Supplementary Information:

Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection

Sara Bracaglia,¹ Simona Ranallo,^{1,2,*} Kevin W. Plaxco² and Francesco Ricci^{1,*}

¹Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Italy; ²Department of Chemistry and Biochemistry, University of California Santa Barbara, CA93106, United States;

Supplementary Methods

DNA Sequences

HPLC purified oligonucleotides were purchased from IBA (Gottingen, Germany), Biosearch Technologies (Risskov, Denmark) and Metabion International AG (Planegg, Germany). PNA/Peptide chimera probes were purchased from Panagene (South Korea). All sequences were designed using Nupack or IDT oligoanalyzer tools.^{1,2}

	0 1	· · · ·	•	• • ,
Table	S-1:	Anti-Dig	responsive	circuit.
1	~ •	1 11111 12 19	100ponor.	01100010

Name	Sequence (5' - 3')
S1	CCT CAT CAT CAT ATA CGT CAC CTA TCC CAT TCT
Capture probe	(Thiol C6 SS) - CCT CAT CAT CAT ATA CGT CAC
Reporter strand	GTG ACG TAT ATG ATG ATG AGG - (Methylene Blue)
Split#1_Stem6	AGA ATG GGA TAG – TT – <i>GTC TGC</i> – TTT TTT TTT TTT - (DIG)
Split#2_Stem6	(DIG) - TTT TTT TTT TTT – GCA GAC – TT – <u>GTG ACG TAT ATG</u>
	ATG ATG AGG
Split#1_Stem4	AGA ATG GGA TAG - TT - G TCT - TTT TTT TTT TTT - (DIG)
Split#1_Stem8	$\mathbf{AGA ATG GGA TAG} - \mathrm{TT} - G \ TCT \ GCT \ G - \mathrm{TT} \ \mathrm{TTT} \ \mathrm{TTT} \ - (\mathrm{DIG})$
Split#1_Stem10	AGA ATG GGA TAG – TT – G TCT GCT GTC – TTT TTT TT - (DIG)
Split#1_Stem12	AGA ATG GGA TAG – TT – C ATC GTC GTC TGC TG – TT TTT
	TTT TTT - (DIG)
Split#1_Stem14	AGA ATG GGA TAG – TT – <i>CAT CGT CTG CTG TC</i> – TT TTT TTT
	TTT T - (DIG)
Split#2_Stem0	(DIG) - TTT TTT TTT TTT – <i>TGG GTG –</i> TT – <u>GTG ACG TAT ATG</u>
	ATG ATG AGG
Split#2_Stem4	(DIG) - TTT TTT TTT TTT $-AGAC - TT - GTGACGTATATGATG$
	ATG AGG
Split#2_Stem8	(DIG) - TTT TTT TTT TT – $C AGC AGA C$ – TT – <u>GTG ACG TAT</u>
	ATG ATG AGG
Split#2_Stem10	(DIG) - TTT TTT TT - G ACA GCA GAC - TT - GTG ACG TAT ATG
	ATG ATG AGG

Split#2_Stem12	(DIG) - TTT TTT TTT TT – $C AGC AGA CGA TG$ – TT – <u>G TGA CGT</u>
	ATA TGA TGA GG
Split#2_Stem14	(DIG) - TTT TTT TTT TT – $G ACA GCA GAC GAT G$ – TT - $GTG ACG$
	TAT ATG ATG AGG
Split_Ctrl#1	$\mathbf{AGA} \mathbf{ATG} \mathbf{GGA} \mathbf{TAG} - \mathbf{TT} - \mathbf{GTC} \mathbf{TGC} - \mathbf{TTT} \mathbf{TTT} \mathbf{TTT} \mathbf{TTT}$
Split_Ctrl#2	TTT TTT TTT TTT - GCA GAC - TT - GTG ACG TAT ATG ATG ATG
	AGG

In the above sequences and those reported below with other circuits the sequence denoted in **bold** indicates the toehold domain, the <u>underlined</u> sequence represents the invading domain, and the sequence denoted in *italics* indicates the elements of the duplex stem.

In the above antigen-conjugated DNA strands Dig was conjugated using EDC/NHS to an amine attached via a 5-carbon linker on either the 5'- or 3'-end of the DNA. The methylene blue (MB) redox reporter for this and other DNA strands was conjugated to the 3'- amino modification on the relevant DNA using succinimide ester coupling

Name	Sequence (5' - 3')
S1	<u>CCA ATA TCA TCA AGA GCG TAC</u> – GAT TCG TGA GTA
Capture Probe	(Thiol C6 SS) - CCA ATA TCA TCA AGA GCG TAC
Reporter strand	GTA CGC TCT TGA TGA TAT TGG - (Methylene Blue)
Reporter strand_AQ	GTA CGC TCT TGA TGA TAT TGG - (Anthraquinone)
Split#1	TAC TCA CGA ATC - TT - G TCT GC - T TTT TTT TTT TTT - (DNP)
Split#2	(DNP) - TTT TTT TTT TTT - GCA GAC - TT - G TAC GCT CTT GAT
	<u>GAT ATT GG</u>
Split_Ctrl#1	TAC TCA CGA ATC - TT - G TCT GC - T TTT TTT TTT TT
Split_Ctrl#2	TTT TTT TTT TTT - GCA GAC - TT - G TAC GCT CTT GAT GAT
	ATT GG

Table S-2: Anti-DNP responsive circuit

In these antigen-conjugated strands DNP was attached via a triethylene glycol (TEG) spacer arm on either the 5'- or the 3'- terminus of the DNA. The anthraquinone (AQ) redox reporter was conjugated to the 3'-end of the relevant DNA strand through a phosphoramidite chemistry.

Modular antibody-responsive circuit:

We have also designed a version of the antibody-responsive circuit that, by employing a a frame inversion in one of the scaffold strands, does not require the synthesis of two different antigen-conjugated strands (one in each orientation). Instead, this employs a single antigen-conjugated strand that hybridizes to both scaffold strands. We employed this with the peptide antigens in our study (as their synthesis is the most expensive). For these, we also employed a PNA, rather than a DNA, antigen-conjugated strand so as to simplify the conjugation chemistry.

T 11 (011	. 1 1	•	• •,
Table N	S-3:	Clinical	antibody	responsive	circuit
INDICA		emmean	antroody	responsive	•11 • • • • • •

Name	Sequence
Split#1_Scaffold	5' - TAC TCA CGA ATC - TT - G CCT GA - C CCT - AGA ATA AAA
	CGC CAC TG - 3'
Split#2_Scaffold	3' - GTC ACC GCA AAA TAA GA - 5' 5' - TCC C - <i>TC AGG C</i> - TT -
	<u>GTA CGC TCT TGA TGA TAT TGG</u> - 3'
P17_PNA chimera	N _{term} -(ELDRWEKIRLRP) - CAG TGG CGT TTT ATT CT - C _{term}
epitope_PNA chimera	N _{term} - (CVFDLGTRRLRCGGG) - CAGTGGCGTTTTATTCT-C _{term}
HA_PNA chimera	N _{term} – (YPYDVPDYA) - CAG TGG CGT TTT ATT CT - C _{term}

The sequence in parentheses represent the selected epitope portions that are terminally conjugated to PNA. The sequences of the peptide epitopes are set in parentheses.

Supplementary Figure

Figure S1: Electrochemical kinetic traces obtained by recording SWV of the anti-Dig responsive circuit for a series of Dig-conjugated DNA strands differing in the length of their complementary (from 0 to 14 bases) in the absence (A, left) and presence (A, right) of saturating anti-Dig antibody concentration. The Ab-responsive circuit was allowed to react for 30 min at RT after antibody addition and then transferred to the disposable electrode surface. (B) SWV scans were performed between -0.35 and -0.15 V at 50 Hz, after 120 min from the transfer of the solution on the electrode. The experiments were performed in a 100 μ L phosphate buffer solution (50 mM Na₂HPO₄, 150 mM NaCl, pH 7.0) containing the pre-hybridized DNA duplex (60 nM), Dig-conjugated DNA strands (100 nM each) and Anti-Dig antibodies (300 nM).

Figure S2: Electrochemical kinetic traces obtained by recording SWV at increasing concentration of Anti-Dig antibody preformed (A) in pure buffer (50 mM Na₂HPO₄, 150 mM NaCl, pH 7.0) and (B) 90% serum diluted with 10% of 10X buffer (500 mM Na₂HPO₄, 1.5 M NaCl, pH 7.0). The experiments were performed in a 100 μ L drop solution containing the pre-hybridized DNA duplex (60 nM), Dig-conjugated DNA strands (100 nM each) and Anti-Dig antibodies (300 nM).

Figure S3: Kinetics of target hybridization at different incubating times after addition of a saturating concentration of Anti-Dig antibody. The experiment was performed in a 100 μ L phosphate buffer solution (50 mM Na₂HPO₄, 150 mM NaCl, pH 7.0) containing the pre-hybridized DNA duplex (60 nM), Dig-conjugated DNA strands (100 nM each) and Anti-Dig antibodies (300 nM).

Supplementary References

- Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.; Pierce, N. A. NUPACK: Analysis and Design of Nucleic Acid Systems. *J. Comput. Chem.* 2011, *32* (1), 170–173.
- (2) Owczarzy, R.; Tataurov, A. V.; Wu, Y.; Manthey, J. A.; McQuisten, K. A.; Almabrazi, H. G.; Pedersen, K. F.; Lin, Y.; Garretson, J.; McEntaggart, N. O.; Sailor, C. A.; Dawson, R. B.; Peek, A. S. IDT SciTools: A Suite for Analysis and Design of Nucleic Acid Oligomers. *Nucleic Acids Res* 2008, *36* (Web Server issue), W163-169.