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S1 Related work

Current analysis of cryo-ET includes template matching [2]. First we create the templates for every class;
and for every subtomogram, we calculate the matching score between the template and itself. The method
is straight-forward and easy to realize, but the computation complexity is unbearable, especially on the data
which has countless classes and more dimensions compared to traditional images. What’s more, because of
the intense disruption of noise, the error rate of this method is very high.

Another method utilizes unsupervised subtomogram classification (e.g. [8]). Now there are a set of
subtomograms which correspond to k classes. First we initialize k class centers, each of which represents the
average of subtomograms in each class, and therefore all of subtomograms can be classified by computing
the distance to k class centers. Second, after labeling all of subtomograms, we redirect k class centers by
calculating average of labeled subtomograms in each class. By computing the two above steps iteratively,
we can approximately obtain the label of every subtomogram. This method doesn’t require the label of any
subtomogram, reducing the workload of labeling our data. Nevertheless, even if some tactics eliminating
noises has been elaborated in this paper, the noises are still remaining a severe problems in our subtomogram
classification, which extremely affect the performance in this method adversely.

There is another straightforward resolution that we can implement transfer learning into subtomogram
classification. We generate simulated dataset in the computer as source domain and set real dataset as target
domain. With the development of Neural Network, many Deep Learning models use this tactic to solve this
problem. [4] proposed an unsupervised classification method with transfer learning. First we train a CNN
model by simulated dataset. In the second stage, we remove the last layer from the original model and then
extract the feature vector of the real dataset. In the end, we apply k-means clustering to the feature vector
of the real dataset.

Recently [3] applies Unsupervised Domain Adaptation to subtomogram classification, in order to resolve
the situation, in which source domain(train dataset) and target domain(test dataset) have different image
intensity distribution. Even though it reaches a desirable performance in target domain, there still remains
limitations because no label in target domain is utilized; what’s more, adversarial training is used in this
paper. In Section 2.2, we have discussed in detail that adversarial training is hard to be convergent when
using Cryo-ET. Comparing to this paper, we success to utilize the label information in target domain and
further improve its performance.
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There are two mainstream ways for current Unsupervised Domain Adaptation methods to decrease image
intensity distribution. First, the training dataset is used to optimize our model and later the parameter of
this model is fine-tuned by test dataset. Even if the label information of test dataset isn’t available, some
of its global features, such as mean and covariance, can still be calculated. This kind of information is
crucial for us to fine-tune the parameters of our model. For instance, [6] and [7] use this way as domain
adaptation. The second way is transforming the data in target domain, making its distribution more similar
to the data in source domain. Compared to the first way, parameters of the model would not be fine-tuned.
For instance, [1] use this way as domain adaptation. In this paper, whitening and re-coloring, which utilizes
the covariance of data in source domain and data in target domain, are applied to data in source domain.
The source data being transformed are used to train the classification model. Because transformed source
data has the similar distribution with target data, the model can reach a desirable result on target domain.

Compared to Unsupervised Domain Adaptation, Few-shot Domain Adaptation utilizes the whole data
in source domain and very few labeled data in target domain. The core idea is very similar to Few Shot
Learning[5]: we require our model to learn the features in very few images. However, the two fields still have
very significant difference. Few shot learning needs to learn the image features whose labels aren’t presented
in training dataset, while few shot domain adaptation needs to learn the image features whose domain are
different from training dataset.

S2 Time complexity

We test the time complexity of FSFT and other Deep Learning methods, which is presented in Table S1.

Table S1: This table lists cost time of five Deep Learning method. FSFT costs less time than SWD and
Fine-tune while costs more time than FADA and CORAL.

Model Time Cost(s)
CORAL 323.66

SWD 1797.37
Fine-tune 1002.08

FADA 554.80
FSFT 921.36

From the table, CORAL, as the simplest method, costs the least time. Compared to FADA, FSFT
add Deep CORAL as one of crucial stage, and its model is more complex. These changes introduce more
computation, in order to have a better performance in subtomogram classification.

S3 Result Analysis

We conduct some experiments to analyze to verify the effectiveness of FSFT. We generate 23 classes for
the simulated datasets S1 and S2 which are mentioned in Section 3.1.1. In this section, we want to verify
the effectiveness of each stage and each contribution we proposed. All the experiments in this section are
conducted on these datasets.

Firstly, in the task of subtomogram classification, we split the whole training procedure into 3 stages
which are tightly linked. We verify that each stage plays an important role in improving the classification
precision. Table S2 presents the improvement of each stage in FSFT. Unsupervised Domain Adaptation is
used in Stage 2 and Supervised Domain Adaptation is used in Stage 3. The combination of them enable

encoders f0 ◦ ft to adapt the target domain.
Secondly, the contributions mentioned in Section 1 are effective in improving the performance of FSFT.

In order to verify their effectiveness, we remove each contribution in FSFT and test its performance in target
domain. In table S3, FSFT method we proposed realizes the best performance, while others can’t reach the
optimal accuracy compared to FSFT.
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Table S2: We calculate the classification accuracy in each stage. This table shows that in Stage 2.1, Deep
CORAL method improves the accuracy from 37.2% to 70.9%; In Stage 2.2, we only update the parameter
of discriminator, so the prediction accuracy is the same as Stage 2.1. In Stage 3, Fine-tune the encoder fφ
improves the accuracy from 70.9% to 95.3%

Stage Accuracy
Stage 1 37.2%

Stage 2.1 70.9%
Stage 2.2 70.9%
Stage 3 95.3%

Table S3: Accuracy of ablation study. Row 1 corresponds to FSFT we proposed; Row 2 corresponds to
FSFT without Stage 2.1; Row 3 corresponds to FSFT which use GAN to train discriminator and encoder;
Row 4 corresponds to FSFT which only use 1D discriminator.

Model Accuracy
FSFT 95.3%

FSFT without CORAL 79.1%
FSFT with GAN 94.2%

FSFT without 3D Discriminator 95.1%

Figure S1: This picture shows how α affect the prediction accuracy.
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S4 Hyper-parameter Adjustment

In this section, we discuss how to choose the hyper-parameter, for example, α in equation 6. In figure S1,
the best result is 0.954%. Accuracy, as α changes, the accuracy nearly stays constant. The value of α will
have little effect on the performance of our model.
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