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SI METHODS  

S1. Geographic distribution of MAST-4 species and association patterns 

The distribution of MAST-4 species as well as their association patterns were investigated using 
metabarcoding based on data from Logares et al. (1). This dataset includes surface water 
samples (3 m depth) from a total of 120 globally-distributed stations located in the tropical and 
sub-tropical ocean that were sampled as part of the Malaspina 2010 expedition (2). Samples were 
obtained with a 20 L Niskin bottle deployed simultaneously to a CTD profiler that measured 
conductivity, temperature, oxygen, fluorescence, and turbidity. About 12 L of seawater were 
filtered to recover the smallest organismal size-fraction (0.2 - 3 µm; picoplankton). The 
concentration of inorganic nutrients (NO3-, NO2-, PO43-, SiO2) were included in our analyses (see 
Logares et al. (1) for details on their measurement).  

Both the 18S (V4 region (3)) and 16S (V4-V5 region (4)) rRNA-genes were analyzed. Operational 
Taxonomic Units (OTUs) were delineated as Amplicon Sequence Variants (ASV) using DADA2 
(5) and OTU tables were generated. Amplifications were performed with QIAGEN HotStar Taq 
master mix (Qigen Inc., Valencia, CA, USA). Amplicon libraries were paired-end sequenced using 
Illumina MiSeq (2 x 250 bp) at the Research and Testing Laboratory facility (see Logares et al. 
(1) for more details). We trimmed the 18S forward reads at 240 bp and the reverse reads at 180 
bp, while for the 16S, forward reads were trimmed at 220 bp and reverse reads at 200 bp. Then, 
for the 18S, the maxEE was set to 7 and 8 for the forward and reverse reads respectively, while 
for the 16S, the maxEE was set to 2 for the forward reads and 4 for the reverse reads. OTUs 
were assigned taxonomy using the naïve Bayesian classifier method (6) together with the SILVA 
v132 database (7) as implemented in DADA2. Eukaryotic OTUs were also BLASTed against the 
Protist Ribosomal Reference database (PR2, version 4.11.1 (8)). Streptophyta, Metazoa, 
nucleomorphs, chloroplasts, and mitochondria were removed from OTU tables.  

To infer associations between OTUs we used eukaryotic and prokaryotic OTUs with total 
abundances >100 reads and occurrences >15% of the samples. All abundances were centered 
log-ratio (clr) transformed. Associations between OTUs were inferred using Maximal Information 
Coefficient (MIC) analyses as implemented in MICtools (9), which estimates the total information 
coefficient TICe and the maximal information coefficient MICe. TICe is used to estimate significant 
relationships, while their strength is calculated with MICe. TICe null distributions were estimated 
using 200,000 permutations and the significance level was set to 0.001 as suggested by Weiss 
et al. (10)  MICe = 0 indicates no association between OTUs, while MICe = 1 indicates strong 
association. Environmentally-driven associations between OTUs were detected and removed 
using EnDED (11), with the methods Interaction Information and Data Processing Inequality. 
Furthermore, to account for data sparsity and the consequential correlations between zeros in 
the dataset, we removed associations between OTUs that were not present in ³ 50% of the 
samples, i.e. less than half of the samples contained at least one of the two OTUs. We determined 
the Jaccard index for each association based on the presence of OTUs in the samples 
(intersection divided by union). We removed associations that featured a Jaccard index below 
0.25. Moreover, only associations with MICe > 0.4 were considered. We used the Pearson and 
Spearman correlation coefficients to analyze the association type: positive Pearson or Spearman 
correlation coefficients point to co-occurrences, while negative values point to mutual exclusions. 
The distribution of OTUs across sea temperatures was explored using the niche.val function in 
the EcolUtils package (12). The abundance-weighted mean temperature was calculated for each 
OTU and used as an estimate of its temperature niche. We checked whether the obtained 
abundance-weighted mean temperature for each OTU was significantly different from chance 
(p<0.05) using a null model with 1,000 randomizations. 

S2. Genome reconstruction using Single Amplified Genomes  

Plankton samples were collected during the circumglobal Tara Oceans expedition and 
cryopreserved as described elsewhere (13). Individual picoplankton cells were isolated from 
water samples and stained with 1x SYBR Green I (Life Technologies Corporation) (14, 15) using 
a MoFlo (Dako Cytomation Carpinteria, CA, USA) flow cytometer equipped with the CyClone 
robotic arm for sorting into plates of 384 wells. Cells were lysed and their DNA denatured using 
cold KOH. The genome from each single cell was amplified using Multiple Displacement 
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Amplification (MDA) based on the Phi29 polymerase (RepliPHITM, Epicentre Biotechnologies, 
Madison, WI, USA) (16, 17). All single-cell work was performed at the Single Cell Genomics 
Center (htps://scgc.bigelow.org). The obtained SAGs were taxonomically screened by PCR 
amplification and Sanger sequencing of the 18S rRNA gene using universal eukaryotic primers. 
A total of 69 SAGs affiliating to MAST-4 species A/B/C/E were selected for downstream analyses. 
Each selected MAST-4 SAG was sequenced in 1/8 of a lane using either Illumina HiSeq2000 or 
HiSeq4000 at either the Oregon Health & Science University (USA) or the French National 
Sequencing Center (Genoscope, France). A total of 424.1 Gb of sequencing data was produced, 
averaging 6.1 (± 0.22) Gb per SAG. For each SAG, sampling location, depth, and date are 
reported in Supplementary Dataset S1.  

Each SAG was de novo assembled using SPAdes 3.10 (18) in single-cell mode “-sc” with default 
parameters. Contigs shorter than 1kbp were discarded. Quality control and general assembly 
statistics were computed with Quast v4.5 (19). Estimation of genome recovery was calculated 
with BUSCO v3 (Benchmarking Universal Single-Copy Orthologs) (20) using the Eukaryota_odb9 
dataset (Supplementary Dataset S2). SAGs were also co-assembled to increase genome 
recovery. Only SAGs belonging to putatively the same species were co-assembled.  Thus, SAGs 
had to fulfill three conditions to be co-assembled: First, their 18S rRNA-gene amplicon needed to 
be >99.5% similar. Second, their Average Nucleotide Identity (ANI) had to be >95%; ANI was 
computed using Enveomics (21) with the full-length contigs of all SAGs within each species. Third, 
SAGs had to display a homogeneous composition in Emergent Self-Organizing Maps (ESOM) 
(22) based on tetranucleotide frequencies. Tetranucleotide frequencies were computed using a 
4 bp sliding window and 1 bp step length in fragmented contigs between 2.5 and 5 kbp in size 
considering both DNA strands and were subsequently clustered using ESOM. Raw data were 
normalized using robust estimates of mean and variance (“Robust ZT” option) and trained with 
the k-Batch algorithm and Euclidean grid distance. If fragments from a given SAG were mixed 
with those from another SAG in tetranucleotide ESOM representations, it indicated that their 
genomes were similar. SAGs fulfilling the previous three criteria were considered to belong to the 
same species and were subsequently co-assembled. Three MAST-4C SAGs (AB536_E17, 
AB536_F22, AB536_M21) showed more genomic divergence (ANI ~93%) compared to the others 
but were still included in the final co-assembly because the 18S and tetranucleotide frequencies 
passed the thresholds.  

A total of 69 SAGs belonging to MAST-4 were co-assembled: MAST-4A (23 SAGs), MAST-4B (9 
SAGs), MAST-4C (20 SAGs), and MAST-4E (17 SAGs). Prior to co-assembly, reads were 
digitally-normalized using BBNorm (23), considering a minimum coverage depth of 5x and a 
maximum target coverage depth of 100x. Normalized reads were co-assembled with SPAdes 
3.10 using the single-cell mode (“--sc”) running only the assembly module (“--only-assembler”). 
To extend contigs, they were re-scaffolded with SSPACE v3 (24). Repetitive regions were 
masked, along with tRNA sequences, using RepeatMasker (25) and tRNAscan-SE-1.3 (26). 
Quality and assembly statistics were computed with Quast (19) and are shown in Supplementary 
Dataset S2. Parameters not mentioned were set to default. Co-assembled SAGs were carefully 
checked for foreign DNA. Based on the premise that sequences from the same species have 
virtually the same tetra-nucleotide frequencies, a second tetra-nucleotide ESOM map was built 
for the four MAST-4 co-assemblies with the same parameters as previously described. Contigs 
that did not cluster together with the majority of contigs from a given SAG co-assembly were 
removed. Subsequently, co-assembled contigs that were classified as prokaryotic were removed 
based on the 5-mer profiles using EukRep (27) with mild stringency. Lastly, eukaryotic contigs 
with extreme GC content values, i.e., values outside the range of GC content mean ± 10 % 
(Standard deviation) in each SAG co-assembly, were removed as well (Supplementary Dataset 
S2). Co-assembled genome completeness was estimated with BUSCO v3 (28). For each co-
assembly, protein-coding genes were predicted de novo with AUGUSTUS 3.2.3 (29, 30) using 
the identified BUSCO v3 proteins as the training set. Predicted genes were functionally annotated 
using 1) CAZy database from dbCAN v6 (31) and HMMER 3.1b2 (32)  (e-value ≤ 10-5) , 2) KEGG 
(Release 2015-10-12; (33, 34)) and 3) eggNOG v4.5 (35) , both using BLAST 2.2.28+ and 
considering hits with >25% identity, >60% query coverage, <10-5 e-value and amino acid 
alignment lengths >200. Gene sequences (nucleotides) were also mapped against the Marine 
Atlas of Tara Oceans Unigenes (MATOU) Version 1 (20171115)(36) using BLAST 2.2.28+ with 
the same thresholds as the ones above used for the amino acid sequences, except for the identity 
threshold, which was increased to 75%, to consider nucleotide sequence variation instead of 
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amino acid. MAST-4 genomes were clustered in terms of their GH composition with the hclust 
function in R based on “manhattan” distances. 

S3. Phylogenomics and genome differentiation 

We used two approaches to analyze the phylogenetic vs. whole-genome differentiation among 
MAST-4 species. In the first approach, we randomly selected 30 conserved proteins (included in 
eukaryota_odb9, BUSCO v3) that were identified in all MAST-4 species (Supplementary 
Dataset S3) as well as in other publicly available Stramenopile genomes: Phytophtora sojae 
(NCBI:txid67593), Phytophtora infestans (NCBI:txid403677), Schizochytrium aggregatum 
(JGI:Schag1), Aurantiochytrium limacinum (JGI:Aurli1) and Cafeteria roenbergensis (37). Genes 
were aligned individually with Mafft (38) using the ‘—auto’ mode and concatenated with 
catfasta2phyml (39). Poorly aligned sequences and regions were removed using trimAl 
v1.4.rev22 (40) with “-automated1” mode and default parameters. The phylogenetic tree was built 
with RAxML version 8.0.0 (41) using the General Time Reversible model with a gamma-
distributed rate variation among sites (GTR+G). Initial seed was “-p 666”. In addition, we used the 
automatic bootstrap criterion (-autoMRE) and rapid Bootstrap mode (-f a).  The second approach 
consisted of computing the Average Amino-acid Identity (AAI) for each pair of MAST-4 using 
Enveomics based on the predicted genes (amino acids). Genomes were clustered by similarity 
using the pvclust (42) package in R with “maximum” as the distance method. 

S4. Abundance and expression of selected MAST-4 ERGs in the ocean 

We investigated the distribution, abundance, and expression in the global ocean of selected 
Ecological Relevant Genes (ERGs), in this case, lysosomal enzymes (glycoside hydrolases). For 
that, we mapped metagenomic and metatranscriptomic reads from Tara Oceans (a total of 52 
surface water stations encompassing the 0.8 – 5 µm size fraction (total 104 samples), the 
organismal size range where MAST-4 is found) against predicted genes from each MAST-4 
species (Supplementary Dataset S4). Metatranscriptomic reads derived from sequencing polyA-
enriched RNA (14, 36). The mapping was done with BWA (43) and only hits with identity > 95% 
and an alignment length > 80 bp were considered. Reads that mapped to more than one target 
were discarded. Gene abundance and expression estimates were normalized by dividing the 
Reads Per Kilobase (RPK) of each gene [number of mapped reads (counts) / gene length (kbp)] 
by the Scaling Factor (SF) [Sum of all considered RPKs in a sample / 106]. Hereafter, the 
abundance of genes and transcripts is expressed as Counts Per Million (CPM) or Transcripts Per 
Million (TPM) respectively. The comparison between the mean TPM values of the 20 selected 
MAST-4 GHs vs. the 152 single-copy housekeeping genes (from BUSCO v3’s eukaryota_odb9 
database) for each TARA Oceans station was performed using a two sample Wilcoxon test from 
the matrixTests R package (44) (Supplementary Dataset S8). 

S5. Calculation of dN/dS ratios in homologous genes 

Homologous MAST-4 genes were identified using reciprocal protein BLAST (v. 2.2.28+) with the 
following thresholds: >25% identity, >60% of query coverage, <10-5 e-value, and an alignment 
length >200 amino acids. Gene sequences (amino acid) were aligned using Mafft 7.402 with 
default parameters and then converted into a codon-based nucleotide alignment with Pal2nal 
(45). Alignments with one or more unknown nucleotides (Ns) were discarded. For each homolog, 
a nucleotide-based phylogenetic tree was built using RAxML 8.2.12 (41), with the model 
GTR+CAT, including bootstrap analyses, and a starting seed “-p 12345” as well as the 
optimization “-d” parameter. Positive selection was tested on each homolog with HyPhy 2.3.14 
(46) using aBSREL (branch) (47) and MEME (site) (48) models considering the codon-based 
nucleotide alignment and the previous phylogenetic tree. Parameters included options for 
universal code and testing in all branches. A p-value of 0.1 (default) was used for the analysis 
with the MEME model.  
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SI FIGURES 
 

 

Fig. S1. Number of Unigenes (i.e. representative genes after clustering genes at 95% identity) 
from the MATOU database found in MAST-4 and the number of genes shared by the four species. 
Note that the different groups are ordered by group size and that the biggest groups are those 
including only one MAST-4 species, followed by the groups constituted by the combination of two 
or more species. 
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Fig. S2. Functional profile of MAST-4 genes according to KEGG. KEGG annotations are indicated 
as percentage of genes falling into functional categories. The category “Other” is an artificial 
grouping including all the annotations belonging to human related pathways such as ‘Alzheimer’ 
or ‘Influenza A’. 
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Fig. S3. Abundance of GH genes in MAST-4A/B/C/E. Panel A) Geographic location of 
metagenomic samples of Tara Oceans. Panel B) Heatmap of the Glycoside Hydrolase family 
abundances in MAST-4 (see their expression in Figure 5C). Samples are in the x-axis grouped 
by the ocean region and ordered following the expedition’s trajectory. Genes in the y-axis are 
organized by family and each species is indicated with a color. GH22, GH23 and GH24 are 
families of lysozymes and GH19 is a family of chitinases that can also act as lysozymes in some 
organisms.   
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SI DATASETS 
 
Dataset S1 (separate file). Summary of each SAG's environmental data from the TARA Oceans 
expedition. Legend: Sample Depths: D - DCM, S - SUR; Platform: GS - National Sequencing 
Center of Genoscope; OR - Oregon Health & Science University. 
 
Dataset S2 (separate file). Basic assembly statistics from QUAST, BUSCO and AUGUSTUS for 
all the co-assemblies before and after the cleaning pipeline. Legend: Norm and Non-norm indicate 
whether or not the raw reads were normalized using BBNORM prior to the co-assembly. 
 
Dataset S3 (separate file). BUSCO v3 proteins used to generate the multi-gene phylogeny of 
MAST-4 and from which contig they were retrieved in the co-assemblies. 
 
Dataset S4 (separate file). Samples of metagenomes and metatranscriptomes from the TARA 
Oceans expeditions mapped against MAST-4 genes. 
 
Dataset S5 (separate file). OTUs used in the Network Association with MICTools. Low and Upp 
CI_values determine the Confidence Interval, while the Sign implies the position of the observed 
value based on the CI: HIGHER - Observed value is > Upp CI, LOWER - Observed value is < 
Low CI, NON-SIGNIFICANT - Observed value is within both boundaries. 
 
Dataset S6 (separate file). Summary of all hits of MAST-4 genes to different databases. 
 
Dataset S7 (separate file). Summary of all GHs gene families found in MAST-4 genomes. A 
value of 0 indicates that no gene was annotated as part of such GH family, while a value of 1 
indicates that at least one gene was found. 
 
Dataset S8 (separate file). Expression (TPM) means for the 20 most expressed GH genes 
(Figure 5) and the 152 single-copy housekeeping genes (from BUSCO eukaryota_odb9) found in 
MAST-4 for each Tara Oceans station. p-values corresponding to the difference of the means for 
each station are indicated (Wilcoxon test). 
 
Dataset S9 (separate file). List of all homologous genes between all four MAST-4 species. For 
each homolog alignment, the number of branches and sites with positive selection is given along 
with the function from dbCAN (CAZymes). 
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