# THE LANCET Infectious Diseases

## Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Sangkaew S, Ming D, Boonyasiri A, et al. Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and metaanalysis. *Lancet Infect Dis* 2021; published online Feb 25. https://doi.org/10.1016/ S1473-3099(20)30601-0.

- 1 Supplement table 1: Search terms used in the literature review. We searched for all combinations of the
- 2 terms in column 1 and 2 (e.g. "dengue shock syndrome AND risk factor(s)", "dengue shock syndrome
- 3 AND risk parameter(s)", "dengue shock syndrome AND risk variable(s)", "dengue shock AND risk

#### 4 factor(s)" etc).

| Complicated dengue                    | Predictors                                             |
|---------------------------------------|--------------------------------------------------------|
|                                       |                                                        |
| - dengue shock syndrome- dengue shock | - risk factor(s)                                       |
| - dengue haemorrhagic fever/dengue    | - risk parameter(s)                                    |
| - hemorrhagic fever                   | - risk variable(s)                                     |
| - dengue with warning sign(s)         | - predictive/predicting factor(s)                      |
| - severe dengue                       | <ul> <li>predictive/predicting parameter(s)</li> </ul> |
| - complicated dengue                  | - prognostic factor(s)                                 |
| - dengue severity                     | - prognostic parameter(s)                              |
|                                       | - Associated factor(s)                                 |
|                                       | - Associated parameter(s)                              |
|                                       | - Associated characteristic(s)                         |
|                                       | - Risk(s)                                              |
|                                       | - Prognosis                                            |
|                                       | - Biomarker(s)                                         |
|                                       | - Marker(s)                                            |

5

6 Supplement table 2: Search syntaxes applied in the Ovid platform for searching MEDLINE database. We

7 searched for all combinations of the terms in column 1 and 2. The explode command (exp) was used to

- 8 retrieve records that contained the specific term and its subheadings (e.g. Severe dengue, risk factors, and
- 9 prognosis). Terms in the columns were search using multiple-purpose command (.mp), searching
- 10 keywords in a set of fields usually including Title, Original Title, Abstract, and Subject Heading.
- 11

<sup>1.</sup> Terms for dengue with progression to severe 2. Terms for predictors disease 1. [exp Severe Dengue/] 11. [exp Risk Factors/] 12. risk factor\*.mp. severe dengue.mp. 2. dengue shock syndrome\*.mp. 13. [exp RISK/] 3. 4. dengue h?emorrhagic fever.mp 14. risk\*.mp. 5. dengue with warning sign\*.mp. 15. [exp PROGNOSIS/] 6. dengue severity.mp. 16. prognosis.mp. 17. [exp BIOMARKERS/] dengue death.mp. 7. 8. dengue death.mp. 18. biomarker\*.mp. dengue shock.mp. 19. marker\*.mp. 9. 10. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 20. ((risk\* or predictive or prognostic or associated) adj (factor\* or parameter\* or characteristic\* or variable\*)).mp. [mp=title, abstract, full text, caption text] 21. predictor\*.mp. 22. prediction.mp. 23. 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 10 AND 23

#### Reviewer name: Date: Author name/Study ID: Year: Title Journal: Study designs Include Original papers Research in human Exclude Descriptive studies (case reports, case studies), Seroepidemiological studies, ecological or mathematical modelling studies Include Population Symptomatic infected individuals in the febrile phase AND Laboratory confirmed dengue diagnosis according to WHO Dengue Guideline in 1997 and 2009\* Exclude Individuals who had developed clinical manifestation of severe dengue (severe plasma leakage, hemodynamic instability and organ impairment) Exposure(s) Include Demographic features, clinical manifestations (signs and symptoms), laboratory parameters, or imaging techniques AND Parameters collected during the febrile phase Exclude Genetic factors or gene expression Outcome(s) Include Association between predictors and risk of development severe clinical manifestations of dengue infection according to WHO guideline (dengue haemorrhagic fever grade I-IV, dengue shock syndrome, and severe dengue) compared with dengue fever

#### 13 Supplement table 2: Template used to assess the eligibility criteria.

| Overall: | □ Include<br>□ Exclude |
|----------|------------------------|
|          |                        |

## 15 Supplement Table 3: Template used for extracting information from the studies included in the systematic

## 16 review.

| Paper ID                                                                                   |
|--------------------------------------------------------------------------------------------|
| Title                                                                                      |
| Reviews                                                                                    |
| First author's surname                                                                     |
| Year of publication                                                                        |
| Study design                                                                               |
| Data collection                                                                            |
| Year of patient recruitment (Month/Year - Month/year)                                      |
| Country where patients were recruited                                                      |
| Hospital/centre names where patient were recruited                                         |
| Population inclusion and exclusion criteria                                                |
| Dengue classification<br>1: WHO 1997 (DS, DHF, and DSS)<br>2: WHO 2009 (DWS-, DWS+,and SD) |
|                                                                                            |
| When were samples or information collected                                                 |
| Reference group (e.g. a DF group)                                                          |
| Comparative group (i.e. DHF, DSS, DHF/DSS, DWS+/SD, or SD)                                 |
| Continuous factors_1 name (unit)                                                           |
| Description (if applicability)                                                             |
| How were samples or information measured (if applicable)                                   |
| Sample size of a reference groups                                                          |
| Sample size of a comparative group                                                         |
| Ref: Mean, Median, Mean difference                                                         |
| Ref: SD, Upper 95% CI, Lower 95% CI, IQR, Upper IQR, Lower IQR                             |
| Ref: Odds ratio, Relative risk, Adjusted odds ration, Adjusted relative risk               |
| Ref: 95% CI of OR                                                                          |
| Comp: Mean, Median, Mean difference                                                        |
| Comp: SD, Upper 95% CI, Lower 95% CI, IQR, Upper IQR, Lower IQR                            |
| P-value                                                                                    |
| Statistic test                                                                             |
| Comp: Odds ratio, Relative risk, Adjusted odds ratio, Adjusted relative risk               |
| Comp: 95% CI of OR                                                                         |
| P-value                                                                                    |
| Statistic test                                                                             |
| Adjusted variables                                                                         |
| Categorical factors_1 name (unit):                                                         |
| Description (if necessary)                                                                 |
| How were samples or information measured (if necessary)                                    |
| Sample size of a reference groups                                                          |
| Sample size of a comparative group                                                         |
| L                                                                                          |

| Level 1: The number of non-events (in reference group)                       |
|------------------------------------------------------------------------------|
| Level 1: The number of events (in comparison group)                          |
| Level 2: The number of non-events (in reference group)                       |
| Level 2: The number of events (in comparison group)                          |
| Level 3: The number of non-events (in reference group)                       |
| Level 3: The number of events (in comparison group)                          |
| P-value                                                                      |
| Statistic test                                                               |
| Comp: Odds ratio, Relative risk, Adjusted odds ratio, Adjusted relative risk |
| Comp: Upper 95% CI                                                           |
| Comp: Lower 95% CI                                                           |
| Comp: Odds ratio, Relative risk, Adjusted odds ratio, Adjusted relative risk |
| Comp: Upper 95% CI                                                           |
| Comp: Lower 95% CI                                                           |
| P-value                                                                      |
| Statistic test                                                               |
|                                                                              |

17

### 18 Supplement Table 5. Definitions of progression to severe disease taken from the included studies in this

## 19 systematic review and meta-analysis

| Definition A (based on DHF in the 1997 WHO<br>Classification)       Thrombocytopenia         - A platelet count less than 100,000<br>cells/micro litre         and         Plasma leakage         - Haematocrit rising 20% from baseline<br>haematocrit, haematocrit levels measured<br>during the first 96 hours of illness, average<br>haematocrit levels based on population data         OR         - Fluid accumulation by chest X-ray,<br>ultrasonography, or physical examinations<br>(depending on health facility and<br>completeness of medical records)         and | Terminology | Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <ul> <li>A platelet count less than 100,000<br/>cells/micro litre</li> <li>and</li> <li>Plasma leakage</li> <li>Haematocrit rising 20% from baseline<br/>haematocrit, haematocrit levels measured<br/>during the first 96 hours of illness, average<br/>haematocrit levels based on population data</li> <li>OR</li> <li>Fluid accumulation by chest X-ray,<br/>ultrasonography, or physical examinations<br/>(depending on health facility and<br/>completeness of medical records)</li> </ul> |

|                                                            | Haemorrhagic tendencies                                                                                                                                             |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                            | <ul> <li>Presence of spontaneous bleeding</li> <li>OR</li> </ul>                                                                                                    |  |  |  |  |
|                                                            | - Mucosal bleeding including positive tourniquet test                                                                                                               |  |  |  |  |
| Definition B (based on DSS in the 1997 WHO Classification) | Shock                                                                                                                                                               |  |  |  |  |
|                                                            | - Narrow pulse pressure less than 20 mmHg                                                                                                                           |  |  |  |  |
|                                                            | OR                                                                                                                                                                  |  |  |  |  |
|                                                            | <ul> <li>Systolic blood pressure less than 90 mmHg<br/>(or hypotension in accordance with the sex<br/>and age specific reference of population<br/>data)</li> </ul> |  |  |  |  |
|                                                            | OR                                                                                                                                                                  |  |  |  |  |
|                                                            | <ul> <li>Poor tissue perfusion such as clammy skin,<br/>urine output less than 0.5 ml/kg/hr</li> </ul>                                                              |  |  |  |  |
| Definition C (based on SD in the 2009 WHO Classification)  | Severe plasma leakage                                                                                                                                               |  |  |  |  |
|                                                            | - Plasma leakage resulting in shock, defined as                                                                                                                     |  |  |  |  |
|                                                            | - Narrow pulse pressure less than 20 mmHg                                                                                                                           |  |  |  |  |
|                                                            | OR                                                                                                                                                                  |  |  |  |  |
|                                                            | - Systolic blood pressure less than 90 mmHg (or hypotension in accordance with the sex and age specific reference of population data)                               |  |  |  |  |
|                                                            | OR                                                                                                                                                                  |  |  |  |  |
|                                                            | <ul> <li>Poor tissue perfusion such as clammy skin,<br/>urine output less than 0.5 ml/kg/hr</li> </ul>                                                              |  |  |  |  |
|                                                            | - Plasma leakage resulting in respiratory distress                                                                                                                  |  |  |  |  |
|                                                            | - Evidence of pleural effusion or ascites                                                                                                                           |  |  |  |  |
|                                                            | AND                                                                                                                                                                 |  |  |  |  |

| <ul> <li>Clinical indicators of respiratory distress<br/>such as tachypnoea or low oxygen<br/>saturations.</li> </ul>                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| OR                                                                                                                                                     |
| Severe clinical bleeding                                                                                                                               |
| <ul> <li>Bleeding in vital organs</li> <li>Spontaneous bleeding from a mucosal area with indication for blood transfusion</li> <li>OR</li> </ul>       |
| Severe organ involvement                                                                                                                               |
| <ul> <li>Aspartate aminotransferase (AST) level &gt;1,000 units/litre,</li> <li>Alanine aminotransferase (ALT) level &gt;1,000 units/litre,</li> </ul> |
| - Serum creatinine level equal or more than 3 times above baseline                                                                                     |
| - Myocarditis                                                                                                                                          |
| - Encephalitis                                                                                                                                         |

| Number | First author's name<br>(Publication year) | Countries                                                                           | Study design                           | Population age<br>groups | Classification                                           | Included<br>in meta-<br>analysis |
|--------|-------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|--------------------------|----------------------------------------------------------|----------------------------------|
| 1      | Butthep et al.(2012) <sup>1</sup>         | Thailand                                                                            | prospective cohort                     | N/A                      | 1997 WHO Classification                                  | No                               |
| 2      | Hernandez et al. $(2014)^2$               | Mexico                                                                              | case-control                           | Adults                   | 1997 WHO Classification                                  | Yes                              |
| 3      | Butthep et al. $(2006)^3$                 | Thailand                                                                            | prospective cohort                     | Children                 | 1997 WHO Classification                                  | No                               |
| 4      | Conroy et al.(2015) <sup>4</sup>          | Columbia                                                                            | nested case control or case-<br>cohort | Mixed population         | 1997 WHO Classification                                  | Yes                              |
| 5      | Wang et al.(2003) <sup>5</sup>            | Taiwan                                                                              | nested case control or case-<br>cohort | DENV-3 infection         | 1997 WHO Classification                                  | Yes                              |
| 6      | Voraphani et al.(2010) <sup>6</sup>       | Thailand                                                                            | prospective cohort                     | Children                 | 1997 WHO Classification                                  | Yes                              |
| 7      | Alexander et al.(2011) <sup>7</sup>       | Thailand, Philippines,<br>Vietnam, Malaysia,<br>Nicaragua, Venezuela, and<br>Brazil | prospective cohort                     | Mixed population         | Intervention criteria                                    | Yes                              |
| 8      | Yung et al.(2015) <sup>8</sup>            | Singapore                                                                           | prospective cohort                     | Adults                   | Both 1997 and 2009 WHO<br>Classifications                | Yes                              |
| 9      | Bongsebandhu et al.(2008) <sup>9</sup>    | Thailand                                                                            | prospective cohort                     | Children                 | 1997 WHO Classification                                  | Yes                              |
| 10     | Yong et al.(2017) <sup>10</sup>           | Malaysia                                                                            | nested case control or case-<br>cohort | Adults                   | 2009 WHO Classification                                  | Yes                              |
| 11     | Vicente et al.(2017) <sup>11</sup>        | Brazil                                                                              | nested case control or case-<br>cohort | Mixed population         | The classification of<br>Brazilian Ministry of<br>Health | Yes                              |
| 12     | Vejchapipat et al.(2006) <sup>12</sup>    | Thailand                                                                            | prospective cohort                     | N/A                      | 1997 WHO Classification                                  | Yes                              |
| 13     | Vasanwala et al.(2014) <sup>13</sup>      | Singapore                                                                           | prospective cohort                     | Adults                   | 1997 WHO Classification                                  | Yes                              |
| 14     | Teixeira et al.(2015) <sup>14</sup>       | Bazil                                                                               | case-control                           | Mixed population         | 1997 WHO Classification                                  | Yes                              |
| 15     | Tricou et al.(2011) <sup>15</sup>         | Vietnam                                                                             | retrospective cohort                   | Adults                   | 1997 WHO Classification                                  | Yes                              |
| 16     | Trairatvorakul et al.(2005) <sup>16</sup> | Thailand                                                                            | case-control                           | Children                 | 1997 WHO Classification                                  | Yes                              |
| 17     | Rocha et al.(2017) <sup>17</sup>          | Brazil                                                                              | prospective cohort                     | Mixed population         | 2009 WHO Classification                                  | Yes                              |
| 18     | Tang et al.(2017) <sup>18</sup>           | Singapore                                                                           | nested case control or case-<br>cohort | Adults                   | 1997 WHO Classification                                  | Yes                              |
| 19     | Sreenivasan et al.(2018) <sup>19</sup>    | India                                                                               | prospective cohort                     | Children                 | 2009 WHO Classification                                  | Yes                              |

#### 22 Supplement Table 6: Publications included in the systematic review and meta-analysis

| 20 | Sosothikul et al.(2007) <sup>20</sup>        | Thailand    | prospective cohort                     | Children                                                                                            | 1997 WHO Classification                   | Yes |
|----|----------------------------------------------|-------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|-----|
| 21 | Sirikutt et al.(2014) <sup>21</sup>          | Thailand    | retrospective cohort                   | Children                                                                                            | 1997 WHO Classification                   | Yes |
| 22 | 2 Restrepo et al.(2008) <sup>22</sup>        | Columbia    | case-control                           | Infants                                                                                             | N/A                                       | Yes |
| 23 | Zain et al.(2016) <sup>23</sup>              | Indonesia   | case-control                           | Adults                                                                                              | 2009 WHO Classification                   | No  |
| 24 | Oliveira et al.(2017) <sup>24</sup>          | Brazil      | nested case control or case-<br>cohort | N/A                                                                                                 | 1997 WHO Classification                   | Yes |
| 25 | <sup>5</sup> Pang et al.(2015) <sup>25</sup> | Singapore   | case-control                           | Matching with age, gender,<br>laboratory, year of<br>diagnosis, type of care at<br>provisional site | Both 1997 and 2009 WHO<br>Classifications | Yes |
| 26 | 5 Sani et al.(2017) <sup>26</sup>            | Malaysia    | retrospective cohort                   | Adults                                                                                              | 2009 WHO Classification                   | Yes |
| 27 | Pandey et al. $(2015)^{27}$                  | India       | case-control                           | Mixed population                                                                                    | 2009 WHO Classification                   | Yes |
| 28 | Tuan et al. $(2017)^{28}$                    | Vietnam     | prospective cohort                     | Children                                                                                            | 2009 WHO Classification                   | Yes |
| 29 | Maron et al.(2010) <sup>29</sup>             | El Savador  | case-control                           | Children                                                                                            | 1997 WHO Classification                   | Yes |
| 30 | Mohammed et al. $(2010)^{30}$                | Puerto Rico | case-control                           | Mixed population                                                                                    | 1997 WHO Classification                   | Yes |
| 31 | Mallhi et al.(2015) <sup>31</sup>            | Malaysia    | retrospective cohort                   | Adults                                                                                              | 1997 WHO Classification                   | Yes |
| 32 | Lee et al. $(2015)^{32}$                     | Taiwan      | retrospective cohort                   | Adults                                                                                              | 2009 WHO Classification                   | Yes |
| 33 | Lam et al. $(2017)^{33}$                     | Vietnam     | prospective cohort                     | Children                                                                                            | 1997 WHO Classification                   | Yes |
| 34 | Mohamed et al. $(2013)^{34}$                 | Yemen       | retrospective cohort                   | Mixed population                                                                                    | 1997 WHO Classification                   | Yes |
| 35 | 5 Oishi et al.(2006) <sup>35</sup>           | Philipines  | prospective cohort                     | Children                                                                                            | 1997 WHO Classification                   | Yes |
| 36 | Zhang et al.(2017) <sup>36</sup>             | China       | retrospective cohort                   | Adults                                                                                              | 2009 WHO Classification                   | No  |
| 37 | Wong et al.(2014) <sup>37</sup>              | Singapore   | prospective cohort                     | Adults                                                                                              | 1997 WHO Classification                   | Yes |
| 38 | Wichmann et al.(2004) <sup>38</sup>          | Thailand    | retrospective cohort                   | Mixed population                                                                                    | 1997 WHO Classification                   | Yes |
| 39 | Sharmin et al.(2013) <sup>39</sup>           | Bangladesh  | nested case control or case-<br>cohort | Mixed population                                                                                    | 1997 WHO Classification                   | No  |
| 40 | Kurane et al.(1991) <sup>40</sup>            | Thailand    | case-control                           | Children                                                                                            | 1997 WHO Classification                   | Yes |
| 41 | Kurane et al.(1993) <sup>41</sup>            | Thailand    | case-control                           | Children                                                                                            | 1997 WHO Classification                   | Yes |
| 42 | 2 Kuo et al.(2017) <sup>42</sup>             | Taiwan      | retrospective cohort                   | Adults                                                                                              | 2009 WHO Classification                   | Yes |
| 43 | Kumar et al. $(2012)^{43}$                   | Singapore   | nested case control or case-<br>cohort | Adults                                                                                              | 1997 WHO Classification                   | Yes |
|    |                                              |             |                                        |                                                                                                     |                                           |     |

| 44 | Kulasinghe et al.(2016) <sup>44</sup>   | Sri Lanka             | prospective cohort                     | Children                   | 1997 WHO Classification                   | Yes |
|----|-----------------------------------------|-----------------------|----------------------------------------|----------------------------|-------------------------------------------|-----|
| 45 | Koraka et al.(2004) <sup>45</sup>       | Indonesia             | nested case control or case-<br>cohort | Children                   | 1997 WHO Classification                   | Yes |
| 46 | Malavige et al.(2013) <sup>46</sup>     | Sri Lanka             | prospective cohort                     | Adults                     | 2009 WHO Classification                   | Yes |
| 47 | Romero et al.(2013) <sup>47</sup>       | Brazil                | cross-sectional study                  | Female aged 15 to 49 years | 1997 WHO Classification                   | Yes |
| 48 | Libraty et al.(2002) <sup>48</sup>      | Thailand              | nested case control or case-<br>cohort | DENV-2 infection           | 1997 WHO Classification                   | Yes |
| 49 | Liao et al.(2015) <sup>49</sup>         | China                 | nested case control or case-<br>cohort | Adults                     | 2009 WHO Classification                   | Yes |
| 50 | Lee et al.(2008) <sup>50</sup>          | Singapore             | retrospective cohort                   | Adults                     | 1997 WHO Classification                   | Yes |
| 51 | Lee et al.(2006) <sup>51</sup>          | Taiwan                | retrospective cohort                   | Mixed population           | 1997 WHO Classification                   | Yes |
| 52 | Kalayanarooj et al.(1997) <sup>52</sup> | Thailand              | prospective cohort                     | Children                   | 1997 WHO Classification                   | No  |
| 53 | Kalayanarooj et al.(2005) <sup>53</sup> | Thailand              | cross-sectional study                  | Children                   | 1997 WHO Classification                   | No  |
| 54 | Hoang et al.(2010) <sup>54</sup>        | Vietnam               | nested case control or case-<br>cohort | Mixed population           | 1997 WHO Classification                   | No  |
| 55 | Harris et al.(2000) <sup>55</sup>       | Nicaragua             | cross-sectional study                  | Mixed population           | 1997 WHO Classification                   | Yes |
| 56 | Hammond et al.(2005) <sup>56</sup>      | Nicaragua             | prospective cohort                     | Mixed population           | 1997 WHO Classification                   | No  |
| 57 | Libraty et al.(2002) <sup>57</sup>      | Thailand              | nested case control or case-<br>cohort | DENV-3 infection           | 1997 WHO Classification                   | Yes |
| 58 | Ha et al.(2011) <sup>58</sup>           | Vietnam               | case-control                           | Children                   | 1997 WHO Classification                   | No  |
| 59 | Green et al.(1999) <sup>59</sup>        | Thailand              | case-control                           | Children                   | 1997 WHO Classification                   | No  |
| 60 | Fried et al.(2010) <sup>60</sup>        | Thailand              | prospective cohort                     | Children                   | 1997 WHO Classification                   | Yes |
| 61 | Fragnound et al.(2015) <sup>61</sup>    | Cambodia and Columbia | nested case control or case-<br>cohort | Mixed population           | 1997 WHO Classification                   | Yes |
| 62 | Flamand et al.(2017) <sup>62</sup>      | French Guiana         | cross-sectional study                  | Mixed population           | 2009 WHO Classification                   | Yes |
| 63 | Chen et al.(2015) <sup>63</sup>         | Taiwan                | retrospective cohort                   | Mixed population           | 2009 WHO Classification                   | Yes |
| 64 | Colbert et al.(2007) <sup>64</sup>      | Nicaragua             | prospective cohort                     | Children                   | 1997 WHO Classification                   | Yes |
| 65 | Cui et al.(2016) <sup>65</sup>          | Singapore             | nested case control or case-<br>cohort | Adults                     | 1997 WHO Classification                   | Yes |
| 66 | Bur et al.(2016) <sup>66</sup>          | Indonesia             | prospective cohort                     | Adults                     | Both 1997 and 2009 WHO<br>Classifications | Yes |
| 67 | Chaiyaratana et al.(2008) <sup>67</sup> | Thailand              | prospective cohort                     | Children                   | 1997 WHO Classification                   | No  |

| 68 | Andries et al.(2016) <sup>68</sup>       | Cambodia         | nested case control or case-<br>cohort | Children         | 2009 WHO Classification                   | Yes |
|----|------------------------------------------|------------------|----------------------------------------|------------------|-------------------------------------------|-----|
| 69 | Murgue et al.(2001) <sup>69</sup>        | French Polynesia | nested case control or case-<br>cohort | Children         | 1997 WHO Classification                   | Yes |
| 70 | Biswas et al.(2015) <sup>70</sup>        | Nicaragua        | prospective cohort                     | Children         | Both 1997 and 2009 WHO<br>Classifications | Yes |
| 71 | Carier et al.(2006) <sup>71</sup>        | Venezuela        | prospective cohort                     | N/A              | 1997 WHO Classification                   | No  |
| 72 | Lee et al.(2012) <sup>72</sup>           | Singapore        | retrospective cohort                   | Mixed population | Both 1997 and 2009 WHO<br>Classifications | No  |
| 73 | Alagarasu et al.(2012) <sup>73</sup>     | India            | nested case control or case-<br>cohort | Mixed population | Both 1997 and 2009 WHO<br>Classifications | Yes |
| 74 | Rathakrishnan et al.(2014) <sup>74</sup> | Malasia          | prospective cohort                     | Adults           | 2009 WHO Classification                   | Yes |
| 75 | Aung et al.(2013) <sup>75</sup>          | Thailand         | retrospective cohort                   | Adults           | 2009 WHO Classification                   | Yes |
| 76 | Bandyopadhyay et al.(2016) <sup>76</sup> | India            | retrospective cohort                   | Adults           | 1997 WHO Classification                   | No  |
| 77 | Bozza et al.(2008) <sup>77</sup>         | Brazil           | prospective cohort                     | Adults           | Both 1997 and 2009 WHO<br>Classifications | Yes |
| 78 | Brasier et al.(2012) <sup>78</sup>       | Venezuela        | prospective cohort                     | Mixed population | 1997 WHO Classification                   | Yes |
| 79 | Carrasco et al.(2014) <sup>79</sup>      | Singapore        | retrospective cohort                   | Mixed population | 2009 WHO Classification                   | No  |
| 80 | Endy et al.(2004) <sup>80</sup>          | Thailand         | prospective cohort                     | Children         | 1997 WHO Classification                   | Yes |
| 81 | Fadilah et al.(1999) <sup>81</sup>       | Malaysia         | prospective cohort                     | Adults           | 1997 WHO Classification                   | Yes |
| 82 | Flores-Mendoza et al.(2017)82            | Mexico           | prospective cohort                     | Adults           | 1997 WHO Classification                   | Yes |
| 83 | Fox et al.(2011) <sup>83</sup>           | Vietnam          | prospective cohort                     | Mixed population | 1997 WHO Classification                   | Yes |
| 84 | Furuta et al.(2012) <sup>84</sup>        | Vietnam          | case-control                           | Children         | 1997 WHO Classification                   | Yes |
| 85 | Gopal et al.(2017) <sup>85</sup>         | India            | case-control                           | Adults           | 2009 WHO Classification                   | Yes |
| 86 | Green et al.(1999) <sup>86</sup>         | Thailand         | nested case control or case-<br>cohort | Children         | 1997 WHO Classification                   | Yes |
| 87 | Guerrero et al.(2013) <sup>87</sup>      | Colombia         | case-control                           | Adults           | 2009 WHO Classification                   | Yes |
| 88 | Hoffmeister et al.(2014) <sup>88</sup>   | Germany          | retrospective cohort                   | Adults           | 2009 WHO Classification                   | Yes |
| 89 | Juffrie et al.(2001) <sup>89</sup>       | Indonesia        | case-control                           | Children         | 1997 WHO Classification                   | No  |
| 90 | Khan et al.(2010) <sup>90</sup>          | Pakistan         | cross-sectional study                  | Mixed population | 1997 WHO Classification                   | No  |
| 91 | Khan et al.(2007) <sup>91</sup>          | Pakistan         | cross-sectional study                  | Mixed population | 1997 WHO Classification                   | Yes |

| 92  | Khan et al.(2013) <sup>92</sup>            | Pakistan  | prospective cohort                     | Mixed population | 1997 WHO Classification                   | Yes |
|-----|--------------------------------------------|-----------|----------------------------------------|------------------|-------------------------------------------|-----|
| 93  | Kuo et al.(2008) <sup>93</sup>             | Taiwan    | retrospective cohort                   | Adults           | 1997 WHO Classification                   | Yes |
| 94  | Koraka et al.(2001) <sup>94</sup>          | Indonesia | nested case control or case-<br>cohort | Children         | 1997 WHO Classification                   | Yes |
| 95  | Lee et al.(2009) <sup>95</sup>             | Singapore | retrospective cohort                   | Adults           | 1997 WHO Classification                   | Yes |
| 96  | Lye et al.(2009) <sup>96</sup>             | Singapore | retrospective cohort                   | Adults           | 1997 WHO Classification                   | Yes |
| 97  | Mairuhu et al.(2005) <sup>97</sup>         | Indonesia | prospective cohort                     | Children         | 1997 WHO Classification                   | Yes |
| 98  | Giraldo et al.(2011) <sup>98</sup>         | Brazil    | retrospective cohort                   | Children         | Both 1997 and 2009 WHO<br>Classifications | Yes |
| 99  | Singla et al.(2016) <sup>99</sup>          | India     | prospective cohort                     | Children         | 2009 WHO Classification                   | Yes |
| 100 | Vuong et al.(2016) <sup>100</sup>          | Vietnam   | prospective cohort                     | Mixed population | 2009 WHO Classification                   | Yes |
| 101 | Pereira et al.(2018) <sup>101</sup>        | India     | cross-sectional study                  | Adults           | 2009 WHO Classification                   | Yes |
| 102 | Phakhounthong et al.(2018) <sup>102</sup>  | Cambodia  | retrospective cohort                   | Children         | 2009 WHO Classification                   | Yes |
| 103 | Mondragon et al.(2017) <sup>103</sup>      | Mexico    | nested case control or case-<br>cohort | Adults           | 1997 WHO Classification                   | Yes |
| 104 | Pothapregada et al.(2015) <sup>104</sup>   | India     | cross-sectional study                  | Children         | 1997 WHO Classification                   | Yes |
| 105 | Potts et al.(2010) <sup>105</sup>          | Thailand  | retrospective cohort                   | Children         | 1997 WHO Classification                   | Yes |
| 106 | Raza et al.(2014) <sup>106</sup>           | Pakistan  | cross-sectional study                  | Mixed population | 1997 WHO Classification                   | Yes |
| 107 | Sirivichayakul et al.(2012) <sup>107</sup> | Thailand  | prospective cohort                     | Children         | 1997 WHO Classification                   | Yes |
| 108 | Sharmar et al.(2015) <sup>108</sup>        | India     | prospective cohort                     | Adults           | 1997 WHO Classification                   | Yes |
| 109 | Thein et al.(2015) <sup>109</sup>          | Singapore | prospective cohort                     | Adults           | 1997 WHO Classification                   | Yes |
| 110 | Tissara et al.(2017) <sup>110</sup>        | Sir Lanka | nested case control or case-<br>cohort | Children         | 1997 WHO Classification                   | Yes |
| 111 | Thanachartwet et al.(2016) <sup>111</sup>  | Thailand  | prospective cohort                     | Adults           | 2009 WHO Classification                   | Yes |
| 112 | Thanacharwet et al.(2015) <sup>112</sup>   | Thailand  | prospective cohort                     | Adults           | 2009 WHO Classification                   | Yes |
| 113 | Thanachartwet et al.(2016) <sup>113</sup>  | Thailand  | prospective cohort                     | Adults           | 2009 WHO Classification                   | Yes |
| 114 | Thanachratwet et al.(2016) <sup>114</sup>  | Thailand  | prospective cohort                     | Adults           | 2009 WHO Classification                   | Yes |
| 115 | Vasanwala et al.(2011) <sup>115</sup>      | Singapore | prospective cohort                     | Mixed population | 1997 WHO Classification                   | Yes |
| 116 | Villar-Centrno et al.(2008) <sup>116</sup> | Colombia  | prospective cohort                     | Mixed population | 1997 WHO Classification                   | Yes |
|     |                                            |           |                                        |                  |                                           |     |

| 117 | Garcia-Rivera et al.(2003) <sup>117</sup>                  | Puerto Rico   | cross-sectional study | Mixed population | 1997 WHO Classification | Yes |
|-----|------------------------------------------------------------|---------------|-----------------------|------------------|-------------------------|-----|
| 118 | Prasad, D.; Bhriguvanshi, A. et al. (2020) <sup>118</sup>  | India         | cohort                | children         | 2009 WHO Classification | Yes |
| 119 | Chandrashekhar et al. (2019) <sup>119</sup>                | India         | cohort                | children         | 2009 WHO Classification | No  |
| 120 | Elenga et al. (2019) <sup>120</sup>                        | French Guiana | cohort                | children         | 2009 WHO Classification | No  |
| 121 | Goncalves, B. S. et al. (2019) <sup>121</sup>              | Brazil        | cohort                | mixed population | 2009 WHO Classification | Yes |
| 122 | Goncalves, B. S. et al. (2) et al. (2019) <sup>122</sup>   | Brazil        | cohort                | mixed population | 2009 WHO Classification | Yes |
| 123 | Phuong, N. T. N. et al. (2019) <sup>123</sup>              | Vietnam       | cohort                | children         | 2009 WHO Classification | Yes |
| 124 | Ta, T. V. at al. et al. (2019) <sup>124</sup>              | Vietnam       | cohort                | children         | 1997 WHO Classification | Yes |
| 125 | May, W. L. et al. et al. (2019) 125                        | Myanma        | cross-sectional study | children         | 2009 WHO Classification | Yes |
| 126 | Nguyen Phung <sup>126</sup> , N. T. et al. (2019)          | Vietnam       | cross-sectional study | children         | 2009 WHO Classification | No  |
| 127 | Patra, Goutam et al. (2019) <sup>127</sup>                 | India         | cohort                | mixed population | 2009 WHO Classification | Yes |
| 128 | Wang, W. H. et al. (2019) <sup>128</sup>                   | Taiwan        | cohort                | mixed population | 1997 WHO Classification | Yes |
| 129 | Opasawatchai, A et al. (2019) <sup>129</sup>               | Thailand      | cohort                | others           | 1997 WHO Classification | No  |
| 130 | Kularatnam, G. A. M. et al (2019) <sup>130</sup>           | Sri Lanka     | cohort                | children         | 1997 WHO Classification | Yes |
| 131 | Agrawal, V. K. et al. et al. (2018) <sup>131</sup>         | India         | cohort                | mixed population | 2009 WHO Classification | Yes |
| 132 | Athira, P. P. et al. (2018) 132                            | India         | cross-sectional study | children         | 2009 WHO Classification | No  |
| 133 | Boillat-Blanco, N. et al. (2018) <sup>133</sup>            | Tanzania      | cohort                | others           | 2009 WHO Classification | Yes |
| 134 | Lee, I. K. et al. (2018) <sup>134</sup>                    | Taiwan        | cross-sectional study | others           | 2009 WHO Classification | Yes |
| 135 | Low, G. K. K. et al. (2018) <sup>135</sup>                 | Malaysia      | cohort                | others           | 2009 WHO Classification | Yes |
| 136 | Saniathi, N. K. E et al. (2018) <sup>136</sup>             | Indonesia     | case-control          | children         | 1997 WHO Classification | Yes |
| 137 | Srivastava, G.; Chhavi, N.; Goel, A. (2018) <sup>137</sup> | India         | cohort                | children         | 2009 WHO Classification | Yes |
| 138 | Temprasertrudee, S. et al. (2018) <sup>138</sup>           | Thailand      | cohort                | others           | 2009 WHO Classification | Yes |
| 139 | Villamor, E. et al. (2018) <sup>139</sup>                  | Colombia      | case-control          | mixed population | 1997 WHO Classification | Yes |
| 140 | Wakimoto, M. D. et al. (2018) <sup>140</sup>               | Brazil        | case-control          | children         | 2009 WHO Classification | Yes |
| 141 | Masood, Kiran Iqbal et al. (2018) <sup>141</sup>           | Pakistan      | case-control          | mixed population | 2009 WHO Classification | Yes |
| 142 | Wijeratne, D. T. et al. (2018) 142                         | Colombia      | cohort                | others           | 1997 WHO Classification | Yes |
|     |                                                            |               |                       |                  |                         |     |

| 143 | Zhang, H. et al. (2018) 143                                 | China       | cohort                | others           | 2009 WHO Classification | Yes |
|-----|-------------------------------------------------------------|-------------|-----------------------|------------------|-------------------------|-----|
| 144 | Ralapanawa, U. et al. (2018) <sup>144</sup>                 | Sri Lanka   | cross-sectional study | others           | 1997 WHO Classification | Yes |
| 145 | Mapalagamage, M. et al. (2018) <sup>145</sup>               | Sri Lanka   | cohort                | others           | 1997 WHO Classification | Yes |
| 146 | Hegazi, M. A. et al. (2020) 146                             | Saudiarabia | cohort                | mixed population | 2009 WHO Classification | Yes |
| 147 | Mapalagamage, M. et al. (2019) <sup>147</sup>               | Sri Lanka   | case-control          | mixed population | 2009 WHO Classification | No  |
| 148 | Patra, G.; Saha, B.; Mukhopadhyay, S. (2019) <sup>148</sup> | India       | cohort                | mixed population | 2009 WHO Classification | Yes |
| 149 | Sani, H. et al et al. (2019) <sup>149</sup>                 | Malaysia    | cross-sectional study | others           | 2009 WHO Classification | Yes |
| 150 | Mahmud, Muhammad Rizwan et al. (2018) <sup>150</sup>        | Pakistan    | cohort                | mixed population | 1997 WHO Classification | Yes |

23

#### 24 References

Butthep P, Chunhakan S, Yoksan S, Tangnararatchakit K, Chuansumrit A. Alteration of cytokines and chemokines during febrile episodes
 associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever. Pediatric Infectious Disease Journal.
 2012;31(12):e232-e8.

del Moral-Hernandez O, Martinez-Hernandez NE, Mosso-Pani MA, Hernandez-Sotelo D, Illades-Aguiar B, Flores-Alfaro E, et al.
 Association DENV1 and DENV2 infection with high serum levels of soluble thrombomodulin and VEGF in patients with dengue fever and dengue
 hemorrhagic fever. International Journal of Clinical and Experimental Medicine. 2014;7(2):370-8.

3. Butthep P, Chunhakan S, Tangnararatchakit K, Yoksan S, Pattanapanyasat K, Chuansumrit A. Elevated soluble thrombomodulin in the 32 febrile stage related to patients at risk for dengue shock syndrome. Pediatric Infectious Disease Journal. 2006;25(10):894-7.

Conroy AL, Gelvez M, Hawkes M, Rajwans N, Tran V, Liles WC, et al. Host biomarkers are associated with progression to dengue
 haemorrhagic fever: A nested case-control study. International Journal of Infectious Diseases. 2015;40:45-53.

Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, Li CM, et al. High levels of plasma dengue viral load during defervescence in patients with
 dengue hemorrhagic fever: Implications for pathogenesis. Virology. 2003;305(2):330-8.

Voraphani N, Theamboonlers A, Khongphatthanayothin A, Srisai C, Poovorawan Y. Increased level of hepatocyte growth factor in children
 with dengue virus infection. Annals of Tropical Paediatrics. 2010;30(3):213-8.

Alexander N, Balmaseda A, Coelho ICB, Dimaano E, Hien TT, Hung NT, et al. Multicentre prospective study on dengue classification in
 four South-east Asian and three Latin American countries. Tropical Medicine and International Health. 2011;16(8):936-48.

Yung CF, Lee KS, Thein TL, Tan LK, Gan VC, Wong JG, et al. Dengue serotype-specific differences in clinical manifestation, hematological
 parameters, plasma viral concentration and risk of severe disease in adults. American Journal of Tropical Medicine and Hygiene. 2013;1):35.

43 9. Bongsebandhu-Phubhakdi C, Hemungkorn M, Thisyakorn U, Thisyakorn C. Risk factors influencing severity in pediatric Dengue infection.
44 Asian Biomedicine. 2008;2(5):409-13.

Yong YK, Tan HY, Jen SH, Shankar EM, Natkunam SK, Sathar J, et al. Aberrant monocyte responses predict and characterize dengue
 virus infection in individuals with severe disease. Journal of Translational Medicine. 2017;15 (1) (no pagination)(121).

Vicente CR, Cerutti Junior C, Froschl G, Romano CM, Cabidelle AS, Herbinger KH. Influence of demographics on clinical outcome of
 dengue: a cross-sectional study of 6703 confirmed cases in Vitoria, Espirito Santo State, Brazil. Epidemiol Infect. 2017;145(1):46-53.

Vejchapipat P, Theamboonlers A, Chongsrisawat V, Poovorawan Y. An evidence of intestinal mucosal injury in dengue infection.
 Southeast Asian Journal of Tropical Medicine and Public Health. 2006;37(1):79-82.

51 13. Vasanwala FF, Thein T, Leo Y, Gan VC, Hao Y, Lee LK, et al. Predictive value of proteinuria in adult dengue severity. PLoS Neglected 52 Tropical Diseases. 2014;8(2).

Teixeira MG, Paixao ES, Costa MCN, Cunha RV, Pamplona L, Dias JP, et al. Arterial Hypertension and Skin Allergy Are Risk Factors for
 Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study. PLoS Neglected Tropical Diseases. 2015;9 (5) (no
 pagination)(e0003812).

Tricou V, Nguyet Nguyen M, Farrar J, Hien Tinh T, Simmons CP. Kinetics of viremia and NS1 antigenemia are shaped by immune status
 and virus serotype in adults with dengue. PLoS Neglected Tropical Diseases. 2011;5(9).

Trairatvorakul P, Chongsrisawat V, Ngamvasinont D, Asawarachun D, Nantasook J, Poovorawan Y. Serum nitric oxide in children with
 dengue infection. Asian Pacific Journal of Allergy and Immunology. 2005;23(2-3):115-9.

Rocha BAM, Guilarde AO, Argolo AFLT, Tassara MP, da Silveira LA, Junqueira IC, et al. Dengue-specific serotype related to clinical
 severity during the 2012/2013 epidemic in centre of Brazil. Infectious Diseases of Poverty. 2017;6 (1) (no pagination)(116).

Tang TH, Alonso S, Ng LF, Thein TL, Pang VJ, Leo YS, et al. Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever:
 Association with Plasma Leakage and Disease Severity. Scientific Reports. 2017;7:46191.

Sreenivasan P, S G, K S. Development of a Prognostic Prediction Model to Determine Severe Dengue in Children. Indian Journal of
 Pediatrics. 2018:1-7.

Sosothikul D, Seksarn P, Pongsewalak S, Thisyakorn U, Lusher J. Activation of endothelial cells, coagulation and fibrinolysis in children
 with Dengue virus infection. Thrombosis and Haemostasis. 2007;97(4):627-34.

Sirikutt P, Kalayanarooj S. Serum lactate and lactate dehydrogenase as parameters for the prediction of dengue severity. Journal of the
 Medical Association of Thailand. 2014;97(Supplement 6):S220-S31.

Restrepo BN, Isaza DM, Salazar CL, Ramirez R, Ospina M, Alvarez LG. Serum levels of interleukin-6, tumor necrosis factor-alpha and
 interferon-gamma in infants with and without dengue. Revista Da Sociedade Brasileira de Medicina Tropical. 2008;41(1):6-10.

Nurfadly Z, Suhartono TP, Umar Z, Herman H. Soluble Fas ligand as a potential marker of severity of dengue infection. Malaysian Journal
 of Medical Sciences. 2017;24(2):28-32.

Oliveira RADS, Cordeiro MT, Moura PMMFD, Baptista Filho PNB, Braga-Neto UDM, Marques ETDA, et al. Serum cytokine/chemokine
 profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array. Journal of Clinical Virology. 2017;89:39 45.

Pang JX, Thein TL, Lye DC, Leo YS. Differential Clinical Outcome of Dengue Infection among Patients with and without HIV Infection: A
 Matched Case Control Study. American Journal of Tropical Medicine and Hygiene. 2015;92(6):1156-62.

Md Sani SS, Han WH, Bujang MA, Ding HJ, Ng KL, Amir Shariffuddin MA. Evaluation of creatine kinase and liver enzymes in identification
 of severe dengue. BMC Infectious Diseases. 2017;17 (1) (no pagination)(505).

Pandey N, Jain A, Garg RK, Kumar R, Agrawal OP, Lakshmana Rao PV. Serum levels of IL-8, IFNgamma, IL-10, and TGF beta and their
 gene expression levels in severe and non-severe cases of dengue virus infection. Archives of virology. 2015;160(6):1463-75.

83 28. Nguyen MT, Ho TN, Nguyen VV, Nguyen TH, Ha MT, Ta VT, et al. An Evidence-Based Algorithm for Early Prognosis of Severe Dengue
84 in the Outpatient Setting. Clinical Infectious Diseases. 2017;64(5):656-63.

Maron GM, Clara AW, Diddle JW, Pleites EB, Miller L, MacDonald G, et al. Association between nutritional status and severity of dengue
 infection in children in el salvador. American Journal of Tropical Medicine and Hygiene. 2010;82(2):324-9.

30. Mohammed H, Ramos M, Armstrong J, Munoz-Jordan J, Arnold-Lewis KO, Ayala A, et al. An outbreak of dengue fever in St. Croix (US
Virgin Islands), 2005. PLoS ONE. 2010;32.

Mallhi TH, Khan AH, Adnan AS, Sarriff A, Khan YH, Jummaat F. Clinico-laboratory spectrum of dengue viral infection and risk factors
 associated with dengue hemorrhagic fever: A retrospective study. BMC Infectious Diseases. 2015;15 (1) (no pagination)(399).

91 32. Lee IK, Liu JW, Chen YH, Chen YC, Tsai CY, Huang SY, et al. Development of a simple clinical risk score for early prediction of severe 92 dengue in adult patients. PLoS ONE. 2016;11 (5) (no pagination)(e0154772). 33. Lam PK, Ngoc TV, Thu Thuy TT, Hong Van NT, Nhu Thuy TT, Hoai Tam DT, et al. The value of daily platelet counts for predicting dengue
 shock syndrome: Results from a prospective observational study of 2301 Vietnamese children with dengue. PLoS Neglected Tropical Diseases.
 2017;11 (4) (no pagination)(e0005498).

96 34. Mohamed NA, El-Raoof EA, Ibraheem HA. Respiratory manifestations of dengue fever in Taiz-Yemen. Egyptian Journal of Chest Diseases
 97 and Tuberculosis. 2013;62(2):319-23.

98 35. Oishi K, Mapua CA, Carlos CC, Cinco-Abanes MTDD, Saito M, Inoue S, et al. Dengue and other febrile illnesses among children in the
99 Philippines. Dengue Bulletin. 2006;30:26-34.

100 36. Zhang H, Xie WZ, Xie SX, Ou YY, Zeng TW, Zhou PY. A novel predictor of patients with severe dengue: The aspartate 101 aminotransferase/platelet count ratio index (APRI). Hepatology International. 2017;11 (1 Supplement 1):S548-S9.

37. Wong JG, Gan VC, Ng EL, Leo YS, Lye DC. Self-reported pain intensity using the numeric reporting scale in adult dengue management.
 American Journal of Tropical Medicine and Hygiene. 2013;1):180.

Wichmann O, Hongsiriwon S, Bowonwatanuwong C, Chotivanich K, Sukthana Y, Pukrittayakamee S. Risk factors and clinical features
 associated with severe dengue infection in adults and children during the 2001 epidemic in Chonburi, Thailand. Tropical Medicine and International
 Health. 2004;9(9):1022-9.

39. Sharmin R, Tabassum S, Mamun KZ, Nessa A, Jahan M. Dengue infection in Dhaka City, Bangladesh. Mymensingh medical journal :
 MMJ. 2013;22(4):781-6.

Kurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, Janus J, et al. Activation of T lymphocytes in dengue virus infections: High levels
 of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. Journal of Clinical
 Investigation. 1991;88(5):1473-80.

Kurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, Ennis FA. High levels of interferon alpha in the sera of children with dengue
 virus infection. American Journal of Tropical Medicine and Hygiene. 1993;48(2):222-9.

Kuo HJ, Lee IK, Liu JW. Analyses of clinical and laboratory characteristics of dengue adults at their hospital presentations based on the
 World Health Organization clinical-phase framework: Emphasizing risk of severe dengue in the elderly. Journal of Microbiology, Immunology and
 Infection. 2017.

43. Kumar Y, Liang C, Bo Z, Rajapakse JC, Ooi EE, Tannenbaum SR. Serum Proteome and Cytokine Analysis in a Longitudinal Cohort of Adults with Primary Dengue Infection Reveals Predictive Markers of DHF. PLoS Neglected Tropical Diseases. 2012;6 (11) (no pagination)(e1887).

Kulasinghe S, Ediriweera R, Kumara P. Association of abnormal coagulation tests with dengue virus infection and their significance as
 early predictors of fluid leakage and bleeding. Sri Lanka Journalof Child Health. 2016;45(3):184-8.

45. Koraka P, Murgue B, Deparis X, Van Gorp ECM, Setiati TE, Osterhaus ADME, et al. Elevation of Soluble VCAM-1 Plasma Levels in
 Children with Acute Dengue Virus Infection of Varying Severity. Journal of Medical Virology. 2004;72(3):445-50.

46. Malavige GN, Gomes L, Alles L, Chang T, Salimi M, Fernando S, et al. Serum IL-10 as a marker of severe dengue infection. BMC Infectious
Diseases. 2013;13 (1) (no pagination)(341).

Machado CR, Machado ES, Denis Rohloff R, Azevedo M, Campos DP, de Oliveira RB, et al. Is Pregnancy Associated with Severe
 Dengue? A Review of Data from the Rio de Janeiro Surveillance Information System. PLoS Neglected Tropical Diseases. 2013;7 (5) (no
 pagination)(e2217).

Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, et al. High circulating levels of the dengue virus nonstructural
 protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. Journal of Infectious Diseases.
 2002;186(8):1165-8.

49. Liao B, Tang Y, Hu F, Zhou W, Yao X, Hong W, et al. Serum levels of soluble vascular cell adhesion molecules may correlate with the
 severity of dengue virus-1 infection in adults. Emerging microbes & infections. 2015;4(4):e24.

133 50. Lee VJ, Lye DCB, Sun Y, Fernandez G, Ong A, Leo YS. Predictive value of simple clinical and laboratory variables for dengue hemorrhagic
 134 fever in adults. Journal of Clinical Virology. 2008;42(1):34-9.

135 51. Lee MS, Hwang KP, Chen TC, Lu PL, Chen TP. Clinical characteristics of dengue and dengue hemorrhagic fever in a medical center of
 136 southern Taiwan during the 2002 epidemic. Journal of Microbiology, Immunology and Infection. 2006;39(2):121-9.

Kalayanarooj S, Vaughn DW, Nimmannitya S, Green S, Suntayakorn S, Kunentrasai N, et al. Early clinical and laboratory indicators of
 acute dengue illness. Journal of Infectious Diseases. 1997;176(2):313-21.

139 53. Kalayanarooj S, Nimmannitya S. Is dengue severity related to nutritional status? Southeast Asian Journal of Tropical Medicine and Public
140 Health. 2005;36(2):378-84.

141 54. Hoang LT, Lynn DJ, Henn M, Birren BW, Lennon NJ, Le PT, et al. The early whole-blood transcriptional signature of dengue virus and
142 features associated with progression to dengue shock syndrome in Vietnamese children and young adults. Journal of Virology.
143 2010;84(24):12982-94.

Harris E, Videa E, Perez L, Sandoval E, Tellez Y, Perez MD, et al. Clinical, epidemiologic, and virologic features of dengue in the 1998
 epidemic in Nicaragua. American Journal of Tropical Medicine and Hygiene. 2000;63(1-2):5-11.

146 56. Hammond SN, Balmaseda A, Perez L, Tellez Y, Saborio SI, Mercado JC, et al. Differences in dengue severity in infants, children, and 147 adults in a 3-year hospital-based study in Nicaragua. American Journal of Tropical Medicine and Hygiene. 2005;73(6):1063-70.

148 57. Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, Suntayakorn S, et al. Differing influences of virus burden and immune activation 149 on disease severity in secondary dengue-3 virus infections. Journal of Infectious Diseases. 2002;185(9):1213-21.

150 58. Ha TTN, Huy NT, Murao LA, Lan NTP, Thuy TT, Tuan HM, et al. Elevated levels of cell-free circulating DNA in patients with acute dengue
 151 virus infection. PLoS ONE. 2011;6 (10) (no pagination)(e25969).

152 59. Green S, Pichyangkul S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Nisalak A, et al. Early CD69 expression on peripheral blood
 153 lymphocytes from children with dengue hemorrhagic fever. Journal of Infectious Diseases. 1999;180(5):1429-35.

Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon IK, et al. Serotype-specific differences in the risk of dengue
 hemorrhagic fever: An analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS Neglected Tropical Diseases. 2010;4 (3) (no
 pagination)(e617).

Fragnoud R, Flamand M, Reynier F, Buchy P, Duong V, Pachot A, et al. Differential proteomic analysis of virus-enriched fractions obtained
 from plasma pools of patients with dengue fever or severe dengue. BMC Infectious Diseases. 2015;15 (1) (no pagination)(518).

159 62. Flamand C, Fritzell C, Prince C, Abboud P, Ardillon V, Carvalho L, et al. Epidemiological assessment of the severity of dengue epidemics 160 in French Guiana. Plos One. 2017;12(2).

63. Chen C-C, Lee I-K, Liu J-W, Huang S-Y, Wang L. Utility of C-Reactive Protein Levels for Early Prediction of Dengue Severity in Adults.
BioMed Research International. 2015;2015:1-6.

163 64. Colbert JA, Gordon A, Roxelin R, Silva S, Silva J, Rocha C, et al. Ultrasound measurement of gallbladder wall thickening as a diagnostic
 164 test and prognostic indicator for severe dengue in pediatric patients. Pediatric Infectious Disease Journal. 2007;26(9):850-2.

65. Cui L, Lee YH, Thein TL, Fang J, Pang J, Ooi EE, et al. Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the
 Early Phase of Dengue Fever. PLoS Neglected Tropical Diseases. 2016;10 (4) (no pagination)(e0004607).

167 66. Bur R, Suwarto S, Santoso WD, Harimurti K. Serum lactate as predictor and diagnostic biomarker of plasma leakage in adult dengue 168 patients. Universa Medicina. 2016;35(3):213-21.

169 67. Chaiyaratana W, Chuansumrit A, Atamasirikul K, Tangnararatchakit K. Serum ferritin levels in children with dengue infection. The 170 Southeast Asian journal of tropical medicine and public health. 2008;39(5):832-6.

171 68. Andries AC, Duong V, Cappelle J, Ong S, Kerleguer A, Ly S, et al. Proteinuria during dengue fever in children. International Journal of 172 Infectious Diseases. 2017;55:38-44.

Murgue B, Cassar O, Deparis X. Plasma concentrations of sVCAM-1 and severity of dengue infections. Journal of Medical Virology.
2001;65(1):97-104.

175 70. Biswas H, Gordon A, Elizondo D, Nunez A, Rocha C, Perez MA, et al. Lower cholesterol levels are associated with severe dengue 176 outcome. American Journal of Tropical Medicine and Hygiene. 2014;1):57.

177 71. Cardier JE, Balogh V, Perez-Silva C, Romano E, Rivas B, Bosch N, et al. Relationship of thrombopoietin and interleukin-11 levels to 178 thrombocytopenia associated with dengue disease. Cytokine. 2006;34(3-4):155-60.

179 72. Lee LK, Gan VC, Lee VJ, Tan AS, Leo YS, Lye DC. Clinical relevance and discriminatory value of elevated liver aminotransferase levels
 180 for dengue severity. PLoS Negl Trop Dis. 2012;6(6):e1676.

181 73. Alagarasu K, Bachal RV, Bhagat AB, Shah PS, Dayaraj C. Elevated levels of vitamin D and deficiency of mannose binding lectin in dengue
 182 hemorrhagic fever. Virology Journal. 2012;9.

Rathakrishnan A, Klekamp B, Wang SM, Komarasamy TV, Natkunam SK, Sathar J, et al. Clinical and immunological markers of dengue
 progression in a study cohort from a hyperendemic area in Malaysia. PLoS ONE. 2014;9 (3) (no pagination)(e92021).

Aung KL, Thanachartwet V, Desakorn V, Chamnanchanunt S, Sahassananda D, Chierakul W, et al. Factors associated with severe clinical
 manifestation of dengue among adults in Thailand. The Southeast Asian journal of tropical medicine and public health. 2013;44(4):602-12.

187 76. Bandyopadhyay D, Chattaraj S, Hajra A, Mukhopadhyay S, Ganesan V. A study on spectrum of hepatobiliary dysfunctions and pattern of
 188 liver involvement in dengue infection. Journal of Clinical and Diagnostic Research. 2016;10(5):OC21-OC6.

189 77. Bozza FA, Cruz OG, Zagne SMO, Azeredo EL, Nogueira RMR, Assis EF, et al. Multiplex cytokine profile from dengue patients: MIP-1beta
 190 and IFN-gamma as predictive factors for severity. BMC Infectious Diseases. 2008;8 (no pagination)(86).

191 78. Brasier AR, Ju H, Garcia J, Spratt HM, Victor SS, Forshey BM, et al. A three-component biomarker panel for prediction of dengue 192 hemorrhagic fever. American Journal of Tropical Medicine and Hygiene. 2012;86(2):341-8.

193 79. Carrasco LR, Leo YS, Cook AR, Lee VJ, Thein TL, Go CJ, et al. Predictive Tools for Severe Dengue Conforming to World Health
 194 Organization 2009 Criteria. PLoS Neglected Tropical Diseases. 2014;8 (7) (no pagination)(e2972).

195 80. Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, et al. Relationship of preexisting dengue virus (DV) neutralizing
196 antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. Journal of Infectious Diseases.
197 2004;189(6):990-1000.

198 81. Fadilah SA, Sahrir S, Raymond AA, Cheong SK, Aziz JA, Sivagengei K. Quantitation of T lymphocyte subsets helps to distinguish dengue
199 hemorrhagic fever from classic dengue fever during the acute febrile stage. The Southeast Asian journal of tropical medicine and public health.
200 1999;30(4):710-7.

82. Flores-Mendoza LK, Estrada-Jimenez T, Sedeno-Monge V, Moreno M, Manjarrez MDC, Gonzalez-Ochoa G, et al. IL-10 and socs3 Are
 Predictive Biomarkers of Dengue Hemorrhagic Fever. Mediators of Inflammation. 2017;2017:5197592.

83. Fox A, Hoa LNM, Simmons CP, Wolbers M, Wertheim HFL, Khuong PT, et al. Immunological and Viral Determinants of Dengue Severity
 in Hospitalized Adults in Ha Noi, Viet Nam. Plos Neglected Tropical Diseases. 2011;5(3).

84. Furuta T, Murao LA, Lan NTP, Huy NT, Huong VTQ, Thuy TT, et al. Association of mast cell-derived VEGF and proteases in dengue
 shock syndrome. PLoS Neglected Tropical Diseases. 2012;6 (2) (no pagination)(e1505).

85. Gopal SSS, Pillai AB, Ramachandrappaa VS, Kadhiravan T, Dhodapkar R, Kah J, et al. Increased serum levels of macrophage activation
 marker sCD163 in Dengue patients. Journal of Clinical Virology. 2017;86:62-7.

86. Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, et al. Early immune activation in acute dengue illness
is related to development of plasma leakage and disease severity. Journal of Infectious Diseases. 1999;179(4):755-62.

87. Guerrero CD, Arrieta AF, Ramirez ND, Rodriguez LS, Vega R, Bosch I, et al. High plasma levels of soluble ST2 but not its ligand IL-33 is associated with severe forms of pediatric dengue. Cytokine. 2013;61(3):766-71.

88. Hoffmeister B, Suttorp N, Zoller T. The revised dengue fever classification in German travelers: clinical manifestations and indicators for severe disease. Infection. 2014;25.

Suffrie M, Vo Meer GM, Hack CE, Haasnoot K, Sutaryo, Veerman AJP, et al. Inflammatory mediators in dengue virus infection in children:
 Interleukin-6 and its relation to C-reactive protein and secretory phospholipase A2. American Journal of Tropical Medicine and Hygiene.
 2001;65(1):70-5.

Section 218 90. Khan E, Kisat M, Khan N, Nasir A, Ayub S, Hasan R. Demographic and clinical features of dengue fever in Pakistan from 2003-2007: A
 retrospective cross- sectional study. PLoS ONE. 2010;5(9):1-7.

Siddiqui J, Shakoor S, Mehraj V, Jamil B, Hasan R. Dengue outbreak in Karachi, Pakistan, 2006: experience at a tertiary care
 center. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2007;101(11):1114-9.

Section 222 92. Khan MIH, Anwar E, Agha A, Hassanien NSM, Ullah E, Syed IA, et al. Factors predicting severe dengue in patients with dengue fever.
Mediterranean Journal of Hematology and Infectious Diseases. 2013;5 (1) (no pagination)(e2013014).

Sum MC, Lu PL, Chang JM, Lin MY, Tsai JJ, Chen YH, et al. Impact of renal failure on the outcome of dengue viral infection. Clinical
 Journal of the American Society of Nephrology. 2008;3(5):1350-6.

226 94. Koraka P, Suharti C, Setiati TE, Mairuhu ATA, Van Gorp E, Hach CE, et al. Kinetics of dengue virus-specific serum immunoglobulin 227 classes and subclasses correlate with clinical outcome of infection. Journal of Clinical Microbiology. 2001;39(12):4332-8.

228 95. Lee VJ, Lye DC, Sun Y, Leo YS. Decision tree algorithm in deciding hospitalization for adult patients with dengue haemorrhagic fever in
 229 Singapore. Tropical Medicine and International Health. 2009;14(9):1154-9.

230 96. Lye DC, Lee VJ, Sun Y, Leo YS. The benign nature of acute dengue infection in hospitalized older adults in Singapore. International
 231 Journal of Infectious Diseases.

Mairuhu ATA, Peri G, Setiati TE, Hack CE, Koraka P, Soemantri A, et al. Elevated plasma levels of the long pentraxin, pentraxin 3, in
 severe dengue virus infections. Journal of Medical Virology. 2005;76(4):547-52.

98. Giraldo D, Sant'Anna C, Perisse AR, March Mde F, Souza AP, Mendes A, et al. Characteristics of children hospitalized with dengue fever
 in an outbreak in Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg. 2011;105(10):601-3.

Singla M, Kar M, Sethi T, Kabra SK, Lodha R, Chandele A, et al. Immune Response to Dengue Virus Infection in Pediatric Patients in New
 Delhi, India-Association of Viremia, Inflammatory Mediators and Monocytes with Disease Severity. PLoS Neglected Tropical Diseases. 2016;10
 (3) (no pagination)(e0004497).

Vuong NL, Manh DH, Mai NT, Phuc LH, Luong VT, Quan VD, et al. Criteria of "persistent vomiting" in the WHO 2009 warning signs for
 dengue case classification. Tropical Medicine and Health. 2016;44 (1) (no pagination)(14).

Pereira MS, Kudru CU, Nair S, Thunga G, Kunhikatta V, Guddattu V. Factors associated with severity of illness in patients with dengue
 fever in a tertiary care hospital in southern India. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(3):272-6.

Phakhounthong K, Chaovalit P, Jittamala P, Blacksell SD, Carter MJ, Turner P, et al. Predicting the severity of dengue fever in children
on admission based on clinical features and laboratory indicators: Application of classification tree analysis. BMC Pediatrics. 2018;18 (1) (no
pagination)(109).

Posadas-Mondragon A, Aguilar-Faisal JL, Chavez-Negrete A, Guillen-Salomon E, Alcantara-Farfan V, Luna-Rojas L, et al. Indices of anti dengue immunoglobulin G subclasses in adult Mexican patients with febrile and hemorrhagic dengue in the acute phase. Microbiology and
 Immunology. 2017;61(10):433-41.

249 104. Pothapregada S, Kamalakannan B, Thulasingham M. Risk factors for shock in children with dengue fever. Indian Journal of Critical Care
 250 Medicine. 2015;19(11):661-4.

Potts JA, Thomas SJ, Srikiatkhachorn A, Supradish PO, Li W, Nisalak A, et al. Classification of dengue illness based on readily available
 laboratory data. Am J Trop Med Hyg. 2010;83(4):781-8.

106. Raza FA, Shafiq ur R, Ruqyya K, Jameel A, Ashraf S, Mazhar I, et al. Demographic and clinico-epidemiological features of dengue fever
 in Faisalabad, Pakistan. PLoS ONE. 2014;9(3).

Sirivichayakul C, Limkittikul K, Chanthavanich P, Jiwariyavej V, Chokejindachai W, Pengsaa K, et al. Dengue Infection in Children in
 Ratchaburi, Thailand: A Cohort Study. II. Clinical Manifestations. Plos Neglected Tropical Diseases. 2012;6(2).

Sharma K, Yadav A. Association of mean platelet volume with severity, serology & amp; treatment outcome in dengue fever: Prognostic
 utility. Journal of Clinical and Diagnostic Research. 2015;9(11):EC01-EC3.

Thein TL, Wong J, Leo YS, Ooi EE, Lye D, Yeo TW. Association between increased vascular nitric oxide bioavailability and progression
 to dengue hemorrhagic fever in adults. Journal of Infectious Diseases. 2015;212(5):711-4.

110. Tissera H, Rathore APS, Wei Yee L, Pike BL, Warkentien TE, Farouk FS, et al. Chymase Level Is a Predictive Biomarker of Dengue
 Hemorrhagic Fever in Pediatric and Adult Patients. Journal of Infectious Diseases. 2017;216(9):1112-21.

111. Thanachartwet V, Desakorn V, Sahassananda D, Jittmittraphap A, Oer-areemitr N, Osothsomboon S, et al. Serum Procalcitonin and
 Peripheral Venous Lactate for Predicting Dengue Shock and/or Organ Failure: A Prospective Observational Study. PLoS Neglected Tropical
 Diseases. 2016;10 (8) (no pagination)(e0004961).

Thanachartwet V, Oer-areemitr N, Chamnanchanunt S, Sahassananda D, Jittmittraphap A, Suwannakudt P, et al. Identification of clinical
 factors associated with severe dengue among Thai adults: A prospective study. BMC Infectious Diseases. 2015;15(1).

113. Thanachartwet V, Wattanathum A, Oer-areemitr N, Jittmittraphap A, Sahassananda D, Monpassorn C, et al. Diagnostic accuracy of peripheral venous lactate and the 2009 WHO warning signs for identifying severe dengue in Thai adults: A prospective observational study. BMC Infectious Diseases. 2016;16 (1) (no pagination)(46).

114. Thanachartwet V, Wattanathum A, Sahassananda D, Wacharasint P, Chamnanchanunt S, Kyaw EK, et al. Dynamic Measurement of
 Hemodynamic Parameters and Cardiac Preload in Adults with Dengue: A Prospective Observational Study. Plos One. 2016;11(5).

115. Vasanwala FF, Puvanendran R, Fook-Chong S, Ng JM, Suhail SM, Lee KH. Could peak proteinuria determine whether patient with dengue
 fever develop dengue hemorrhagic/dengue shock syndrome?--a prospective cohort study. BMC Infectious Diseases. 2011;11:212.

Villar-Centeno LA, Díaz-Quijano FA, Martínez-Vega RA. Biochemical alterations as markers of dengue hemorrhagic fever. American
 Journal of Tropical Medicine and Hygiene. 2008;78(3):370-4.

117. García-Rivera EJ, Rigau-Pérez JG. Dengue severity in the elderly in Puerto Rico. Revista Panamericana de Salud Publica.
278 2003;13(6):362-8.

Prasad D, Bhriguvanshi A. Clinical Profile, Liver Dysfunction and Outcome of Dengue Infection in Children: A Prospective Observational
 Study. The Pediatric infectious disease journal. 2019;02.

119. Chandrashekhar C, Balaji K, Vasudev PH, Panachiyil GM, Babu T. Estimation of serum neopterin level as an early marker for detecting
 severe dengue infection. Int J Pediatr Adolesc Med. 2019;6(4):151-4.

120. Elenga N, Celicourt D, Muanza B, Elana G, Hocquelet S, Tarer V, et al. Dengue in hospitalized children with sickle cell disease: A
 retrospective cohort study in the French departments of America. Journal of Infection and Public Health. 2019.

121. Goncalves BS, Nogueira RMR, Bispo de Filippis AM, Horta MAP. Factors predicting the severity of dengue in patients with warning signs
in Rio de Janeiro, Brazil (1986-2012). Trans R Soc Trop Med Hyg. 2019;113(11):670-7.

122. Goncalves BS, Horta MAP, Acero PHC, Bochner R, Queiroz Lima MDR, de Araujo ES, et al. Dynamics of nonstructural glycoprotein-1 in
 dengue patients presenting with different clinical manifestations from 1986 to 2012 in Rio de Janeiro, Brazil. Journal of Medical Virology.
 2019;91(4):555-63.

Phuong NTN, Manh DH, Dumre SP, Mizukami S, Weiss LN, Van Thuong N, et al. Plasma cell-free DNA: a potential biomarker for early
 prediction of severe dengue. Ann Clin Microbiol Antimicrob. 2019;18(1):10.

124. Ta TV, Tran HT, Ha ONT, Nguyen XT, Tran VK, Pham HT, et al. The correlation of clinical and subclinical presentations with dengue
 serotypes and plasma viral load: The case of children with dengue hemorrhagic fever in Vietnam. International Journal of Research in
 Pharmaceutical Sciences. 2019;10(3):2578-85.

May WL, Kyaw MP, Blacksell SD, Pukrittayakamee S, Chotivanich K, Hanboonkunupakarn B, et al. Impact of glucose-6-phosphate
 dehydrogenase deficiency on dengue infection in Myanmar children. PLoS ONE. 2019;14 (1) (no pagination)(e0209204).

126. Nguyen Phung NT, Nguyen TTP, Bui TL, Nguyen TH, Tran DT. C-reactive protein in children with dengue fever in Vietnam. International
 Journal of Research in Pharmaceutical Sciences. 2019;10(3):2525-31.

Patra G, Mallik S, Saha B, Mukhopadhyay S. Assessment of chemokine and cytokine signatures in patients with dengue infection: A
 hospital-based study in Kolkata, India. Acta Tropica. 2019;190:73-9.

301 128. Wang WH, Lin CY, Chang K, Urbina AN, Assavalapsakul W, Thitithanyanont A, et al. A clinical and epidemiological survey of the largest
 302 dengue outbreak in Southern Taiwan in 2015. International Journal of Infectious Diseases. 2019;88:88-99.

303 129. Opasawatchai A, Amornsupawat P, Jiravejchakul N, Chan-In W, Spoerk NJ, Manopwisedjaroen K, et al. Neutrophil Activation and Early
 304 Features of NET Formation Are Associated With Dengue Virus Infection in Human. Frontiers in Immunology. 2018;9:3007.

305 130. Kularatnam GAM, Jasinge E, Gunasena S, Samaranayake D, Senanayake MP, Wickramasinghe VP. Evaluation of biochemical and
 306 haematological changes in dengue fever and dengue hemorrhagic fever in Sri Lankan children: a prospective follow up study. BMC Pediatrics.
 307 2019;19(1):87.

308 131. Agrawal VK, Saroj Kumar Prusty B, Santosh Reddy C, Reddy GKM, Agrawal RK, Bandaru VCSS. Clinical profile and predictors of Severe
 309 Dengue disease: A study from South India. Caspian j. 2018;9(4):334-40.

Athira PP, Jagan OA, Umadevi P, Pragnatha K, Veena PM. A Retrospective Study of Paediatric Dengue Cases in a Tertiary Care Hospital
 in Southern India. Journal of Clinical and Diagnostic Research. 2018;12(7):SC01-SC6.

312 133. Boillat-Blanco N, Klaassen B, Mbarack Z, Samaka J, Mlaganile T, Masimba J, et al. Dengue fever in Dar es Salaam, Tanzania: clinical
 313 features and outcome in populations of black and non-black racial category. BMC Infectious Diseases. 2018;18(1):644.

Lee IK, Huang CH, Huang WC, Chen YC, Tsai CY, Chang K, et al. Prognostic Factors in Adult Patients with Dengue: Developing Risk
 Scoring Models and Emphasizing Factors Associated with Death <=7 Days after Illness Onset and <=3 Days after Presentation. Journal of Clinical</li>
 Medicine. 2018;7(11):28.

135. Low GKK, Papapreponis P, Isa RM, Gan SC, Chee HY, Te KK, et al. Geographical distribution and spatio-temporal patterns of
 hospitalization due to dengue infection at a leading specialist hospital in Malaysia. Geospatial Health. 2018;13(1):127-34.

319 136. Saniathi NKE, Rianto BUD, Juffrie M, Soetjiningsih. The effect of overnutrition toward the risk of dengue shock syndrome in pediatric
 320 patient: in-depth investigation of sVCAM-1 and adiponectin level. Bali Medical Journal. 2018;7(1):244-8.

321 137. Srivastava G, Chhavi N, Goel A. Validation of Serum Aminotransferases Levels to Define Severe Dengue Fever in Children. Pediatr.
 322 2018;21(4):289-96.

323 138. Temprasertrudee S, Thanachartwet V, Desakorn V, Keatkla J, Chantratita W, Kiertiburanakul S. A Multicenter Study of Clinical
 324 Presentations and Predictive Factors for Severe Manifestation of Dengue in Adults. Japanese Journal of Infectious Diseases. 2018;71(3):239-43.

325 139. Villamor E, Villar LA, Lozano-Parra A, Herrera VM, Herrán OF. Serum fatty acids and progression from dengue fever to dengue
 326 haemorrhagic fever/dengue shock syndrome. Br J Nutr. 2018;120(7):787-96.

Wakimoto MD, Camacho LAB, Gonin ML, Brasil P. Clinical and Laboratory Factors Associated with Severe Dengue: A Case-Control Study
 of Hospitalized Children. Journal of Tropical Pediatrics. 2018;64(5):373-81.

Masood KI, Jamil B, Rahim M, Islam M, Farhan M, Hasan Z. Role of TNF α, IL-6 and CXCL10 in Dengue disease severity. Iranian Journal
 of Microbiology. 2018;10(3):202-7.

Wijeratne DT, Fernando S, Gomes L, Jeewandara C, Ginneliya A, Samarasekara S, et al. Quantification of dengue virus specific T cell
 responses and correlation with viral load and clinical disease severity in acute dengue infection. Plos Neglected Tropical Diseases.
 2018;12(10):16.

334 143. Zhang H, Xie ZW, Xie XS, Ou YY, Zeng WT, Zhou YP. A novel predictor of severe dengue: The aspartate aminotransferase/platelet count
 335 ratio index (APRI). Journal of Medical Virology. 2018;90(5):803-9.

Ralapanawa U, Alawattegama ATM, Gunrathne M, Tennakoon S, Kularatne SAM, Jayalath T. Value of peripheral blood count for dengue
 severity prediction. BMC Research Notes. 2018;11(1):400.

Mapalagamage M, Handunnetti S, Premawansa G, Thillainathan S, Fernando T, Kanapathippillai K, et al. Is Total Serum Nitrite and Nitrate
 (NOx) Level in Dengue Patients a Potential Prognostic Marker of Dengue Hemorrhagic Fever? Dis Markers. 2018;2018:5328681.

Hegazi MA, Bakarman MA, Alahmadi TS, Butt NS, Alqahtani AM, Aljedaani BS, et al. Risk Factors and Predictors of Severe Dengue in
 Saudi Population in Jeddah, Western Saudi Arabia: A Retrospective Study. Am J Trop Med Hyg. 2020;13:13.

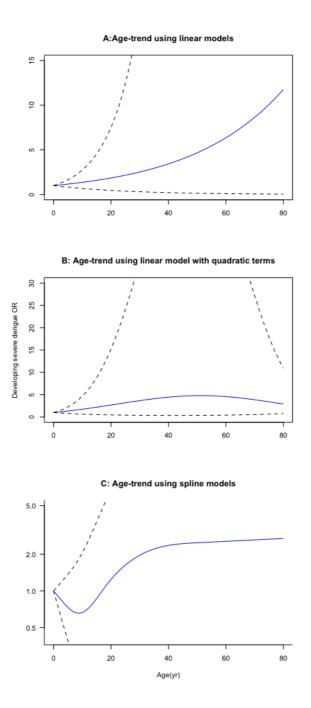
Mapalagamage M, Handunnetti SM, Wickremasinghe AR, Premawansa G, Thillainathan S, Fernando T, et al. High levels of serum
 Angiopoietin 2 and Angiopoietin 2/1 ratio at critical stage of dengue hemorrhagic fever patients and their association with clinical and biochemical
 parameters. Journal of clinical microbiology. 2020;15.

- 148. Patra G, Saha B, Mukhopadhyay S. Study of serum VEGF levels in patients with severe dengue infection admitted in a tertiary care
   hospital in Kolkata. Journal of Medical Virology. 2019;91(10):1873-6.
- 347 149. Sani H, Syazana N, Izuan Z, Isa MR, Hanis M, Yazli M. Procalcitonin and clinical factors associated with severe dengue infection in
- 348 hospitalized adults in Malaysia. American Journal of Infectious Diseases. 2019;15(4):103-10.
- Mahmud MR, Zaman S, Naseem N, Iqbal N, Tanveer N, Khalid MA, et al. Comparison of Vitamin D Levels in Patients with Dengue
   Haemorrhagic Fever and Dengue Fever. Journal of Rawalpindi Medical College. 2018;22(2):92-5.

**Supplement Table 7.** Definitions of associated factors taken from the included studies in this systematic review

and meta-analysis

| Associated factors | Definition                                                   |
|--------------------|--------------------------------------------------------------|
|                    |                                                              |
| Age                | Age of participants in year or month units according         |
|                    | to medical records or history taking                         |
|                    |                                                              |
|                    |                                                              |
| Sex                | Physical sex according to medical records or history         |
|                    | taking                                                       |
|                    |                                                              |
| Nutritional status | For children ( $\leq$ 18 years old), weight for age based on |
|                    | local standardized guidelines or BMI-for-age >2 Z            |
|                    | score according to WHO sex-specific growth                   |
|                    | reference for children.                                      |
|                    |                                                              |
|                    |                                                              |
|                    | For adults (>18 years old) the BMI criterion was used,       |
|                    | malnourished BMI < 18 and obese BMI > $30 \text{ kg/m}^2$    |
|                    |                                                              |
| Weight             | Weight of patients measured at presenting at hospitals       |
|                    | or medical records                                           |
|                    |                                                              |
| Mixed comorbidity  | Unspecific pre-existing comorbidities including              |
| wixed conformaty   |                                                              |
|                    | cancer, asthma, chronic obstructive pulmonary                |
|                    | disease, etc. according to medical records or history        |
|                    | taking                                                       |
|                    |                                                              |
| Hypertension       | Pre-existing hypertension disease according to               |
|                    | medical records or history taking                            |
|                    |                                                              |
| Diabetes mellitus  | Pre-existing diabetes mellitus according to medical          |
| Diabetes menitus   |                                                              |
|                    | records or history taking                                    |
|                    |                                                              |

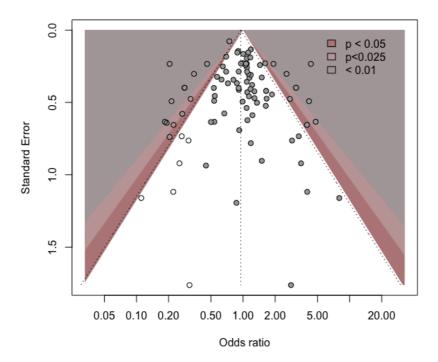

| Renal disease                 | Pre-existing renal diseases excepting acute kidney           |
|-------------------------------|--------------------------------------------------------------|
|                               | injury on dengue episode according to medical                |
|                               | records or history taking                                    |
|                               |                                                              |
| Cardiovascular disease        | Pre-existing cardiovascular disease including chronic        |
|                               | heart failure, myocardial infarction according to            |
|                               | medical records or history taking                            |
|                               |                                                              |
| Rash                          | Presence of unspecific rash during the first four days       |
| rush                          | of the illness according to history taking or physical       |
|                               | examinations                                                 |
|                               |                                                              |
|                               |                                                              |
| Vomiting                      | Presence of vomiting with any episodes during the            |
|                               | first four days of the illness according to history taking   |
|                               | or physical examinations                                     |
|                               |                                                              |
| Abdominal pain and tenderness | Presence of abdominal pain and tenderness with any           |
|                               | episodes during the first four days of the illness           |
|                               | according to history taking or physical examinations         |
|                               |                                                              |
| Headache                      | Presence of headache during the first four days of           |
|                               | illness according to history taking                          |
|                               |                                                              |
| Minor bleeding                | Presence of either mucosal or spontaneous bleeding           |
|                               | that do not require blood transfusion and present            |
|                               | during the first four days of illness. This includes skin    |
|                               | bleeding (petechiae, ecchymosis, or purpura),                |
|                               | mucosal bleeding (epistaxis, gum bleeding, or other          |
|                               | sites), haematemesis or melena.                              |
|                               |                                                              |
| Positive tourniquet test      | Tourniquet test with the presence of $\geq 20$ petechiae per |
|                               | square inch.                                                 |
|                               | -1                                                           |
|                               |                                                              |
|                               |                                                              |
|                               |                                                              |

| Immune status               | Secondary infection determined with the use of             |
|-----------------------------|------------------------------------------------------------|
|                             | serological tests (i.e. either IgM or IgG ELISA during     |
|                             | the first four days of illness or the convalescence        |
|                             | phase.)                                                    |
|                             |                                                            |
| Clinical fluid accumulation | Presence of fluid accumulation (i.e. either pleural        |
|                             | effusion or ascites) during the first four days of illness |
|                             | according to chest X-ray, ultrasonography, or physical     |
|                             | examination                                                |
|                             |                                                            |
| Serotypes                   | Infecting dengue serotypes determined using patients'      |
|                             | serum collected during the first four days of illness      |
|                             | with conventional or real-time RT-PCR assays, or           |
|                             | viral isolation by mosquito inoculation.                   |
|                             |                                                            |
| Viraemia levels             | Viral RNA levels were quantified using real-time           |
|                             | PRC or quantitative RT-PCR assays in the patients'         |
|                             | plasma specimens collected during the first four days      |
|                             | of illness                                                 |
|                             |                                                            |
| Platelet count              | The number of platelets during the first four days of      |
|                             | illness. If there are reports of platelet count for more   |
|                             | than one day, platelet count on day 3 of illness was       |
|                             | chosen.                                                    |
|                             |                                                            |
| Leukocyte cell count        | The number of leukocytes during the first four days of     |
|                             | illness. If there are reports of leukocyte count for more  |
|                             | than one day, leukocyte count on day 3 of illness was      |
|                             | chosen.                                                    |
|                             |                                                            |
| Haematocrit                 | Haematocrit detected during the first four days of         |
|                             | illness. If there are reports of haematocrit for more      |
|                             | than one day, haematocrit on day 3 of illness was          |
|                             | chosen.                                                    |
|                             |                                                            |
|                             |                                                            |

| Aspartate transaminase (AST) | AST levels detected during the first four days of illness. If there are reports of AST on more than one day, AST on day 3 of illness was chosen.                                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alanine transaminase (ALT)   | ALT levels detected during the first four days of illness. If there are reports of ALT on more than one day, ALT on day 3 of illness was chosen.                                         |
| Serum albumin                | Serum albumin levels detected during the first four<br>days of illness. If there are reports of serum albumin<br>on more than one day, albumin levels on day 3 of<br>illness was chosen. |

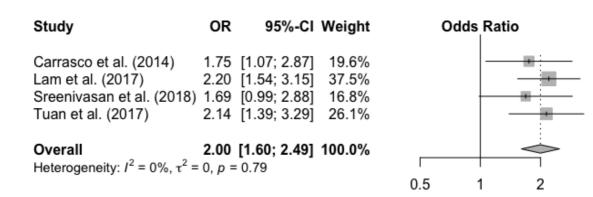
|     | Study                                                | OR   | 95%-CI                               | Weight | 00  | ds Ratio |      |
|-----|------------------------------------------------------|------|--------------------------------------|--------|-----|----------|------|
| 355 | Ha et al. (2011)<br>Lam et al. (2017)                | 0.94 | [0.73; 0.92]<br>[0.85; 1.03]         | 23.5%  | -   | -        |      |
| 356 | Potts et al. (2010)<br>Tuan et al. (2017)            |      | [0.83; 0.97]<br>[0.90; 1.04]         |        |     | -        |      |
| 357 | <b>Overall</b><br>Heterogeneity: I <sup>2</sup> = 52 |      | <b>[0.86; 0.98]</b><br>= 0.0021, p = |        | 0.8 | >  <br>1 | 1.25 |

358 Supplement Figure 1: Forest plot of associations from multivariable models between age and severe progression. Four studies conducted among children ( $\leq$  18 years old) were included in the meta-analysis. The pooled OR was 0.92 (95% CI (0.86, 0.98)) and I<sup>2</sup> was 52%.



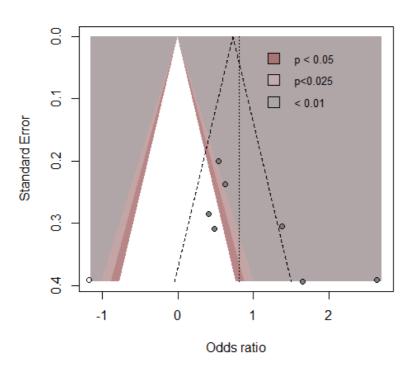

Supplement Figure 2: Association between odd ratios of severe progression (y-axis) and age (x-axis) from doseresponse meta-analysis based on linear models (A), linear models with quadratic terms (B), and spline models with knots at age 2, 9, 18, and 50 (C). The blue solid line indicates the central estimate and the dotted line indicates the 95% CI.

### 367 Supplement Table 4: Model fitting parameters of linear and non-linear models estimating trends in the


368 risk of developing severe manifestations with age in dose-response meta-analysis

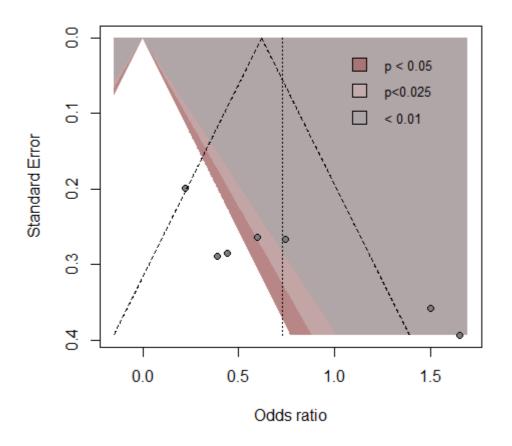
| Linear model                                      | 65.8 | 67.6 |
|---------------------------------------------------|------|------|
| Linear model                                      | 65.8 | 67.6 |
|                                                   |      |      |
| Linear model with quadratic terms                 | 83.1 | 87.3 |
| Spline model with 4 knots at age 2, 9, 18, and 50 | 71.5 | 78.4 |






372 Supplement Figure 3: Funnel plot for association between sex and severe progression. The grey dots indicate
373 association of each study and the clear dots indicate the imputed associations.




#### 375

**Supplement Figure 4:** Forest plot of associations from multivariable models between vomiting and progression to severe disease. Four studies were included in the meta-analysis. The pooled OR was 2.00 (95% CI (1.60, 0.2.49)) and I<sup>2</sup> was 0%.





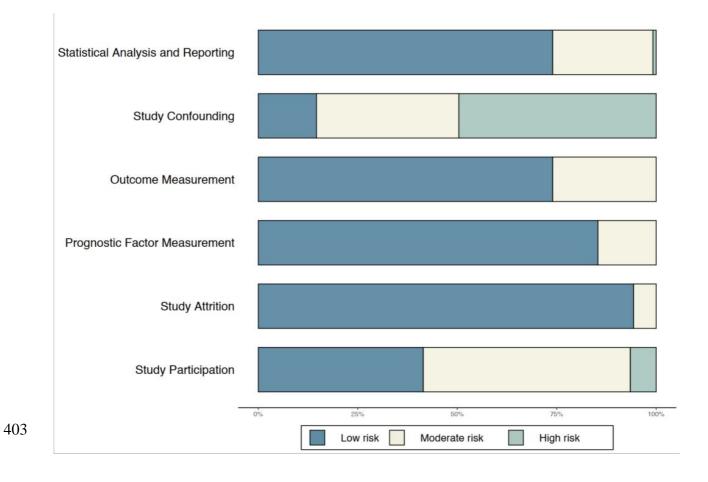
378Supplement Figure 5: Funnel plot for association between AST and progression to severe disease. The grey dots379indicate association of each study and the clear dots indicate the imputed associations. Dots on the coloured380background indicate statistically significant ORs (red: p-value < 0.05, pink < 0.025 and brown p-value <0.01);</td>381dots on the white background indicate non-significant ORs (p-value  $\ge 0.05$ ).



Supplement Figure 6: Funnel plot for association between ALT and progression to severe disease. The grey dots
 indicate association of each study. While dots on the colour background indicate statistically significant ORs (red:
 p-value < 0.05, pink < 0.025 and brown p-value <0.01), on white indicates non-significant.</li>

| 392 | Study                                                      | Mean difference | 95% CI                           | Weight         |    | rdised l<br>ference |   |    |
|-----|------------------------------------------------------------|-----------------|----------------------------------|----------------|----|---------------------|---|----|
| 393 | Fragnound et al. (2) (2015)<br>Fragnound et al.(1) (2015)  | 8.09            | [-1.75; -0.53]<br>[ 5.78; 10.40] | 27.3%<br>18.0% |    |                     | _ | -  |
| 394 | Hoang et al. (2010)<br>Liao et al. (2015)                  |                 | [-0.47; 0.49]<br>[-0.67; 0.71]   | 27.7%<br>27.0% |    |                     |   |    |
|     | <b>Overall</b><br>Heterogeneity: $I^2 = 95\%$ , $\tau^2 =$ |                 | [-0.47; 2.78]                    | 100.0%         |    | -                   | - |    |
| 395 |                                                            |                 |                                  | -10            | -5 | 0                   | 5 | 10 |

- Supplement Figure 7: Forest plot of associations between viraemia and progression to severe disease. Four 396 studies were included in the meta-analysis. The pooled OR was 1.16 (95% CI (-0.47 to 2.78)) and I<sup>2</sup> was 95%.
- 397


#### 398 Supplement Table 7. Associated factors with progression to severe dengue illness reported in studies with 399

| Associated factors reported in studies with  | Associated factors reported in studies with |
|----------------------------------------------|---------------------------------------------|
| children during the febrile phase of disease | adults during the febrile phase of disease  |
|                                              |                                             |
| 1. Age                                       | 1. Age                                      |
|                                              |                                             |
| 2. Sex                                       | 2. Sex                                      |
|                                              |                                             |
| 3. Nutritional status                        | 3. Mixed comorbidity                        |
|                                              |                                             |
| 4. Weight                                    | 4. Diabetes mellitus                        |
|                                              |                                             |
| 5. Presence of vomiting                      | 5. Chronic kidney disease                   |
| C Descence of shdowing lasin and tandows     | C. Cardianageular diagona                   |
| 6. Presence of abdominal pain and tenderness | 6. Cardiovascular disease                   |
| 7. Presence of bleeding                      | 7. Platelet count                           |
| /. I resence of biccuing                     |                                             |
| 8. Platelet count                            | 8. Haematocrit                              |
|                                              |                                             |
|                                              |                                             |

children and adults

| 9. Haematocrit              | 9. Immune status |
|-----------------------------|------------------|
| 10. Aminotransferase levels | 10. Serotype     |
| 11. Immune status           |                  |
| 12. Serotypes               |                  |
|                             |                  |

# 401 Supplement Figure 8: Risk of bias in the included studies assessed by the Quality in Prognostic Studies402 tool

