Supplementary Materials

Materials and Methods

SARS-CoV-2 data from Hong Kong

De-identified saliva or nasopharyngeal samples positive for SARS-CoV-2 by real timepolymerase chain reaction (RT-PCR), along with epidemiological information including onset date, report date and contact history for individual cases were obtained from the Centre for Health Protection, Hong Kong.

Genomic sequencing of SARS-CoV-2

A total of 1,753 laboratory-confirmed samples were collected from 1,733 RT-PCR confirmed cases from 22-June-2020 to 26-January-2021. Virus genome was reverse transcribed with primers targeting different regions of the viral genome, published in (22). The synthesized cDNA was then subjected to multiple overlapping 2kb PCRs for full-genome amplification. PCR amplicons obtained from the same specimen were pooled and sequenced using Nova sequencing platform (PE150, Illumina). Sequencing library was prepared by Nextera XT. The base calling of raw read signal and demultiplexing of reads by different samples were performed using Bcl2Fastq (Illumina). A reference-based re-sequencing strategy was applied in analyzing the NGS data. Specifically, the raw FASTQ reads were assembled and mapped to the SARS-CoV-2 reference genome (Wuhan-Hu-1, GenBank: MN908947.3) using BWA mem2 (v.2.0pre2) (23). The consensus sequences for each sample were called as dominant bases at each position by samtools mpileup (v.1.11) (24) with minimum depth of 100 reads. Samples less than 27kb in length (excluding gaps) were excluded from downstream analysis. The head and tail 100nt bases of all generated consensus sequences were masked. We also masked another 10 sites located in PCR primer binding regions and observed to be variant ($\geq 3\%$ allele frequency) in 1% or more HK samples (table S9). The same masking strategy was also applied in phylodynamics analysis, variant calling, and bottleneck estimation. The average sequencing depth (number of mapped reads) at each nucleotide position that was retained ranged from $\sim 10,000$ to $\sim 100,000$ (fig. S6).

There were 16 patients from which samples were collected or sequenced at multiple time points. Twelve samples from 6 patients were sequenced in duplicate, and 21 samples from 10 patients were collected sequentially. One representative sample for each of the 16 patients was selected based on genome coverage and average sequencing depth. In total, 1,601 representative samples met quality control standards. All 1,601 consensus sequences from Hong Kong, as well as 298 additional consensus sequences from the first two waves were included in the phylogenetic analysis. Sequences from regions outside Hong Kong were retrieved from the GISAID database (total 399,124 sequences, accessed 16-February-2021, detailed accession numbers and acknowledgement information in **data S4**).

Phylogenetic analysis of SARS-CoV-2 in Hong Kong

Hong Kong sequences were analysed with a global SARS-CoV-2 genome alignment obtained from GISAID (accessed 16-February-2021). For each Hong Kong sequence, the three most similar global sequences (evaluated by p distance excluding gaps, n = 385), as well as the earliest sampled sequence (n = 1,279) from each PANGO lineage (accessed 07-May-2021) (11) were selected. After removing repetitive sequences and trimming masked sites, data quality was evaluated using a root-to-tip regression analysis in TempEst (v.1.5.3) (25), resulting in a final set of 3,437 sequences. Maximum likelihood (ML) phylogenies were estimated using IQ-TREE (v.2) (26), employing the best-fit nucleotide substitution model with Wuhan-Hu-1 (GenBank:

MN908947.3) as the outgroup and dated by least square dating (LSD2) (27). Branch support was estimated using ultrafast bootstrap approximation (UFBoot) and SH-like approximate likelihood ratio test (SH-aLRT), and for nodes of interest with <50% support, we examined their stability through multiple iterative runs using the best-fit nucleotide substitution model. Internal branches with zero-length were preserved for dating by setting parameter *l* as -1. SARS-CoV-2 sequences from Hong Kong were classified based on the dynamic PANGO nomenclature system (<u>https://github.com/cov-lineages/pangolin</u>, v.2.3.9, 23-April-2021) (*11*) and confirmed using a ML analysis.

Phylodynamics of Hong Kong waves

To identify monophyletic clusters of SARS-CoV-2 lineages in Hong Kong, Bayesian molecular clock phylogenetic analysis pipeline proposed by Plessis et al. (28) were implemented. In this study, the data tree and starting tree were applied to a ML tree generated by IQ-TREE (v.2) (26) with LSD2 (27). Time-scaled phylogenies were generated using the strict clock model with 0.001 substitutions per site per year which is within 95% credible interval of SARS-CoV-2 temporal signal (29), the Skygrid model (30) with 61 grid points and a Laplace root-height prior with mean equal to the dated-ML tree estimated by IQ-TREE (v.2) (26) and scale is set to 20% of mean. To improve computational efficiency, two largest local monophyletic clades in wave three (HK-wave3, n = 902) and wave four (HK-wave4A, n = 552) from ML tree were subsampled to 100 and 65 sequences by 5 earliest cases, 5 latest cases and 10% of the remaining randomly selected, respectively. We ran nine MCMC chains of 100 million, sampling every 1,000 steps and discarding 10% as burn-in. As there are no collapsed internal branches in this study, only uncertainty in branch durations were estimated by MCMC. From the approach described in Geoghegan et al. (31), we used the R package "NELSI" (32) to identify classify all monophyletic lineages, including singletons, and to estimate the delay in lineage detection following importation as well as the duration of circulation, given a set of 8,000 posterior trees. It's notable that there are two global sequences from Japan (EPI ISL 591420 and EPI ISL 721612) present in the HK-wave3 clade. However, these two Japan cases had travel history to the Philippines (similar to the early HK-wave3 imported cases), and were quarantined when landed in Japan, suggesting that they are unlikely to have caused an introduction in Hong Kong. These two cases were therefore excluded when defining the HK-wave3 clade.

For all samples of HK-wave3 and HK-wave4A, we used the birth-death skyline serial (BDSS) model (14) implemented in BEAST (v.2.6.3) (33) to infer the time of origin (tOrigin), time of most recent common ancestor (tMRCA) and temporal variations (piecewise fashion over 12-15 equidistant intervals) in the effective reproductive number denoted as R_t. A noninformative prior for tOrigin was used with a the lower bound set to 1-January-2020. The HKY + G4 nucleotide substitution model and an uncorrelated relaxed molecular clock model with lognormal rate distribution (UCLN) (34) were used. The sampling proportion was given a uniform distribution as prior with the upper bound at the empirical ratio of the number of sequences to the number of reported cases. MCMC chains were run for 600 million and 800 million steps and sampled every 2,000 and 10,000 steps for the lineages HK-wave3 (B.1.1.63) and HK-wave4A (B.1.36.27) respectively, with the initial 10% discarded as burn-in. This resulted in a final total of 270,000 and 72,000 sampled states. Mixing of the MCMC chain was inspected using Tracer (v1.7.1) (35) to ensure an effective sample size (ESS) of >200 for each parameter. Change in the effective reproductive number over time after the estimated tMRCA was plotted using R package "bdskytools" (https://github.com/laduplessis/bdskytools). Since by definition there are no sequences between tMRCA and the estimated tOrigin, the effective

reproductive number (R_e) was assumed to remain constant in this period. This assumption was incorporated in the default birth-death model using the package TreeSlicer in BEAST2.

Human mobility in Hong Kong using Octopus data

We used digital transactions made on Octopus cards, ubiquitously used by the Hong Kong population for daily public transport and small retail payments (<u>https://www.octopus.com.hk/tc/consumer/index.html</u>), to obtain changes in mobility during 2020–2021 among cards classified as children, students, adults and elderly (**fig. S5**).

Analysis of within-host genetic variation and transmission bottleneck

Deep sequencing SARS-CoV-2 samples in the United Kingdom and Austria has shown that the within-host genetic diversity (iSNV) is low with a narrow bottleneck during transmission (19, 20). Within-host genetic variation (iSNV) depends on intra-host virus evolution and transmission bottleneck size. To determine the baseline similarity of within-host genetic diversity, we prepared two sets of samples as controls: (a) six samples were sequenced in duplicate to account for uncertainty arising from sequencing; and (b) twenty-one samples collected from ten individuals. To examine the dynamics of mutations related to transmission events, we identified 13 transmission pairs (donor and recipient) that were directly linked with symptom onset varying by 1 to 7 days.

Single nucleotide variants (SNVs) in deep-sequence data were identified using three different variant callers, freebayes (v.1.3.2) (36), VarDict (v.1.82) (37) and LoFreq (v.2.15) (38). To attain a robust variant calling result, only SNVs detected by at least two different variant callers were analyzed in this study (8). SNVs with a minimum depth of 100 reads, minimum frequency of 3%, and detected by at least two different variant callers were retained for further analysis. Parameters and scripts for this pipeline are described in https://github.com/hku-sphcovid-19-genomics-consortium/hk-sars-cov-2-genomic-epidemiology. Gene annotations of the SNVs were based on **table S10**. To understand the uncertainty in iSNV due to the sequencing protocol, we sequenced six samples in duplicate. While detection of major variants (consensus) was consistent, detection of iSNVs may vary between sequencing runs. For example, while iSNVs of case 10 were shared between sequencing runs, iSNVs of case 15 were mutually exclusive (fig. S7). Similarly, when comparing iSNV of 21 samples collected from 10 individuals, major variants in samples from the same patient remained identical but their iSNVs varied. A similar pattern was observed in transmission pairs, where most of the major variants are shared but some of the minor variants are unique (Fig. 4A), which can be explained by a narrow transmission bottleneck.

The statistical framework for estimating the transmission bottleneck size between identified transmission pairs was introduced in (18). It was based on a beta-binomial method which models the number of transmitted virions from donor to the recipient. Because of the high sequencing depth of the data, the minimum variant calling threshold was set to 0.03 with a minimum depth of 100 reads. Bottleneck size estimates were calculated by maximum likelihood analysis comparing the allele frequency of variants passing threshold between samples. The 95% confidence intervals were calculated using a likelihood ratio test. To identify similarity of SNVs between samples we used the Jaccard distance, defined as one minus the proportion of intersection between two samples divided by the proportion of their union.

$$Jaccard(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

SARS-Cov-2 sequences from Hong Kong contained within-patient variation in 12,859 sites of the genome when compared to the SARS-CoV-2 reference strain Wuhan-Hu-1 (GenBank: MN908947.3). 37.2% of the sites (n=4,779) contained mutations in more than one sample. High frequency of variation (in >100 Hong Kong sequences) was observed in 30 sites (table S6). The spectrum of allele frequencies (fig. S8) showed that over 90% of the variants had allele frequency \geq 95% or \leq 10%. Mutation hotspots were detected in four sites of the genome with a greater frequency of intra-host single nucleotide variation (iSNVs). These mutations were sporadically distributed across the phylogeny and present in ~20 sequences from the GISAID data, which may suggest potential homoplasy. We observed two variants unique to Hong Kong, C5812T and G25785T, which were detected in separate phylogenetic clusters of local Hong Kong cases. The C5812T mutation was identified in two sperate clusters in the fourth wave. While the C5812T mutation in one cluster likely descended from a local ancestral case, the mutation in the earlier cluster may have been imported. Similarly, G25785T was found in both the third and fourth waves, and mutations in at least one cluster likely originated from local cases. Some of the low frequency SNVs (frequency <5%, shown in the low peaks to the bottom of fig. S8 and table S7) commonly occurred in global context. For example, the G28883C (G205R in nucleocapsid) and C22227T (A665V in spike) mutations were found in 38.09% and 21.49% of the global cases, however they were only seen in 1.56% and 0.7% of the Hong Kong cases respectively.

Estimation of the instantaneous effective reproductive number (R_t)

The instantaneous effective reproduction number R_t is defined as the average number of secondary cases generated by cases on day t. If $R_t > 1$ the epidemic is expanding at time t, whereas $R_t < 1$ indicates that the epidemic size is shrinking at time t. The transmissibility of imported and local cases was expected to be very different because intensive non-pharmaceutical interventions had been imposed on travelers arriving from COVID-19 affected regions since January 2020. Hence, we only included cases from the following three categories into the computation of R_t , i.e., local case and epidemiologically linked with local cases defined by the Centre for Health Protection (CHP, <u>https://www.coronavirus.gov.hk/eng/index.html</u>).

Since the epidemic curves provided by CHP were based on the dates of symptom onset or dates of confirmation, we used a deconvolution-based method to reconstruct the COVID-19 epidemic curves by dates of infection (39, 40). We assumed that the incubation period was Gamma with mean and standard deviation of 6.5 and 2.6 days (41), and that the distribution of the time between symptom onset and case confirmation was Gamma with mean and standard deviation of 4.3 and 3.2 days. For asymptomatic cases, we assumed they shared the same distribution of the time between infection and case confirmation with the symptomatic cases. We then computed R_t for local cases only from the respective epidemic curves using the "*EpiEstim*" (42) R package (**Fig. 3**).

Estimation of the relative reproductive number of HK-wave3 compared with HK-wave4A

We defined the comparative transmissibility of any two lineages as the relative reproductive number, i.e., the ratio of their basic reproductive numbers. We extended a previous competition transmission model (43, 44) of two viruses and applied the fitness inference framework to the sequence data collected in Hong Kong during the cocirculation period of HK-wave3 and HK-wave4A clades (between 19-September and 21-October-2020, **Fig. 3**). We assumed the two clades shared the same generation time distribution which can be approximated by the serial interval distribution estimated in Leung *et al.* (45) (i.e., Gamma distribution with

mean and standard deviation of 5.2 and 1.7 days). The inference framework incorporates both incidence and genotype frequency data that reflect the local comparative transmissibility of cocirculating lineages.

Fig. S1.

Time-scaled maximum-likelihood phylogeny of SARS-CoV2 using IQ-TREE (v.2) (26). The tree colored by (A) pandemic waves in Hong Kong, (B) Nextclade, and (C) PANGO classification, respectively. Global sequences are shown in grey.

Fig. S2.

Root-to-tip regression analysis was performed in TempEst v.1.5.3 (25). Colours indicate pandemic waves in Hong Kong as in **fig. S1 (A)**.

Fig. S3.

Geography of SARS-CoV-2 cases in Hong Kong. (A) Map of Hong Kong's 18 districts shaded by the number of laboratory-confirmed cases of SARS-CoV-2. Pie charts divided by transmission types. Pie chart size reflects the number of laboratory-confirmed cases in this district (ratio of cases and radius: 1/50,000). (B) same as (A) based on second wave (ratio of cases and radius in pie charts: 1/5,000). (C) same as (A) based on third wave (ratio of cases and radius in pie charts: 1/25,000). (D) same as (A) based on fourth wave (ratio of cases and radius in pie charts: 1/25,000). (D) same as (A) based on fourth wave (ratio of cases and radius in pie charts: 1/30,000).

Fig. S4. SARS-CoV-2 imported cases colored by continent of origin.

Fig. S5.

Octopus mobility data during pre-pandemic period and early period of wave four in Hong Kong.

Fig. S6.

Sequencing depth of NGS data across the genome. The colored line represents the average read depth at each genomic position.

Fig. S7. Proportion of shared mutations between samples from same individuals.

Fig. S8.

Frequencies and dynamics of SNVs in Hong Kong. (A) Percentage of samples that share mutations in third and fourth wave epidemics. The color codes for major and minor mutations at different genomic sites. High-frequency variant sites (n = 36, identified in at least 5% of the respective samples) are labeled. (B) Relative mutation frequency (allele frequency) of SNVs. The SNVs are colored by the frequencies of mutations reported in GISIAD dataset.

Wave	Duration	Peak of wave (no. of cases on peak day)	Travel-related cases ^b	Community cases ^c	Total confirmed cases	Genomes sequenced	Changes in stringency ^d
1	23-Jan to 22-Feb	9-Feb (10 cases)	17	53	70	36	1-2-3
2	23-Feb to 12-May	27-Mar (65 cases)	705	273	978	206	3-2-3-4
3	13-May to 29-Sep	30-Jul (149 cases)	647	3385	4032	953	4-3-2-4-3
4 ^a	30-Sep to 26-Jan 2021	29-Nov (115 cases)	629	4515	5144	704	3-4-5

Table S1.Cases and genome sequences from waves of SARS-CoV-2 in Hong Kong.

^awave four is summarized until 26 Jan 2021 for this study. ^b imported cases only. ^c epidemiologically linked with imported cases, local cases, and epidemiologically linked with local cases. ^dA-B denotes the stringency index level (based on Oxford COVID-19 Government Response Tracker, See Methods) change from A to B (e.g., 1-2-3 means that the stringency index level was increased from 1 to 2 to 3.

Table S2.

Genome sequencing and population statistics of Hong Kong districts.

Districts	SARS-COV-2 sample size ^a	Sequenced ^b	Latitude ^c	Longitude ^c	Population size ^d	Population density ^d (people per km ²)	Median monthly household income ^d (HK\$)
Central and Western	365	58	22.282150	114.156880	240,500	19,171	41,400
Eastern	548	81	22.284030	114.224220	545,600	30,336	34,300
Southern	219	42	22.246760	114.174134	264,600	6,812	32,800
Wan Chai	348	76	22.279680	114.171680	178,400	16,973	44,100
Sham Shui Po	626	126	22.330700	114.162163	416,500	44,517	24,300
Kowloon City	646	140	22.328290	114.191490	419,900	41,919	30,000
Kwun Tong	804	153	22.313260	114.225810	688,500	61,075	22,500
Wong Tai Sin	841	132	22.342140	114.195830	416,100	44,729	25,500
Yau Tsim Mong	977	216	22.321320	114.172580	329,900	47,177	30,000
Islands	203	38	22.210370	114.028800	186,500	1,054	28,400
Kwai Tsing	566	124	22.354880	114.084010	502,400	21,528	24,700
North	207	43	22.494711	114.138123	314,100	2,301	30,400
Sai Kung	400	78	22.381540	114.270393	472,500	3,645	36,500
Sha Tin	601	99	22.387159	114.195229	688,100	10,014	29,700
Tai Po	246	50	22.450840	114.164223	306,800	2,254	25,800
Tsuen Wan	288	66	22.374630	114.115097	311,800	5,034	32,600
Tuen Mun	473	127	22.396910	113.974411	495,100	5,964	25,000
Yuen Long	553	134	22.445570	114.022293	645,000	4,711	27,000

^a There are 1313 cases that have unknown location information. ^b There are 116 genomes that have unknown location information. ^c Data from https://www.latlong.net/. ^d Data from the Census and Statistics Department (Hong Kong) in 2019.

Table S3.

Travel related cases and epidemiologically linked with imported cases within seven Hong Kong monophyletic clades (over 10 community cases).

The number of samples within lineage	Travel related case ID	Report date	District	Origin ^a
	349	2020-07-15	Unknown	Philippines
902	1156	2020-09-11	Unknown	Philippines
	783	2020-08-02	Eastern	Philippines
	1180	2020-09-20	Kowloon City	Nepal
	1182	2020-09-20	Yau Tsim Mong	Nepal
	1209	2020-10-05	Yau Tsim Mong	Nepal
	1183	2020-09-20	Yau Tsim Mong	Nepal
552	1211	2020-10-06	Yau Tsim Mong	Nepal
	1203	2020-10-04	Yau Tsim Mong	Nepal
	1208	2020-10-05	Yau Tsim Mong	Nepal
	1184	2020-09-20	Yau Tsim Mong	Nepal
	1181	2020-09-20	Kowloon City	Nepal
92	NA ^a			
	1596	2020-12-24	Central and Western	United Kingdom
	1591	2020-12-22	Wan Chai	United Kingdom
22	1592	2020-12-23	Yau Tsim Mong	India
55	1593	2020-12-23	Yau Tsim Mong	India
	1590	2020-12-22	Wan Chai	India
	1586	2020-12-21	NA	India
	84	2020-03-21	Yuen Long	United Kingdom
	91	2020-03-22	Tsuen Wan	United Kingdom
	81	2020-03-20	Eastern	United Kingdom
	68	2020-03-18	Shatin	United Kingdom
	78	2020-03-20	Eastern	United Kingdom
	111	2020-03-24	Central and Western	United Kingdom
29	93	2020-03-22	Eastern	United Kingdom
	92	2020-03-22	Eastern	United Kingdom
	77	2020-03-20	Kwai Tsing	United Kingdom
	71	2020-03-20	Central and Western	United Kingdom
	90	2020-03-22	Tsuen Wan	United Kingdom
	82	2020-03-20	Shatin	United Kingdom
	83	2020-03-21	Yuen Long	United Kingdom
19	NA ^b			
16	256	2020-07-01	Shatin	United States of America

^a This result is based on epidemiological data. ^b No travel-related cases.

Table S4.

Distribution of PANGO lineages across HK-wave3 and HK-wave4A clades.

HK clade	PANGO lineage	Number of genomes
HK-wave3	B.1.1.63	888
	B.1.1	5
	B.1.1.220	6
	B.1.1.192	2
	B.1.1.398	1
HK-wave4A	B.1.36.27	424
	B.1.36	124
	B.1.36.29	2
	B.1.36.10	1
	B.1.36.34	1

Table S5.

Sample numbers associated with different transmission settings in HK-wave3, HK-wave4A and all community cases in wave3 and wave4 based on epidemiological data.

Transmission setting	Wave3 community cases (epidemiological data)	Wave4 community cases (epidemiological data)	HK-wave3 clade (sequenced data)	HK-wave4A clade (sequenced data)
Social	408	802	114	130
Rche/Rchd ^a	145	117	47	4
Family/Roommate	1800	2352	470	226
Unknown/Sporadic	661	763	149	84
Work	354	421	118	81
Nosocomial	17	60	4	27

^a Residential care homes for the elderly and disabled.

Table S6.	
Major SNVs identified in third and fourth waves in Ho	ong Kong.

Position	Wave	Gene	Synonymous mutation	Mutation at nucleotide	Mutation at amino acid	Number of samples with major SNVs	Number of samples with iSNVs	Frequency in GISAID	Proportion in GISAID (%)
241	Wave 3 & 4	Not in ORF	Not in ORF	C241T	NA	1598	0	377531	94.59
3037	Wave 3 & 4	nsp3	TRUE	C3037T	F106F	1600	0	381081	95.48
10194	Wave 3 & 4	nsp5	FALSE	A10194T G	E47V G	2	392	43	0.01
14408	Wave 3 & 4	nsp12_2	FALSE	C14408T	P314L	1595	0	380926	95.44
22422	Wave 3 & 4	S	FALSE	A22422G T	D287G V	5	322	28	0.01
23403	Wave 3 & 4	S	FALSE	A23403G	D614G	1597	0	381443	95.57
872	Wave 3	nsp2	FALSE	G872A T C	D23N Y H	82	4	679	0.17
2973	Wave 3	nsp3	FALSE	C2973T	A85V	859	1	1500	0.38
14925	Wave 3	nsp12_2	TRUE	C14925T	V486V	128	0	849	0.21
16985	Wave 3	nsp13	FALSE	C16985T	T250I	98	1	141	0.04
20262	Wave 3	nsp15	TRUE	A20262G	L214L	60	1	522	0.13
20312	Wave 3	nsp15	FALSE	C20312T	A231V	859	0	148	0.04
21597	Wave 3	S	FALSE	C21597T	S12F	874	1	633	0.16
25785	Wave 3	ORF3a	FALSE	G25785T A	W131C *	202	8	1864	0.47
28308	Wave 3	Ν	FALSE	C28308G T	A12G V	857	1	160	0.04
29144	Wave 3	Ν	TRUE	C29144T	L291L	874	0	606	0.15
29585	Wave 3	ORF10	FALSE	C29585T	P10S	97	2	701	0.18
29711	Wave 3	Not in ORF	Not in ORF	G29711T	NA	220	0	596	0.15
922	Wave 4	nsp2	TRUE	G922A	L39L	549	0	223	0.06
3431	Wave 4	nsp3	FALSE	G3431T	V238L	552	0	426	0.11
5653	Wave 4	nsp3	TRUE	T5653C	Y978Y	479	0	109	0.03
5812	Wave 4	nsp3	TRUE	C5812T	D1031D	117	1	903	0.23
5950	Wave 4	nsp3	FALSE TRUE	G5950T A	K1077N K	1110	12	1175	0.29
6255	Wave 4	nsp3	FALSE	C6255T	A1179V	552	0	543	0.14
7504	Wave 4	nsp3	TRUE	C7504T	Y1595Y	551	0	170	0.04
13176	Wave 4	nsp10	FALSE	C13176T	T51I	144	0	235	0.06
15720	Wave 4	nsp12_2	TRUE	C15720T	D751D	144	3	1377	0.35
18180	Wave 4	nsp14	TRUE	G18180A	K47K	144	0	33	0.01
18877	Wave 4	nsp14	TRUE	C18877T	L280L	617	1	23681	5.93
22418	Wave 4	S	FALSE	A22418G	T286A	1	76	1	0
22444	Wave 4	S	TRUE	C22444T	D294D	603	1	7893	1.98
23994	Wave 4	S	FALSE	A23994G	K811R	1	93	9	0
24175	Wave 4	S	TRUE	T24175C	A871A	536	0	59	0.01
25563	Wave 4	ORF3a	FALSE	G25563C T	Q57H	631	10	89470	22.42
26735	Wave 4	М	TRUE	C26735T	Y71Y	614	1	21029	5.27
28854	Wave 4	Ν	FALSE	C28854T	S194L	611	3	23575	5.91

Table S7. Minor SNVs identified in Hong Kong cases (frequency in GISAID $\geq 1\%$).

		Frequency			Frequency	Frequency	Mutation	Mutation
Position	Gene	in HK	(%)	Silent mutation	in GISAID	in GISAID (%)	(nucleotide)	(amino acid)
28883	N	25	1 56	FALSE	152044	38.09	G28883C	G610R
26801	M	10	0.62	TRUE	86175	21 59	C26801GIT	L279L
22227	S	11	0.62	FALSE	85789	21.39	C22227T	A665V
21255	nsp16	9	0.56	TRUE	85524	21.43	G21255T C	A597A
6286	nsp3	12	0.75	TRUE	85407	21.4	C6286T	T3567T
29645	ORF10	10	0.62	FALSE	85145	21.33	G29645T	V88L
28932	N	9	0.56	FALSE	85057	21.31	C28932A T	A659DIV
445	nsp1	10	0.62	TRUE	84963	21.29	T445C	V180V
1059	nsp2	13	0.81	FALSE	59725	14.96	C1059T	T254I
27944	ORF8	7	0.44	TRUE	57276	14.35	C27944T	H51H
23604	S	15	0.94	FALSE	56514	14.16	C23604T G A	P2042L R H
23063	S	16	1	FALSE	53756	13.47	A23063T G	N1501YD
5986	nsp3	13	0.81	TRUE	53506	13.41	С5986Т	F3267F
28977	N	16	1	FALSE	53437	13.39	C28977T	S704F
3267	nsp3	18	1.12	FALSE	52970	13.27	C3267T	T548I
14676	nsp12 2	12	0.75	TRUE	52930	13.26	C14676T	P1209P
23709	s ¹ –	11	0.69	FALSE	52646	13.19	C23709T	T2147I
27972	ORF8	12	0.75	FALSE	52586	13.18	C27972T	Q79*
24914	S	12	0.75	FALSE	52551	13.17	G24914T C	D3352Y H
15279	nsp12 2	12	0.75	TRUE	52500	13.15	C15279T	H1812H
23271	s ¹ –	11	0.69	FALSE	52472	13.15	C23271A	A1709D
28048	ORF8	12	0.75	FALSE	52430	13.14	G28048A T	R155K I
24506	S	11	0.69	FALSE	52370	13.12	T24506G	S2944Å
16176	nsp12 2	12	0.75	TRUE	52366	13.12	T16176C	T2709T
28111	ORF8	10	0.62	FALSE	52347	13.12	A28111G	Y218C
6954	nsp3	11	0.69	FALSE	52344	13.11	T6954C	I4235T
5388	nsp3	7	0.44	FALSE	52288	13.1	C5388A	A2669D
913	nsp2	14	0.87	TRUE	52196	13.08	C913T	S108S
204	Not in ORF	5	0.31	Not in ORF	47971	12.02	G204T A	NA
21614	S	4	0.25	FALSE	39312	9.85	C21614T	L52F
20268	nsp15	7	0.44	TRUE	26684	6.69	A20268G	L648L
27964	ORF8	6	0.37	FALSE	24942	6.25	C27964T	S71L
28869	Ν	7	0.44	FALSE	23983	6.01	C28869T	P596L
313	nsp1	24	1.5	TRUE	21829	5.47	C313T	L48L
22992	S	9	0.56	FALSE	21826	5.47	G22992C A T	S1430T N I
10319	nsp5	6	0.37	FALSE	20462	5.13	C10319TA	L265F I
11083	nsp6	38	2.37	FALSE TRUE	20168	5.05	G11083T A	L111FL
17615	nsp13	9	0.56	FALSE	19741	4.95	A17615G	K1379R
28975	N	5	0.31	FALSE	19390	4.86	G28975C T A	M702I
21304	nsp16	6	0.37	FALSE	18702	4.69	C21304T	R646C
18424	nsp14	4	0.25	FALSE	17916	4.49	A18424G	N385D
25907	ORF3a	4	0.25	FALSE	17673	4.43	G25907T	G515V
28472	Ν	4	0.25	FALSE	17473	4.38	C28472T	P199S
14805	nsp12 2	4	0.25	TRUE	14592	3.66	C14805T	Y1338Y
4543	nsp3	5	0.31	TRUE	11630	2.91	C4543T	T1824T
25710	ORF3a	3	0.19	TRUE	11496	2.88	C25710T	L318L
15766	nsp12 2	2	0.12	FALSE	11473	2.87	G15766T	V2299L
17019	nsp13	5	0.31	FALSE TRUE	11208	2.81	G17019T A	E783D E
9526	nsp4	4	0.25	FALSE	11146	2.79	G9526T C	M972I
13993	nsp12 2	2	0.12	FALSE	11064	2.77	G13993T	A526S
11497	nsp6	2	0.12	TRUE	11042	2.77	C11497T	Y525Y

2 (07 (•	0.10		10000			10 5 41
26876	Μ	2	0.12	TRUE	10983	2.75	T268/6C	13541
16889	nsp13	2	0.12	FALSE	10934	2.74	A16889G	K653R
29399	Ν	2	0.12	FALSE	10916	2.73	G29399A	A1126T
23401	S	3	0.19	FALSE	10620	2.66	G23401T	Q1839H
5629	nsp3	2	0.12	TRUE	10398	2.61	G5629T	T2910T
15324	nsp12 2	4	0.25	TRUE	10168	2.55	C15324T	N1857N
29734	Not in ORF	5	0.31	Not in ORF	9939	2.49	G29734T C	NA
222	Not in ORF	2	0.12	Not in ORF	9834	2.46	C222T	NA
17104	nsn13	5	0.31	FALSE	8996	2.10	C17104T	H868V
22879	s s	3	0.51	FALSE	8965	2.25	C22870A	N1317K
22079	N	3	0.19	FALSE	8023	2.23	C22879A	D1003S
29300	IN mam ²	12	0.19	FALSE	0923	2.24	C293001 T7767C	1 10955 15049T
//0/	nsp5	12	0.75	TALSE	0010	2.10	1/70/C	130461 X5220X
8047	nsp3	5	0.19		8383	2.15	C804/1	1 3328 I
8083	nsp3	5	0.31	FALSE	8156	2.04	G8083A	M53641
20661	nsp16	3	0.19	TRUE	8129	2.04	120661C	838
29402	N	10	0.62	FALSE	7511	1.88	G29402T C	DI129Y H
27800	ORF7b	3	0.19	TRUE	7440	1.86	C27800A	A39A
28725	Ν	3	0.19	FALSE	7311	1.83	C28725T	P452L
9286	nsp4	17	1.06	TRUE	7271	1.82	C9286T	N732N
10097	nsp5	6	0.37	FALSE	6822	1.71	G10097A T C	G43S C R
18028	nsp13	6	0.37	FALSE	6674	1.67	G18028T	A1792S
21855	S	5	0.31	FALSE	6653	1.67	C21855T	S293F
21575	S	25	1.56	FALSE	6592	1.65	C21575T	L13F
12988	nsp9	5	0.31	FALSE	6563	1.64	G12988T C	M303I
26972	M	3	0.19	TRUE	6559	1.64	T26972C	R450R
15598	nsn12 2	3	0.19	FALSE	6554	1 64	G15598A	V21311
24910	S	5	0.31	TRUE	6544	1 64	T24910CIG	T3348T
24510	nsn?	3	0.25	FALSE	6270	1.57	C2453T	1 1648F
2755	nsp2 N	4	0.25	TDIE	6143	1.57	C24551	N278N
28031	IN N	+ 0	0.23	EALCE	6124	1.54	C280311	T614I
2000/	IN 	0	0.5	TALSE	6002	1.55	C2000/1 T10920C	10141 N210N
19839	nsp15	2	0.12	TRUE	6093	1.55	119839C	N219N T2160T
23/31	5	4	0.25	IKUE	6068	1.52	023/311	121691
10323	nsp5	11	0.69	FALSE	5911	1.48	A10323G	K269R
11396	nsp6	3	0.19	FALSE	5509	1.38	C113961	L424F
2416	nsp2	6	0.37	TRUE	5362	1.34	C2416T	Y1611Y
10870	nsp5	5	0.31	TRUE	5156	1.29	G10870T A	L816L
9745	nsp4	3	0.19	TRUE	5069	1.27	C9745T	Y1191Y
20451	nsp15	4	0.25	TRUE	4978	1.25	C20451T	N831N
22346	S	4	0.25	FALSE	4665	1.17	G22346T	A784S
28087	ORF8	2	0.12	FALSE	4662	1.17	C28087T	A194V
26424	Е	7	0.44	TRUE	4656	1.17	T26424C	S180S
8603	nsp4	3	0.19	FALSE	4626	1.16	T8603C	F49L
13536	nsp12 2	3	0.19	TRUE	4547	1.14	C13536T	Y69Y
15480	$nsp12^{2}2$	3	0.19	TRUE	4530	1.13	C15480A/T	T2013T
3177	nsp3	3	0.19	FALSE	4398	11	C3177T	P458L
8917	nsp5	8	0.1	TRUE	4375	11	C8917T	F363F
4002	nsp4	0 4	0.25	FAISE	4288	1.1	C4002T	T1283I
1052/	nsp1/	-т 3	0.23	TRUE	1175	1.07	C1052/T	I 1/851
1992 4 20170	N	5	0.19	TDUE	тт <i>і і З</i> 4162	1.03	C175241 C20170TMC	
271/9 25127		5	0.31	TRUE	4102	1.04	C25427T	1900P
2343/	OKESa	4	0.25	FALSE TRUE	4038	1.02	G2343/1	L43F
22388	S	2	0.12	IKUE	4038	1.01	0223881	L826L
28253	ORF8	43	2.69	TRUE	3982	1	C28253T	F360F

Transmission nair	Variant calling threshold	Donor	Recipient	Bottleneck	CLlower	CI
Transmission pan	v at failt calling the eshold	DOIIOI	Recipient	size	CI lower	upper
Cluster_fam_1122	0.03	8773	8772	3	1	10
Cluster_fam_1166	0.03	9042	9041	2	1	4
Cluster fam 197	0.03	1905	2168	1	0	9
Cluster fam 222	0.03	2172	2317	1	0	27
Cluster fam 293	0.03	2735	2609	1	0	202
Cluster fam 336	0.03	2989	2962	1	0	13
Cluster fam 509	0.03	3970	3612	1	0	22
Cluster fam 562	0.03	4306	4307	NA	NA	NA
Cluster_fam_718	0.03	5399	5444	1	0	13
Cluster fam 730	0.03	5539	5577	NA	NA	NA
Cluster friends 25	0.03	1839	2047	1	0	10
Cluster roommate 08	0.03	2721	2545	1	0	5
Cluster_roommate_21	0.03	4075	4208	1	0	4

Table S8.Estimation on bottleneck size of transmission pairs.

Table S9.

Highly shared variant sites (allele frequency \geq 3% and were found in >1% of the HK samples) located within or related to PCR primer binding regions.

Position	Number of samples with SNV	Proportion in HK samples
1912	18	0.01124297
1947	551	0.3441599
15487	28	0.01748907
15489	1105	0.69019363
15494	1151	0.71892567
18100	347	0.21673954
24082	178	0.11118051
24091	860	0.53716427
26060	550	0.34353529
29799	21	0.0131168

Table S10.

Gene annotation of SARS-CoV-2 Genome (nucleotide positions base on reference sequence Wuhan-Hu-1, GenBank: MN908947.3).

Gene segment	Start	Stop
nsp1	266	805
nsp2	806	2719
nsp3	2720	8554
nsp4	8555	10054
nsp5	10055	10972
nsp6	10973	11842
nsp7	11843	12091
nsp8	12092	12685
nsp9	12686	13024
nsp10	13025	13441
nsp12_1	13442	13468
nsp12_2	13468	16236
nsp13	16237	18039
nsp14	18040	19620
nsp15	19621	20658
nsp16	20659	21555
S	21563	25384
ORF3a	25393	26220
Е	26245	26472
М	26523	27191
ORF6	27202	27387
ORF7a	27394	27753
ORF7b	27762	27887
ORF8	27894	28259
Ν	28274	29533
ORF10	29558	29674

Data S1. (Data S1.csv)

Origins of imported cases in Hong Kong.

Data S2. (Data S2.csv)

Sample list with waves, NextClade and PANGO lineage designations.

Data S3. (Data S3.csv)

Summary of Hong Kong monophyletic clades.

Data S4. (Data S4.pdf)

Acknowledgements to sequences obtained from GISAID (accessed on 11-June-2021).

Supplementary references

- 22. T. H. C. Sit et al., Infection of dogs with SARS-CoV-2. Nature 586, 776-778 (2020).
- 23. M. Vasimuddin, S. Misra, H. Li, S. Aluru, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). (2019), pp. 314-324.
- 24. H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987-2993 (2011).
- 25. A. Rambaut, T. T. Lam, L. Max Carvalho, O. G. Pybus, Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol* **2**, vew007 (2016).
- 26. L. T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268-274 (2015).
- 27. T. H. To, M. Jung, S. Lycett, O. Gascuel, Fast Dating Using Least-Squares Criteria and Algorithms. *Syst Biol* **65**, 82-97 (2016).
- 28. L. du Plessis *et al.*, Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. *Science* **371**, 708-712 (2021).
- 29. S. Duchene *et al.*, Temporal signal and the phylodynamic threshold of SARS-CoV-2. *Virus Evol* **6**, veaa061 (2020).
- A. J. Drummond, A. Rambaut, B. Shapiro, O. G. Pybus, Bayesian coalescent inference of past population dynamics from molecular sequences. *Mol Biol Evol* 22, 1185-1192 (2005).
- 31. J. L. Geoghegan *et al.*, Genomic epidemiology reveals transmission patterns and dynamics of SARS-CoV-2 in Aotearoa New Zealand. *Nat Commun* **11**, 6351 (2020).
- 32. S. Y. Ho, S. Duchene, D. Duchene, Simulating and detecting autocorrelation of molecular evolutionary rates among lineages. *Mol Ecol Resour* **15**, 688-696 (2015).
- 33. R. Bouckaert *et al.*, BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS Comput Biol* **15**, e1006650 (2019).
- 34. A. J. Drummond, S. Y. Ho, M. J. Phillips, A. Rambaut, Relaxed phylogenetics and dating with confidence. *Plos Biol* **4**, e88 (2006).
- 35. A. Rambaut, A. J. Drummond, D. Xie, G. Baele, M. A. Suchard, Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Syst Biol* **67**, 901-904 (2018).
- 36. E. P. Garrison, G. Marth, Haplotype-based variant detection from short-read sequencing. *arXiv: Genomics*, (2012).
- 37. Z. Lai *et al.*, VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. *Nucleic Acids Res* **44**, e108 (2016).
- 38. A. Wilm *et al.*, LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. *Nucleic Acids Res* **40**, 11189-11201 (2012).
- 39. K. M. Gostic *et al.*, Practical considerations for measuring the effective reproductive number, Rt. *PLoS Comput Biol* **16**, e1008409 (2020).
- 40. J. T. Wu *et al.*, Nowcasting epidemics of novel pathogens: lessons from COVID-19. *Nat Med* **27**, 388-395 (2021).
- 41. J. A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. *Euro Surveill* **25**, (2020).

- 42. R. N. Thompson *et al.*, Improved inference of time-varying reproduction numbers during infectious disease outbreaks. *Epidemics* **29**, 100356 (2019).
- 43. K. Leung, M. Lipsitch, K. Y. Yuen, J. T. Wu, Monitoring the fitness of antiviral-resistant influenza strains during an epidemic: a mathematical modelling study. *Lancet Infect Dis* **17**, 339-347 (2017).
- 44. K. Leung, Y. Pei, G. M. Leung, T. T. Lam, J. T. Wu, Empirical transmission advantage of the D614G mutant strain of SARS-CoV-2. *medRxiv*, (2020).
- 45. K. Leung, J. T. Wu, D. Liu, G. M. Leung, First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. *Lancet* **395**, 1382-1393 (2020).