3CLpro and PLpro affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found?

Marek Štekláč,¹ Dávid Zajaček¹ and Lukáš Bučinský¹

Correspondence to: Marek Štekláč (E-mail: xsteklacm@stuba.sk)

¹ Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, SK-81237, Bratislava, Slovakia

TABLE OF CONTENTS

Commonly used identifiers, obtained docking scores, the pharmacological functions and structures of ten best scoring compounds against each protein: Table S1	2
Putative docking poses of five best scoring compounds against each protein: Tables S2A-S2C	4
Time plot evolutions of the number of H-bonds during molecular dynamics (MD) simulations: Figures S1A-S1B	8
H-bonds identifications and occupancies during MD simulations: Tables S3A-S3E and S4A-S4E	9
Time plot evolutions of values of binding free energies during MD simulations: Figures S2A-S2B	12
Docking pose of Suramine in 6WZU PLpro structure: Figure S3	14
Ligand efficacies of studied compounds against targeted proteases: Figures S4A-S4D	15
References	16

Table S1. CID identifiers, trivial names (in brackets), docking scores in kcal/mol, recognized pharmacological functions and molecular structures[1] of ten compounds downloaded PubChem database [2,3] with highest binding affinities towards 3CL^{pro}/PL^{pro} structures.

^{b)} Compound does not have a trivial name

Table S2A. CID, trivial name, docking score (in brackets), putative binding sites and description of predicted H-bonds of five best scoring compounds against 6WQF structure of 3CL^{pro}[4]. Docked compounds are in purple colour and the protein is in green.

53472683 - Vazegepant (-14.57 kcal/mol)

Thr26(N) ... O₂, *d* = 1.818 Å Asn142(ND₂) ... O₃, d = 2.108 Å Gly143(N) ... O₁, *d* = 1.766 Å

6918155 - Ciclesonide (-14.39 kcal/mol)

5459840 – 20-hydroxyecdysone (-14.07 kcal/mol)

Thr26(N) ... O7, *d* =1.877 Å Gly143(N) ... O1, *d* = 1.980 Å Glu166(N) ... O2, *d* = 1.756 Å H(O2) ... Gu166(O), *d* = 2.097 Å Thr190(N) ... O4, *d* = 1.745 Å H(O4) ... Thr190(O), *d* = 1.812 Å Gln192(NE) ... O4, *d* = 2.216 Å

154573806 - GLR-024-20 (-14.05 kcal/mol)

H(N₅) ... Thr26(O), d = 1.917 Å H(N₂) ... Phe140(O), d = 1.983 Å Gly143(N) ... O₁, d = 1.995 Å His163(NE₂) ... O₂, d = 1.996 Å H(O₃) ... His164(O), d = 2.247 Å Glu166(N) ... N₃, d = 1.824 Å **Table S2B.** CID, trivial name, docking score (in brackets), putative binding sites and description of predicted H-bonds of five best scoring compounds against 6LU7 structure of 3CL^{pro}[5]. Docked compounds are in purple colour and the protein is in orange.

H(O₄) ... Thr24(O), *d* =1.759 Å Glu166(N) ... O₃, *d* =1.740 Å H(N₂) ... Gln189(OE₁), *d* = 2.033 Å **Table S2C.** CID, trivial name, docking score (in brackets), putative binding sites and description of predicted H-bonds of five best scoring compounds against 6WZU structure of PL^{pro}[6]. Docked compounds are in purple colour and the protein is in blue.

Asp108(N) ... O₃, *d* = 1.694 Å H(O₄) ... Asp108(OD₂), *d* = 1.752 Å

 $H(O_6) \dots Asp108(OD_2), d = 2.014 \text{ Å}$

25245769 – Biliverdin(2-) (-10.67 kcal/mol)

Lys105(NZ) ... O₃, *d* = 1.720 Å H(N₂) ... Trp106(O), *d* = 1.912 Å Asp108(N) ... O₆, *d* = 2.082 Å Ala288(N) ... O₃, *d* = 1.662 Å

135483998 – 5-Methyltetrahydrofolate (-10.66 kcal/mol)

Lys105(NZ) ... O4, d = 1.985 Å Trp106(N) ... O5, d = 1.579 Å H(N5) ... Asn109(OD1), d = 2.092 Å H(N6) ... Asn109(OD1), d = 2.130 Å Ala288(N) ... O5, d = 1897 Å

Trp106(N) ... (O₄), *d* = 1.768 Å Asn109(ND₂) ... (O₇), *d* = 1.808 Å H(O₆) ... Asn109(OD₁), *d* = 2.154 Å H(O₈) ... Gly160(O), *d* = 2.109 Å H(O₅) ... Asp286(O), *d* = 2.042 Å Ala288(N) ... O₅, *d* = 2.210 Å **Table S2D.** CID, trivial name, docking score (in brackets), putative binding sites and description of predicted H-bonds of five best scoring compounds against 7CMD structure of PL^{pro} [7]. Docked compounds are in purple colour and the protein is in yellow.

Figure S1A. Time plot evolution of H-bonds formed between 6WQF 3CL^{pro} structure and Montelukast (CID: 5281040) represented by blue colour, Vazegepant/zevagepant (CID: 53472683) represented by green colour, Ciclesonide (CID: 6918155) represented by red colour, 20-hydroxyecdysone (CID: 5459840) represented by violet colour and GRL-024-20 (CID: 154573806) represented by yellow colour.

Figure S1B. Time plot evolution of H-bonds formed between 6WZU PL^{pro} structure and Solumedrol (CID: 16923) represented by blue colour, TAK-599 (CID: 73425380) represented by green colour, Biliverdine(2-) (CID: 25245769) represented by red colour, 5-Methyltetrahydrofolate (CID: 135483998) represented by violet and compound CID: 122146 represented by yellow colour.

Table S3A. H-bonds identifications and their occupancy over the MD simulation of 5281040 (Montelukast)-6WQF complex with 1 % time cut-off.

Donor atom	Acceptor atom	Occupancy
Lig-O ₃	Thr190-Main-O	42.12%
Lig-O ₂	Ser144-Side-OG	32.04%
Glu166-Main-N	Lig-S	20.16%
His163-Side-NE ₂	Lig-O ₁	12.28%
Gln192-Main-N	Lig-O ₃	9.98%
His163-Side-NE ₂	Lig-O ₂	7.68%
Ser144-Main-N	Lig-O ₁	6.69%
Lig-O ₂	His164-Main-O	5.39%
Glu166-Main-N	Lig-O1	3.59%
Glu143-Main-N	Lig-O1	1.50%
Glu166-Main-N	Lig-O ₂	1.00%

Table S3B. H-bonds identifications and their occupancy over the MD simulation of 53472683 (Vazegepant)-6WQF complex with 1 % time cut-off.

Donor atom	Acceptor atom	Occupancy
Thr26-Main-N	Lig-O ₂	72.95%
Lig-N ₃	Thr24-Main-O	33.13%
Gly143-Main-N	Lig-O1	30.84%
Gln189-Side-NE ₂	Lig-N ₈	29.64%
Cys145-Main-N	Lig-O1	22.65%
Asn142-Side-ND ₂	Lig-O1	10.28%
Ser144-Main-N	Lig-O1	6.29%
Lig-N7	Gln189-Side-OE1	4.79%
Asn142-Side-ND ₂	Lig-O ₃	2.69%
Gln189-Side-NE ₂	Lig-N ₇	2.30%
Thr25-Side-OG1	Lig-O ₂	1.20%
Cys145-Side-SG	Lig-N ₂	1.10%

Table S3C. H-bonds identifications and their occupancy over the MD simulation of 6918155 (Ciclesonide)-6WQF complex with 1 % time cutoff.

Donor atom	Acceptor atom	Occupancy
Arg4-Side-NH ₂	Lig-O ₂	9.68%
Lys5-Side-NZ	Lig-O ₄	6.39%
Arg4-Side-NE	Lig-O ₄	3.29%
Ala285-Main-N	Lig-O7	3.09%
Arg4-Side-NH ₂	Lig-O ₄	2.79%
Arg4-Side-NH ₂	Lig-O7	1.30%
Lig-O7	Val125-Main-O	1.20%
Arg4-Side-NE	Lig-O ₂	1.20%
Thr280-Side-OG₁	Lig-O₅	1.10%

Table S3D. H-bonds identifications and their occupancy over the MD simulation of 5459840 (20-hydroxyecdysone)-6WQF complex with 1 %time cut-off.

Donor atom	Acceptor atom	Occupancy
Thr26-Main-N	Lig-O ₃	10.68%
Ser46-Side-OG	Lig-O7	9.38%
GIn189-Side-NE ₂	Lig-O ₄	7.98%
Glu166-Main-N	Lig-O ₂	3.99%
Lig-O7	GIn189-Side-OE1	3.59%
Thr190-Main-N	Lig-O ₆	1.80%
Gln189-Side-NE ₂	Lig-O ₆	1.70%
Lig-O7	Ser46-Side-OG	1.20%

Table S3E. H-bonds identifications and their occupancy over the MD simulation of 154573806 (GRL-024-20)-6WQF complex with 1 % time cut-off.

Donor atom	Acceptor atom	Occupancy
Asn142-Side-ND ₂	Lig-O1	24.55%
Lig-N ₂	Asn142-Side-OD ₁	19.46%
Glu166-Main-N	Lig-O₃	17.76%
Glu166-Main-N	Lig-S	15.37%
Gly143-Main-N	Lig-O ₁	6.49%
Lig-N ₄	Ser46-Side-OG	3.79%
His41-Side-NE ₂	Lig-O ₄	2.89%
Gly143-Main-N	Lig-O ₄	1.60%
Gly143-Main-N	Lig-O ₂	1.10%

Table S4A. H-bonds identifications and their occupancy over the MD simulation of 16923 (Solumedrol)-6WZU complex with 1 % time cutoff.

Donor atom	Acceptor atom	Occupancy
Lig-O₅	Asp286-Side-OD ₁	87.24%
Lig-O ₂	Asp286-Side-OD ₂	85.95%
Trp106-Main-N	Lig-O ₄	75.98%
Ala288-Main-N	Lig-O₃	12.97%
Lig-O ₂	Asp286-Side-OD ₁	5.38%
Lig-O ₈	Asn109-Side-OD ₁	3.79%
Lys274-Side-NZ	Lig-O ₁	2.90%
Asn267-Side-ND ₂	Lig-O ₆	2.70%
Lig-O ₆	Asn267-Side-OD ₁	1.89%
Lig-O ₈	Asn267-Side-OD ₁	1.60%
Lig-O ₆	Asn267-Main-O	1.10%
Trp106-Main-N	Lig-O₅	1.10%

Table S4B. H-bonds identifications and their occupancy over the MD simulation of 73425680 (TAK-599)-6WZU complex with 1 % time cutoff.

Donor atom	Acceptor atom	Occupancy
Lig-O ₆	Asp286-Main-O	88.72%
Ala288-Main-N	Lig-O ₅	81.23%
Lig-N ₆	Gly271-Main-O	12.65%
Lig-N ₆	Asn109-Side-OD1	7.97%
Lig-N₅	Asn109-Side-OD1	2.99%
Lig-N₃	Cys270-Main-O	2.79%
LYS105-Side-NZ	Lig-O₃	1.60%
Lig-N ₆	Gln269-Main-O	1.60%

Table S4C. H-bonds identifications and their occupancy over the MD simulation of 25245769 (Biliverdine(2-))-6WZU complex with 1 % time cut-off.

Donor atom	Acceptor atom	Occupancy
Ala288-Main-N	Lig-O₃	58.62%
Trp106-Main-N	Lig-O ₂	45.07%
Lig-N1	Trp106-Main-O	35.06%
Trp106-Main-N	Lig-O₃	26.02%
Ala288-Main-N	Lig-O ₂	10.37%
Asp108-Main-N	Lig-O ₆	4.58%
Lys105-Side-NZ	Lig-O ₃	1.70%

 Table S4D.
 H-bonds identifications and their occupancy over the MD simulation of 135483998 (5-methyltetrahydrofolate)-6WZU complex with 1 % time cut-off.

Donor atom	Acceptor atom	Occupancy
Ala288-Main-N	Lig-O₅	42.83%
Lig-O ₂	Asp286-Side-OD ₁	29.68%
Trp106-Main-N	Lig-O ₆	10.66%
Glu252-Main-N	Lig-O ₁	7.19%
Trp106-Main-N	Lig-O ₂	6.58%
Trp106-Main-N	Lig-O ₅	5.08%
Lig-O ₂	Asp286-Side-OD ₂	3.79%
Lys105-Side-NZ	Lig-O ₆	1.80%

 Table S4E.
 H-bonds identifications and their occupancy over the MD simulation of 122146-6WZU complex with 1 % time cut-off.

Donor atom	Acceptor atom	Occupancy
Lys94-Side-NZ	Lig-O₅	27.44%
Lig-O ₄	Asp108-Side-OD ₂	20.82%
Lig-O ₆	Asp108-Side-OD ₁	14.15%
Lig-O ₄	Lys92-Main-O	7.68%
Asp108-Main-N	Lig-O₃	3.69%
Lig-N ₆	Asp108-Side-OD ₁	3.59%
Lys105-Side-NZ	Lig-O1	1.99%
Lys105-Side-NZ	Lig-O ₂	1.20%
Lig-O ₆	Lys92-Main-O	1.20%
Lig-O ₆	Asp108-Side-OD ₂	1.20%
Lig-O ₄	Asp108-Side-OD ₁	1.10%

Figure S2A. Time plot evolution of binding free energies values calculated using MM-PBSA approach (Molecular Mechanics – Poisson-Boltzmann Surface Area)[8,9] of complexes with 6WQF 3CL^{pro} structure. Montelukast (CID: 5281040) represented by blue colour, Vazegepant/zevagepant (CID: 53472683) represented by green colour, Ciclesonide (CID: 6918155) represented by red colour and GRL-024-20 (CID: 154573806) represented by yellow colour.

Figure S2B. Time plot evolution of binding free energies values calculated using MM-PBSA approach[8,9] of complexes with 6WZU PLpro structure. TAK-599 (CID: 73425380) represented by green colour, Biliverdine(2-) (CID: 25245769) represented by red colour, 5-methyltetrahydrofolate (CID: 135483998) represented by violet and compound CID: 122146 represented by yellow colour.

Figure S3. Docking pose of Suramine (CID: 5361) in the 6WZU PL^{pro} structure. Cyclisation of the compound is illustrated by the intramolecular distances of atoms that are suspected to participate in H-bonds formation.

Figure S4. Ligand efficacies of initially selected compounds (colored diamonds), redocked compounds from selected publications (empty triangles) [10], (full triangles) [11], (empty squares) [12], (full squares) [13] and (empty circles) [14] against 6WQF (A), 6LU7 (B), 6WZU (C) and 7CMD (D) with respect to their molecular weight. Compounds with molecular weight exceeding 1000 Da, one from Wu *et al.* [11] (CID: 5361) and one from Shah *et al.* [14] (CID: 123794), are excluded from these representations.

References

- [1] 2D structure image of CID 122146, (n.d.). https://pubchem.ncbi.nlm.nih.gov/compound/122146#section=2D-Structure (accessed December 1, 2020).
- [2] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: improved access to chemical data, Nucleic Acids Res. 47 (2018) D1102–D1109. https://doi.org/10.1093/nar/gky1033.
- [3] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res. 49 (2021) D1388–D1395. https://doi.org/10.1093/nar/gkaa971.
- [4] D.W. Kneller, G. Phillips, H.M. O'Neill, R. Jedrzejczak, L. Stols, P. Langan, A. Joachimiak, L. Coates, A. Kovalevsky, Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography, Nat. Commun. 11 (2020) 3202. https://doi.org/10.1038/s41467-020-16954-7.
- [5] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature. 582 (2020) 289–293. https://doi.org/10.1038/s41586-020-2223-y.
- [6] J. Osipiuk, S.-A. Azizi, S. Dvorkin, M. Endres, R. Jedrzejczak, K.A. Jones, S. Kang, R.S. Kathayat, Y. Kim, V.G. Lisnyak, S.L. Maki, V. Nicolaescu, C.A. Taylor, C. Tesar, Y.-A. Zhang, Z. Zhou, G. Randall, K. Michalska, S.A. Snyder, B.C. Dickinson, A. Joachimiak, Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors, BioRxiv. (2020) 2020.08.06.240192. https://doi.org/10.1101/2020.08.06.240192.
- [7] X. Gao, B. Qin, P. Chen, K. Zhu, P. Hou, J.A. Wojdyla, M. Wang, S. Cui, Crystal structure of SARS-CoV-2 papain-like protease, Acta Pharm. Sin. B. 11 (2021) 237–245. https://doi.org/https://doi.org/10.1016/j.apsb.2020.08.014.
- [8] R. Kumari, R. Kumar, A. Lynn, g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations, J. Chem. Inf. Model. 54 (2014) 1951–1962. https://doi.org/10.1021/ci500020m.
- [9] N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Natl. Acad. Sci. 98 (2001) 10037–10041. https://doi.org/10.1073/pnas.181342398.
- [10] A. Fischer, M. Sellner, S. Neranjan, M.A. Lill, M. Smieško, Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 687 Million Compounds, (2020). https://doi.org/10.26434/chemrxiv.11923239.v1.
- [11] C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, M. Zheng, L. Chen, H. Li, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B. 10 (2020) 766–788. https://doi.org/https://doi.org/10.1016/j.apsb.2020.02.008.
- [12] F.S. Hosseini, M. Amanlou, Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study, Life Sci. 258 (2020) 118205. https://doi.org/https://doi.org/10.1016/j.lfs.2020.118205.
- [13] S. Adem, V. Eyupoglu, I. Sarfraz, A. Rasul, M. Ali, Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA, (2020). https://doi.org/10.20944/PREPRINTS202003.0333.V1.
- B. Shah, P. Modi, S.R. Sagar, In silico studies on therapeutic agents for COVID-19: Drug repurposing approach., Life Sci. 252 (2020) 117652. https://doi.org/10.1016/j.lfs.2020.117652.