Supplementary Information for

Chemical and Genetic Rescue of In Vivo Progranulin-Deficient Lysosomal and Autophagic Defects

James J. Doyle, Claudia Maios, Céline Vrancx, Sarah Duhaime, Babykumari Chitramuthu, Hugh P. J. Bennett, Andrew Bateman, J. Alex Parker*

* Corresponding author J. Alex Parker ja.parker@umontreal.ca

This PDF file includes: Table S1 Figures S1 to S5

Compound name	Effective in C. elegans	Effective in human NSC34 cells	Known functions	BBB permeability	References
Rivastigmine	\checkmark	\checkmark	Acetylcholinesterase inhibitor	\checkmark	Int J Mol Sci. 2014 Jun; 15(6): 9809–9825
Rottlerin	\checkmark	\checkmark	Protein kinase C inhibitor	Unknown	Neurosci Lett. 2010 Jan; 468(3): 254-8
Resveratrol	\checkmark	×	SIRT1 activator	\checkmark	Front Aging Neurosci. 2014 Sep; 6: 218
Pirenzepine dihydrochloride	\checkmark	×	Acetylcholine receptor agonist	\checkmark	Scand J Gastroenterol Suppl. 1980; 66: 35-7
Azatadine maleate	\checkmark	×	Histamine H1 receptor antagonist	\checkmark	Contemporary Drug Synthesis. 2004
(±)-gamma-Vinyl GABA	\checkmark	×	GABA transamniase inhibitor	\checkmark	Br J Clin Pharmacol. 2014 Nov; 78(5): 981–995
ХСТ790	\checkmark	×	Estrogen-related receptor alpha inverse agor	Unknown	Biochemistry. 2014 Jul; 53(29): 4839-46
Ethopropazine hydrochloride	\checkmark	×	Anti-parkinsonian	Unknown	J Nerv Ment Dis. 1948 Aug; 108(2): 118-28
Methantheline bromide	\checkmark	×	Antispastic	\checkmark	Ann Pharmacother. 1995 May; 29(5): 489-92
Daurisoline	\checkmark	×	Anti-inflammatory, hERG channel blocker	\checkmark	Neuroreport. 1994 Jul; 5(12): 1489-92
PAPP	\checkmark	×	Serotonin receptor agonist	Unknown	Advances in Drug Research (Vol. 17), 2013
Bay 11-7085	\checkmark	×	Inhibitor of NFkB	Unknown	Exp Hematol. 2007 Oct; 35(10): 1495-509
(-)-Eseroline fumarate salt	X		Acetylcholinesterase inhibitor	×	Enzyme Inhib Med Chem. 2002 Oct; 17(5): 279-85
Clonixin Lysinate	Х		Anti-inflammatory	Unknown	lin Pharmacol New Drugs. 1971 Sep; 11(5): 371-7
Methylhydantoin-5-(D)	X		Anti-epileptic	Unknown	J Nerv Ment Dis. 1948 Aug; 108(2): 118-28
Tomatidine	X		Functional acid sphingomyelinase inhibitor	Suggested	PLoS One. 2011; 6(8): e23852
Verruculogen	X		Potassium channel blocker	\checkmark	Mar Drugs. 2016 Nov; 14(11): 208
Oxyphenbutazone			Anti-inflammatory	\checkmark	Eur J Clin Pharmacol. 1983; 25: 107
DL-alpha-Methyl-p-tyrosine			Tyrosine hydroxylase inhibitor	\checkmark	Br J Pharmac. 1986; 88: 285-290
Dopamine hydrochloride			Various uses, primarily for low blood pressu	×	Drug Discov Today. 2007 Jan; 12(1-2): 54-61
Oxaprozin			Anti-inflammatory	Unknown	pert Opin Pharmacother. 2005 May; 6(5): 777-85
Tyrphostin 23			EGFR inhibitor	Unknown	Neurochem Res. 2016 Oct; 41(10): 2607-18
Fursultiamine Hydrochloride			Used for vitamin B1 deficiency	Unknown	Med Sci Monit. 2004 Sep; 10(9):199-203
Imatinib			Tyrosine kinase inhibitor	Poor	Blood. 2008 Aug 15; 112(4): 1005-12
Candesartan			Angiotensin II receptor antagonist	\checkmark	Curr Med Res Opin. 2003; 19(5): 449-51
Idazoxan hydrochloride			Adrenergic receptor antagonist	\checkmark	Anesthesiology. 1989 Jul; 71(1): 75-9
Daphnetin			Protein kinase inhibitor	Unknown	Eur J Pharmacol. 2011 Oct; 668(1-2): 35-41
Viloxazine hydrochloride			Norepinephrine reuptake inhibitor	\checkmark	Analogue-based Drug Discovery II, 2010
Lamotrigine			Voltage-gated sodium channel inhibitor	\checkmark	Biochem Pharmacol. 2012 Mar; 83(6): 805-14
(S)-3,5-Dihydroxyphenylglycine			Glutamate receptor agonist	Unknown	CNS Drug Rev. 2002; 8(1): 101-16
Carmustine			DNA alkylating agent	\checkmark	Handbook of Brain Tumor Chemotherapy, 2006
Promethazine hydrochloride			Histamine H1 receptor antagonist	\checkmark	Arch Dermatol Res. 2012 May; 304(4): 263-272
Pizotifen malate			Serotonin receptor antagonist	\checkmark	Science and Practice in Clinical Neurology, 1993
Zuclopenthixol dihydrochloride			Dopamine receptor antagonist	\checkmark	Drugs in Psychiatry, 2013
Meropenem	Cannot test in C. elegans		Antibacterial	\checkmark	Clin Microbiol Rev. 2010 Oct; 23(4): 858-883

Table S1. Compounds identified from C. elegans drug screen and their properties

Figure S1. (A) Quantitative gene expression reveals that pgrn-1(gk) animals show a marked reduction in pgrn-1 mRNA expression, while it could not be detected in pgrn-1(tm985) mutants (Student's *t* test: N2 vs. pgrn-1(tm985), ****P<0.0001; N2 vs. pgrn-1(gk), ****P<0.0001). (B) pgrn-1(gk) animals are display higher levels of age-dependent paralysis than N2 animals, and heterozygous pgrn-1(gk)/+ animals display the same levels of paralysis as homozygous mutant

animals (Mantel-Cox test, N2 vs. pgrn-1(gk), ****P<0.0001; pgrn-1(gk) vs. pgrn-1(gk)/+, n.s.). (C) Overexpression of pgrn-1::rfp in a pgrn-1(tm985) background display similar levels of paralysis as N2 animals, whereas expressed in a wild-type background results in a slight decrease in paralysis (Mantel-Cox test: N2 vs. pgrn-1(tm985); pgrn-1::rfp, n.s.; N2 vs. pgrn-1::rfp, *P<0.05). (D) Lifespan in unaffected in pgrn-l(gk) animals (Mantel-Cox test, n.s.). (E) pgrn-l(gk)animals display heightened aldicarb hypersensitivity compared to N2 animals (Mantel-Cox test, ****P<0.0001). (F-G) Knockdown of pgrn-1 in N2 animals (F) does not result in an increase in paralysis, while the knockdown in neurons does (G) (Mantel-Cox test: RNAi in N2 (F), n.s.; neuronal RNAi (G), ****P<0.0001). (H) Nematodes lacking pgrn-1 display an overactive foodseeking behavior and crawl off NGM plates faster than N2 controls; this phenotype is partially rescued by re-expression of pgrn-1::rfp (Mantel-Cox test: N2 vs. pgrn-1(tm985), ****P<0.0001; pgrn-1(tm985) vs.pgrn-1(tm985); pgrn-1::rfp, **P<0.01). (I) Treatment of N2 animals with either 20 or 40 uM MG-132 did not result in a decrease in lifespan (Mantel-Cox test: Vehicle vs. 20 uM, n.s.; Vehicle vs. 40 uM, n.s.). (J) Treatment of pgrn-1::rfp animals with 20 uM MG-132 did not result in a decrease in lifespan but treatment with 40 uM MG-132 did (Mantel-Cox test: Vehicle vs. 20 uM, n.s.; Vehicle vs. 40 uM, ****P<0.001.). (K) Treatment of N2 animals with either 50 or 100 nM Concanamycin A did not result in a decrease in lifespan (Mantel-Cox test: Vehicle vs. 50 nM, n.s.; Vehicle vs. 100 nM, n.s.). (L) Treatment of pgrn-1::rfp animals with either 50 or 100 nM Concanamycin A did not result in a decrease in lifespan (Mantel-Cox test: Vehicle vs. 50 nM, n.s.; Vehicle vs. 100 nM, n.s.).

Figure S2. (A) Both *pgrn-1* mutations did not alter LGG-1::mCherry puncta formation at day 1 of adulthood (Student's *t* test: WT vs. *pgrn-1(tm985)*, n.s.; WT vs. *pgrn-1(gk123284)*, n.s.). (B) Starvation conditions induced autophagy in WT animals, but had no effect on autophagy in both *pgrn-1* mutants (Student's *t* test, Fed vs. Starved: WT, *****p*<0.0001; *pgrn-1(tm)*, n.s.; *pgrn-1*(gk), n.s.).

Figure S3. (A) RNAi knockdown of the corresponding genes did not significantly affect formation of LGG-1::mCherry puncta in *pgrn-1(tm985)* mutants. (B-C) The genetic double mutant, *sphk-1(ok1097); pgrn-1(tm)*, had restored levels of autophagosomes (B) and autolysosomes (C) in animals' neurons (One-way ANOVA, autophagosomes: WT vs. double mutant, n.s.; double mutant vs. *pgrn-1(tm)*, *****p*<0.0001; autolysosomes: WT vs. double mutant, n.s.; double mutant vs. *pgrn-1(tm)*, *****p*<0.0001; autolysosomes: WT vs. double mutant, n.s.; double mutant vs. *pgrn-1(tm)*, *****p*<0.0001).

Figure S4. (A-C) Validation of top 17 drugs from the liquid culture screen for their ability to influence lifespan in *pgrn-1(tm)* mutants (Mantel-Cox test, treatment condition vs. Vehicle control. A: Resveratrol, n.s.; Daurisoline, **p<0.01; XCT790, n.s.; PAPP, n.s.; Rivastigmine, n.s.; Rottlerin, n.s. B: 5-Methylhydandoin, n.s.; Bay-11, n.s.; Tomatidine, n.s.; Eseroline, n.s.; Verruculogen, n.s.; Azatadine, n.s.; Pirenzepine, *p<0.05. C: Clonixin, n.s.; Methantheline, **p<0.01; Ethropropazine, ****p<0.0001; Vigabatrin, n.s.). (D-F) Validation of top 17 drugs on the paralysis phenotype exhibited by *pgrn-1(tm)* nematodes (Mantel-Cox test, treatment condition vs. Vehicle control. A: Resveratrol, ***p<0.0001; Daurisoline, ***p<0.0001; XCT790, ***p<0.001; PAPP, ****p<0.0001; Rivastigmine, ***p<0.0001; Rottlerin, **p<0.01. B: 5-Methylhydandoin, n.s.; Bay-11, *p<0.05; Tomatidine, n.s.; Eseroline, n.s.; Verruculogen, n.s.; Azatadine, ***p<0.001; Pirenzepine, *p<0.05. C: Clonixin, n.s.; Verruculogen, n.s.; Eseroline, ***p<0.001; PAPP, ****p<0.001; Rivastigmine, ****p<0.0001; Rottlerin, **p<0.01. B: 5-Methylhydandoin, n.s.; Bay-11, *p<0.05; Tomatidine, n.s.; Eseroline, n.s.; Verruculogen, n.s.; Azatadine, ***p<0.001; Pirenzepine, *p<0.05. C: Clonixin, n.s.; Methantheline, ***p<0.001; Ethropropazine, ***p<0.001; Pirenzepine, *p<0.05. C: Clonixin, n.s.; Methantheline, ***p<0.001; Ethropropazine, ***p<0.001; Vigabatrin, ***p<0.001).

Figure S5. (A-B) Dose-dependent testing of rottlerin and rivastigmine against lysosomal phenotypes (Student's *t* test, A: DMSO control vs. treatment condition: 100 μ M rivastigmine *p<0.05, 50 μ M rottlerin *p<0.05, 100 μ M Rottlerin ***p<0.001; B: DMSO control vs. all treatment conditions, ****p<0.0001). (C) Donepezil and sotrastaurin restore paralysis phenotypes in *pgrn-1(tm)* animals (Mantel Cox test, *****p*<0.0001)