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ResNET Details 

ResNET (1) is composed of 20 convolutional layers where different levels of feature extraction 

performed with dilation concept, a 3×3×1 convolution kernel with zero dilation for the first seven layers 

(for low-level features extraction), the next seven layers with a dilation of two (for medium-level 

features extraction) and the last six layer with a dilation by a factor of four (for high level feature 

extraction). Every two convolutional layers linked with residual connection and rectified linear unit 

(ReLU) was used as activation function. The LD18F-FDG PET image was fed to Res-NET network to 

predict FD image in image-to-image translation approaches. The network architecture was illustrated in 

Supplemental figure 1. 

ResNET performs image-to-image translation via dilated convolution layers, which learned a 

function to map the LD images to FD images. The image-to-image translation problem can be defined 

as a task of translating one possible representation of a scene into another. Specifically, ResNET (as 

elaborated in Supplemental figure 1) consists of three main parts, including a 3-level dilated convolution 

layers with residual connection. The LD images were used as input to the network. which then attempts 

to generate the FD images. The key feature of ResNET, in addition to dilated convolution kernels, is the 

residual connection, which bypasses the parameterized layers. The ResNet architecture benefits from 9 

residual blocks, which result in a large number of receptive fields (which improves the process of feature 

extraction). To avoid a large number of trainable parameters, a kernel of 3×3×1 was chosen for all 

convolution kernels. Instead of a down-sampling/up-sampling pipeline, the ResNET architecture adopts 

dilated convolutions with factors of 2 and 4 for seven intermediate and six last layers to ensure effective 

feature extraction (Supplemental figure 1). 

Implementation details 

The training for FD prediction was performed using 60 pairs of LD and FD images as input/output, 

respectively. The ResNET model with a 2D spatial window equal to 160 ×160 pixels and batch size of 

20 were used. The following setting was used for the training of the two networks: learning rate = 0.001, 

sample per volume = 1, optimizer = Adam, loss function = L2norm and decay = 0.0001. The 

optimization of the network was carried out based on the L2 loss function. 

 

CycleGAN details 

The CycleGAN consists of two main parts, namely a generator and discriminator, wherein the generator 

learns a mapping from the source image to the target image. Since the source and target images share a 

similar structure, the residual network architecture was used to implement the generators to learn based 

on the residual image, i.e. the difference between the source and target image, rather than all images. 

Discriminator networks were introduced to evaluate the synthesized image. Typically, the generator’s 

objective is to increase the judgement error of the discriminative network, that is to fool the discriminator 



network by producing synthetic or cycle images that are indistinguishable to the input training images. 

The discriminators’ training objective is to decrease its judgement error and enhance the ability to 

differentiate true from synthetic images. The generator attempts to fool the discriminator by generating 

images that are indistinguishable from the ground truth images. The discriminator is then trained to 

discriminate between the generator’s output and ground truth images. The generator and discriminator 

networks were trained in tandem in an adversarial manner. In this work, the number of convolution 

layers in the discriminator architecture is 9, where 8 layers are followed by batch normalization, and the 

last layer is followed by a sigmoid function. The flowchart of this architecture is presented in 

supplemental Table 1. 

CycleGAN is an open github repository (2) containing the original implementation in PyTorch (3). 

Several other implementations are referenced in the repository. In this work, the CycleGAN model is 

implemented from previous code based on Keras (4, 5) with a Tensorflow (6) backend. Supplemental 

Table 1 shows the network architecture and details of the layers, respectively. The last layer of the 

generator architecture contains a Rectified linear unit (ReLU) activation function, but the corresponding 

code uses tanh instead and is therefore used in this work. The suggested model settings are: 

Batch size = 1, Learning rate = 2 ∗ 10−4, Linear decay from initial value to zero over the last 100 

epochs, lambda = 10.0, beta_1 = 0.5, for the Adam optimizer, beta_2 = 0.999, for the Adam optimizer, 

loss function of discriminator and generator= Mean Absolute Error, L1 Loss. 

For hyperparameter tuning we used manual search, we selected some different model 

hyperparameters based on our previous judgment/experience. Then the model was trained and its 

accuracy evaluated and the process started again. This loop is repeated until a satisfactory accuracy is 

obtained. 
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Supplemental Table 1. Parameters of the original CycleGAN model. 

Layer Generators 

1 Convolutional-(Filters-32, Kernel size-7, Stride-1), Batch Norm, ReLU 

2 Convolutional-(Filters-64, Kernel size-3, Stride-2) ,Batch Norm, ReLU 

3 Convolutional-(Filters-128, Kernel size-3, Stride-2), Batch Norm, ReLU 

4-12 Residual block-(Filters-128, Kernel size-3, Stride-1), Batch Norm, ReLU 

13 Convolutional-(Filters-64, Kernel size-3, Stride-0.5), Fractionally strided, Batch Norm, ReLU 

14 Convolutional-(Filters-32, Kernel size-3, Stride-0.5), Fractionally strided, Batch Norm, ReLU 

15 Convolutional-(Filters-3, Kernel size-7, Stride-1), Batch Norm, Tanh 

Layer Discriminators 

1 Convolutional-(Filters-64, Kernel size-4, Stride-2), LeakyReLU with slope 0.2 

2 Convolutional-(Filters-128, Kernel size-4, Stride-2), Instance Norm, LeakyReLU with slope 0.2 

3 Convolutional-(Filters-256, Kernel size-4, Stride-2), Instance Norm, LeakyReLU with slope 0.2 

4 Convolutional-(Filters-512, Kernel size-4, Stride-2), Instance Norm, LeakyReLU with slop 0.2 

 

 

  



 

Supplemental figure 1. Schematic architecture of the Residual network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

 

 

 

 

 

 

Supplemental figure 2. Representative ROIs drawn on malignant lesions (left) and the 4 ROIs defined 

on normal organs (right) including the brain, liver and right and left lungs. 

 

 

 

 

 


