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Supporting Information Text13

The supplementary information text contains additional details of the model for particulate blood flow.14

Details of the numerical methods15

In the following, the numerical model for red blood cells (RBCs) suspended in blood plasma is summarised. The model has been16

shown to recover the most important properties of red blood cell flow relevant to this study, i.e. the motion and deformation of17

individual RBCs and dense suspensions of RBCs (1, 2), and the partitioning of RBCs in a semi-dilute suspension within a18

network (3). The interested reader is referred to (4, 5) for more details about the method.19

Fluid model.. The lattice-Boltzmann method (LBM) is used to numerically solve the Navier-Stokes equation for our Newtonian20

fluid model; see (6) for more details on the LBM. Our LBM algorithm employs the D3Q19 lattice, the Bhatnagar-Gross-Krook21

collision operator, Guo’s forcing scheme (7), the Bouzidi-Firdaouss-Lallemand no-slip boundary condition at the walls (8), and22

the Ladd velocity boundary condition for inlets/outlets (9). The parameters for the LBM are provided in Table S1.23

Red blood cell model.. Each RBC is modelled as a biconcave discocyte with shape parameters taken from physiological RBCs24

(10). The RBC model includes a membrane energy,25

W = WS +WB +WA +WV , [1]26

where each superscript S, B, A, V denotes the source of the energy contribution, strain, bending, area and volume energies,27

respectively. Our model uses the surface strain energy density for RBCs as proposed by Skalak et al. (11),28

WS =
∮
wS dA, wS = κs

12 (I2
1 + 2I1 − 2I2) + κα

12 I
2
2 , [2]29

where κs and κα are the elastic shear and dilation moduli. κs is set through the capillary number and κα is set to maintain30

near incompressibility of the RBC membrane. I1 and I2 can be calculated from the local stretch ratios; see (5) for details. The31

strain energy WS is discretised as32

WS =
Nf∑
j=1

A
(0)
j wSj , [3]33

where each RBC membrane is approximated by a mesh of Nf triangular faces j of initial undeformed area A(0)
j . The remaining34

three energy contributions (bending, surface area, volume) are calculated through35

WB =
√

3κB
∑
〈i,j〉

(θi,j − θ(0)
i,j )2, [4]36

where θi,j is the angle between two neighbouring triangular faces,37

WA = κA(A−A(0))2

2A(0) , [5]38

where A is the surface area of the RBC,39

WV = κV (V − V (0))2

2V (0) . [6]40

where V is the volume of the RBC. The superscript (0) denotes values for an undeformed RBC. κB , κA, κV are the bending,41

surface area and volume moduli. κB is known from experiments, whereas κA and κV are set to achieve conservation of the42

surface area and volume of each RBC (4, 5). The forces acting on each vortex of an RBC mesh are calculated through the43

principle of virtual work:44

~Fi = −δW
δ~xi

, [7]45

where ~Fi is the force acting on the ith node, W is the total energy functional, and ~xi is the position of the node. The parameters46

for the RBC model are provided in Table S2.47

Fluid-cell interaction.. The RBC membrane is coupled to the fluid through the immersed boundary method (IBM) (4). After48

the forces acting on each vortex of the mesh of an RBC have been calculated, these forces are spread to the fluid lattice:49

~f( ~X, t) =
∑
i

~Fi(t)δ( ~X − ~xi(t)), [8]50

where ~f( ~X, t) is the force density acting on the fluid node at position ~X and time t, ~Fi(t) is the force acting on the ith membrane51

node, and δ( ~X − ~xi(t)) is a discretised delta function. We use a three-point stencil for the discretised delta function (4). The52

force that is spread from the RBC mesh to the fluid lattice is considered as external force during the next lattice-Boltzmann53
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time step. Once the flow field has been updated at time t+ ∆t through the LBM, the fluid velocity is interpolated at each54

RBC mesh vortex:55

~ui(t+ ∆t) =
∑
~X

~u( ~X, t+ ∆t)δ( ~X − ~xi(t)), [9]56

where ~ui(t+ ∆t) is the velocity of the ith RBC mesh node at time t+ ∆t and ~u( ~X, t+ ∆t) is the updated velocity at a fluid57

lattice point ~X. RBC mesh vortices are updated according to58

~xi(t+ ∆t) = ~xi(t) + ~ui(t+ ∆t)∆t, [10]59

and the overall algorithm proceeds to the next iteration.60
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Table S1. Simulation parameters used for the lattice-Boltzmann method.

Parameter Symbol Unit Value
Voxel size ∆x µm 0.6667
Timestep ∆t s 7.41 × 10−8

Relaxation time τ dimensionless 1
Fluid viscosity µ mPa s 1

RBC cytoplasm viscosity µ mPa s 1
Fluid density ρ kg/m3 1000
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Table S2. Parameters used for the red blood cell model. All values are given in simulation units, unless specified otherwise.

Parameter Symbol Value
Strain modulus κs depends on capillary number

Dilation modulus κα 0.5
Bending modulus κB depends on capillary number

Surface area modulus κA 1
Volume modulus κV 1

Föppl-von Kármán number Γ = κB/(κSr2
RBC) 1/400

Number of faces in RBC mesh Nf 720
RBC radius rRBC 4 µm
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Fig. S1. Comparison of simulation control data with empirical plasma skimming model (12, 13) with a flow ratio of 4. (a) Simulation at Hd = 10%. (b) Simulation at
Hd = 20%. (c) Simulation at Hd = 30%.
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Fig. S2. Phase separation of child branches after bifurcation at Hd = 10% comparing effect of compression asymmetry. (a) Snapshot of the asymmetric short geometry with
the same dimensions as the short geometry. (b) From left to right are the hematocrit of the child branches for a control geometry, a symmetric compression, and an asymmetric
compression (a). Results show a negligible difference between a symmetric and asymmetric geometry. In black is the higher flowing child branch and in grey the lower flowing
child branch. The solid lines are the control discharge hematocrits. The dotted line illustrates the discharge hematocrit of the parent branch.
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Fig. S3. Phase separation of child branches after bifurcation at Hd = 10%, comparing effect of different channel flow rates (increasing capillary number denotes increasing
flow rate). (a) Snapshot of the short compression with a higher channel flow rate and a capillary number of 0.5. (b) hematocrit of the child branches for a control geometry, on
the left, and a compression geometry (a) at three different capillary numbers. In black is the higher flowing child branch and in grey the lower flowing child branch. The solid
lines are the control discharge hematocrits. The dotted line illustrates the discharge hematocrit of the parent branch.
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Fig. S4. (a) Three RBCs before and after a plane of interest. Lines indicate RBC trajectories, assumed as straight. (b) Side view as each cell crosses the plane at a given
coordinate (x, y, z). The RMSD is calculated in the compression axis (here seen as height of channel) by setting x0 as the channel centreline (always zero) and xi as the
height coordinate of the RBC as it crosses the plane. This measures the distribution in the height of the channel. For illustration purposes only three cells are shown, whereas
several hundred are accounted for.
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Fig. S5. Intuition for separatrix. Blue/red lines are streamlines ending in the top/bottom child branch, respectively. The separatrix is the surface separating the blue from the red
streamlines on the plane.
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