maximum 
load status to the unloaded status. The displacement magnitude, vector, and the displacement 
components in directions 1 and 2 are mapped on the undeformed shape for a a pillar-multilayer 
structure in comparison to b a standard multilayer structure without micro-pillars. 
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Fig. S16 | Quantitative structural analysis of micro-pillars. a, Optical and b, SEM images of the 
in-plane polished samples for five beetle specimens with different colors, revealing the distribution 
of vertical micro-pillars. c, Binary graphs based on original SEM images. d, Nearest neighbor maps 
based on the analysis of binary graphs. e, Fast Fourier Transform graphs of binary graphs. f, 
Quantitative measurements of micro-pillars based on corresponding SEM images.  
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Fig. S17 | Evaluation of the layer period based on the atomic force microscopic images. a, An 
AFM image with the white rectangular showing the region used for the layer period analysis. b, 
The corresponding averaged height profile along the x direction marked in a. c, The layer distance 
is calculated by first performing an autocorrelation on the height profile shown in b, the peak 
positions of the autocorrelation is then analyzed to obtain the layer period as shown in d.  
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Fig. S18 | Evaluation of the layer period based on AFM measurements for beetles with five 
different colors. Plotted are the average height profiles and autocorrelation plots. The layer periods 
are calculated as the averaged peak to peak distances from the autocorrelation plots. 
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Fig. S19 | Method to calculate the pillar distance. a, An example of the binarized image, where 
micro-pillars are fitted with circular disks. b, The circular area of interest to evaluate the pillar 
distance with a diameter of 19 μm. c, Five circular areas with a smaller diameter 9 μm are utilized 
to calculate the average diameters of multiple regions. d-f, Definition of the pillar distance with 
three methods: the nearest pillar distance, adjacent pillar distance, and average distance based on 
the Voronoi cell division method. The three different methods are used to characterize the nearest, 
local, and long-range characteristics of the pillar distance, respectively. Here, N is the total number 
of pillars, n is the number of neighbors of each pillar, M is the number of pillar distance from the 
Voronoi cell division method. Pillar distances of the five colored beetles are calculated by these 
three methods are summarized in Supplementary Figs. 20-25.  
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Fig. S20 | Statistics of the pillar distance of the red beetle. Distances are evaluated on a, a large 
area with a diameter of 19 μm and b, five smaller areas based on the methods described in 
Supplementary Fig. 19.  
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Fig. S21 | Statistics of the pillar distance of the orange beetle. Distances are evaluated on a, a 
large area with a diameter of 19 μm and b, five smaller areas based on the methods described in 
Supplementary Fig. 19. 
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Fig. S22 | Statistics of the pillar distance of the yellow-green beetle. Distances are evaluated on 
a, a large area with a diameter of 19 μm and b, five areas based on the methods described in 
Supplementary Fig. 19. 
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Fig. S23 | Statistics of the pillar distance of the green beetle. Distances are evaluated on a, a 
large area with a diameter of 19 μm and b, five areas based on the methods described in 
Supplementary Fig. 19. 
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Fig. S24 | Statistics of the pillar distance of the deep blue beetle. Distances are evaluated on a, 
a large area with a diameter of 19 μm and b, five areas based on the methods described in 
Supplementary Fig. 19. 
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Fig. S25 | Change in color strength as a function of microscope objective collection angle. 
Reflection spectra of a beetle cuticle surface obtained through collection of light with different 
objectives of increasing collection angle. The photographs on the right correspond to the spectra 
shown on the left acquired with a 5×, 10×, 20×, and 50× objective. Scale bars from top to bottom: 1 
mm, 500 µm, 200 µm, 100 µm. 
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Fig. S26 | Diffraction images for (a) red beetle and (b) green beetle. The diffraction images in 
the first, second, third columns are collected using an imaging scatterometer with illumination spots 
of diameter varying from 200 µm to 5 µm, respectively. The red concentric circles from inside to 
outside represent 𝜃  = 5°, 30°, 60°, and 90°, respectively, for all images. Quasi-hexagonal 
diffraction patterns are only observed when illuminating a small area, indicating the short-range-
order of the micro-pillars. 
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Fig. S27 | The beetles’ photonic structure. Micro-pillars of radius r are arranged in a hexagonal 
array with lattice constant L. The reflection coefficients of the multilayer and pillar regions are rml 
and rp, respectively. The reflected intensity I(θ, 𝜑)is a function of the polar angle θ and the 
azimuthal angle 𝜑.   
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Fig. S28 | The unit cell’s spectral and spatial reflectivity. a, Reflectivity spectra of multilayer 
and pillar regions. b, c, Reflectivity as a function of radial distance from the center of a pillar for λ 
= 650 nm (b) and λ = 585 nm (c).  
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Fig. S29 | Angular diffraction signature of a single unit cell of a beetle with a multilayer peak 
reflection wavelength of 650 nm, a pillar radius r = 450 nm, and an inter-pillar distance of L = 1512 
nm for normal light incidence. a, Field density and phase as a function of polar angle θ at λ =650 
nm. b, Radiant intensity as a function of observation direction at λ = 650nm. c, d, Same as a and b 
for λ = 585 nm. e, Color reflected by the beetle’s structure as a function of angular direction. 
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Fig. S30 | Angular diffraction signature of a multilayer-pillar array of a beetle with a multilayer 
peak reflection wavelength of 650nm, a pillar radius r = 450 nm, and an inter-pillar distance of L = 
1512 nm for normal light incidence. a, Location of unit cell centers on a hexagonal grid with lattice 
constant L within the coherence area of sunlight with radius 𝑅$ 	= 10 µm. The unit cell vectors are 

�⃗�8 = =10>	and	 �⃗�& = .
1/2
√3/2

/. b, Radiant intensity as a function of observation direction at λ = 650 

nm. c, Color reflected by the beetle’s structure as a function of angular direction. The left side 
represents the color intensities resulting from the conversion of angular radiant intensity normalized 
to the multilayers reflectivity values of |𝑟%&(𝜆)|#; the right side is amplified by a factor of 50. 
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Fig. S31 | Modeled diffraction signatures for beetles with different colors. The multilayer 
reflection peak center wavelengths λ, pillar radius r, and inter-pillar distances L are a, λ = 467 nm, 
r =340nm, L = 1115 nm; b, λ = 549 nm, r = 220 nm, L= 736 nm; c, λ = 586nm, r = 380 nm, L = 
1312 nm; d, λ = 645nm, r = 450 nm, L = 1512 nm; and e, λ = 690 nm, r = 360nm, L=1191 nm. The 
color intensities are amplified by a factor of 50 from the original ones resulting from conversion of 
angular radiant intensity normalized to amount to the multilayer’s reflectivity values of |𝑟%&(𝜆)|# 
to emphasize diffraction peaks. 
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Fig. S32 | Measured spectra and comparison of the beetles’ structural parameters with model 
predictions. a, Measured reflection spectra of five beetles. Spectra are given in arbitrary units as 
measurements were conducted with a micro-spectrometric setup collecting light through a 50× 
objective of an Olympus microscope with a limited numerical aperture of 0.5; this allows to get a 
good estimate of the spectral composition of light reflected from the beetle’s pillar-multilayer 
architectures; it does not ensure that all reflected light is captured therefore not allowing to obtain 
reliable estimates on the absolute intensity (for that a measurement with an integrating sphere 
would be more appropriate). b, Strength of diffraction in the first diffraction order located at 𝜃 =
sin'"(𝜆 𝐿⁄ ) modeled for varying pillar distances and radii for the multilayer architectures of the 
five beetles shown in a. The white circles mark the median pillar distances and radii measured for 
the five different beetles. 
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Fig. S33 | The two-phases multilayer model used in mechanical modeling. A simple laminate, 
with an even number of interfaces (or a very large number of interfaces) in the 𝒆( direction and 
infinitely large layers along the 𝒆" ⋅ 𝒆# plane. 
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Fig. S34 | Mechanical modeling results of the effective modulus. Effective modulus of a, the 
multilayer structure and b, the micropillar reinforced multilayer structure of beetle’s cuticle. 
Results are plotted for Poisson’s ratios of v = 0, 0.3, and 0.5. 
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Fig. S35 | Mechanical modeling results. a, Contour plot showing the dependency of effective 
stiffness on the pillar radius and pillar distance for the micropillar-multilayer structure. The white 
region in the plot occurs when the pillar radius and distance are geometrically incompatible based 
on a hexagonal pillar arrangement. b, The dependency of effective stiffness on the multilayer 
spacing ratio 𝑓%& and pillar to radius distance ratio r/L. 
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Fig. S36 | Microstructural features in the vicinity of a gland cell pore. a, A top-view SEM 
image of a cuticle surface, showing three pore conductors. b, AFM height image acquired on an in-
plane polished sample that shows the reduced radius and increased density of micro-pillars close 
to a gland cell pore.  
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Fig. S37 | Measurement of mechanical properties based on nanoindentation mapping across 
the entire cross-section of the elytra cuticle. a, SEM image of the photonic region after FIB 
milling along the vertical cross-sectional direction. b, Optical image of the entire cross-section of 
the elytra cuticle after polishing. c, Averaged indentation modulus and hardness based on Oliver-
Pharr analysis as a function of distance across the entire cross-section. The vertical error bars 
represent the standard deviation.  
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