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The main article describes the identification of deleterious mutations in the estrogen receptor 
1 gene (ESR1) from a cohort of 50 breast cancer patients in the state of Qatar, and the prediction 
of protein-drug interactions using computer-based molecular dynamics simulation. We used 
two approaches to investigate the protein-drug interactions, namely ESMACS (enhanced 
sampling of molecular dynamics with approximation of continuum solvent) and TIES 
(thermodynamic integration with enhanced sampling). The Supplemental Material describes 
the free energy methods in more detail, together with all of the mutations identified in the ESR1 
gene. 

Free Energy Methods 

Given the rapidly growing popularity of free energy calculations in drug development and 
personalized medicine, it is all the more necessary to ensure that the predictions are 
reproducible1. The detailed description of the ESMACS and TIES methods has been provided 
in recent publications2,3. For the reader's convenience, we briefly summarise these methods 
here. 

Thermodynamic	 cycle.	The	 free	 energy	 calculation	 is	 carried	 out	 in	 the	 context	of	 a	
thermodynamic	 cycle	 as	 depicted	 in	 Figure	 S1.	 For	 binding	 free	 energy	 differences	
(Figure	S1a),	the	horizontal	legs	are	the	binding	process	of	a	ligand	to	the	same	protein	
with	 slightly	 different	 sequencing,	 here	 being	 the	wild-type	 and	mutant	 ER.	 The	 free	
energy	of	ligand	(lig)	binding	with	protein	(pro)	in	solvent	can	be	evaluated	as:	

Δ𝐺!"#$"#% = 𝐺&'( − 𝐺)*' − 𝐺+"% 	 	 	 Eq.	S1	

where	Gi	is	the	free	energy	of	component	i	which	corresponds	to	either	complex	(com),	
ligand	(lig),	or	protein	(pro).	ESMACS	approach	is	based	on	this	equation,	in	which	Gi	is	
calculated	from	a	set	of	structures	from	MD	simulations.	
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The	 vertical	 legs	 in	 Figure	 S1a	 are	 alchemical	 processes	 during	 which	 a	 molecule	 is	
transferred	from	one	to	another.	Here	the	alchemical	approach	is	used	to	calculate	the	
binding	free	energy	differences	of	a	given	ligand	to	the	wild-type	and	mutant	ERs,	and	the	
binding	free	energy	difference	is	calculated	from	

∆∆𝐺&'()'(* = ∆𝐺+
&'()'(* − ∆𝐺,

&'()'(* = ∆𝐺-./01-2 − ∆𝐺34.01-2	 	 Eq.	S2	

Consider	 two	 systems,	 A	 and	 B,	 with	 potential	 energies	 UA	 and	 UB.	 To	 apply	
thermodynamic	 integration,	 a	 series	 of	 intermediate	 states,	 with	 potential	
energies	 U(λ),	 are	 introduced,	 which	 links	 the	 two	 physics	 states	 (the	 two	
systems),	A	and	B.	λ	is	a	coupling	parameter	such	that	λ=0	and	λ=1	correspond	to	the	
initial	and	final	thermodynamic	states	A	and	B,	respectively.	The	potential	energy	of	an	
intermediate	state	l	is	taken	as	a	combination	of	the	initial	and	final	potential	energies	as	
follows:	

𝑈(𝜆) = (1 − 𝜆)𝑈, + 𝜆𝑈- 	 	 	 	 Eq.	S3	

The	 free	 energy	 ∆𝐺'01-2	(𝑖 = 𝑝𝑟𝑜/𝑐𝑜𝑚)	 of	 the	 alchemical	 process	 is	 given	 in	
thermodynamic	integration	(TI)	as:		

∆𝐺01-2 = ∫ 〈EF(G)
EG

〉G 𝑑𝜆
,
J     Eq. S4 

Here 〈⋯〉λ denotes an ensemble average over configurations representative of an intermediate 
state l.	

Similarly,	 wild-type	 and	mutant	 ER	 have	 different	 free	 energy	 changes,	∆𝐺LM
-.(N	 and	

∆𝐺LM
-.(N,	when	conformations	are	changed	from	active	to	inactive.	The	relative	changes	

upon	mutations	can	be	calculated	with	a	thermodynamic	cycle	(Figure	1b)	as:		

∆∆G = ∆𝐺/QR
-.(N − ∆𝐺LM

-.(N = ∆𝐺MSTU'(0-R − ∆𝐺MSTU0-R   Eq. S5 

          
Figure S1. Thermodynamic	cycles	used	in	the	study	to	calculate	binding	free	energies	or	binding	
free	energy	differences	(a),	and	conformational	free	energy	changes	(b).	(a)	The	horizontal	lines	are	
the	binding	processes	 of	 a	 compound	 to	ER	with	 specific	 sequences	 such	as	 the	wild-type	and	a	
mutation	 (indicated	 in	 silver	 and	 blue	 colours,	 respectively);	 The	 vertical	 lines	 are	 alchemical	
processes	during	which	the	protein	is	transferred	from	one	sequence	(wild-type,	silver)	to	another	
(mutant,	blue).	For	the	calculation	of	the	conformational	free	energy	changes	(b),	the	vertical	lines	
have	 the	 same	meaning	 as	 these	 in	 (a),	 but	 at	 two	 different	 conformational	 states	 (active	 and	
inactive);	the	horizontal	lines	are	conformational	changes	from	active	to	inactive	states. 
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Ensemble approaches. Ensemble-based methods are the central focus of our attention since 
these provide the correct statistical-mechanical way in which to calculate macroscopic 
quantities such as free energies from microscopic dynamics1,4. Extensive studies we have 
performed in recent years have shown that ensemble approaches are able to deliver predictions 
accurately and reproducibly2,5-11. The predictions are also made on time scales that are 
sufficiently rapid to be used in a clinical decision-making context. This is essential for such 
techniques to become a standard technique applicable in diverse applications, including 
pharmaceutical and clinical contexts. Here we use the ensemble-based ESMACS and TIES 
approaches for the binding free energy calculations of drugs to wild-type and mutant estrogen 
receptors. 

ESMACS protocol. In ESMACS, the free energy is evaluated approximately based on the 
extended MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method, 
including configurational entropy, and the free energy of association. Default dielectric 
constants are used: 1 for interior (dielectric in the solute) and 80 for exterior (dielectric in the 
bulk). Our previous studies have shown that the sampled conformations are extensively 
enhanced in the ensemble simulations than these in single simulations1-3,5,6,12,13. According to 
the protocol we have developed, an ensemble consisting of 25 replica simulations is used for 
each complex in order to provide uncertainty quantification at the level of about 1 kcal/mol. 
The number of replicas and the simulation length of each replica are carefully determined3,12 
so that an optimal trade-off between precision and computational cost is achieved. The 
configurational entropy calculations can be performed for the entire complex/protein/ligand 
systems. Our calculations show that the configurational entropy component does not contribute 
to the quality of the free energy prediction. This is not surprising as different conclusions – 
improving, worsening, or having no effect – have been drawn for diverse protein−ligand 
complexes8. The binding free energies reported here therefore do not include the 
configurational entropies. 

 
Table S1. Summary of the 1-, 2- and 3-trajectory methods, in which trajectories of individual 
components are extracted from ensemble simulations of the complex (C) or separate simulations of the 
receptor (R) and ligands (L). 

Protocol Complex Receptor Ligand 

1-traj C C C 

2-traj 
C R C 

C C L 

3-traj C R L 

 

ESMACS can be performed using ensembles of 1-, 2- and/or 3-trajectory methods (Table S1). 
In the 1-trajectory approach, the trajectories for all of the three components – the complexes, 
the receptors and the ligands – are extracted from the simulations of the complexes. In the 2-
trajectory, individual simulations are performed for two of the components, either complexes 
and receptors, or complexes and ligands; the trajectories are extracted from the corresponding 
simulations. For the component for which simulations are not performed (receptor or ligand), 
the trajectories are extracted from the complex simulations. In the 3-trajectory methods, 
simulations are performed for each of the components, and trajectories are extracted from their 
individual simulations. It is highly informative to compare findings based on the 1-, 2- and 3-
trajectory versions of ESMACS3,7,8. For ligand-protein binding that approximates well the 
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original lock-and-key hypothesis, 1-trajectory ESMACS will work well; for situations 
involving “induced fits” and other steric considerations, 2- and/or 3-trajectory ESMACS is 
required and is capable of providing many detailed insights into the binding energetics. In the 
current study, the 1-trajectory method works well, indicating that the ligands bind in a lock-
and-key fashion to the estrogen receptor. It should be noted that the activation of estrogen 
receptor involves relatively large conformational changes, especially for H12 of which the 
orientation changes significantly. The inference of a lock-and-key binding motif is based on an 
assumption of conformational-selection binding. 

TIES protocol. The binding free energy difference, ∆∆Gbinding, of two ligands to the same 
protein, or a ligand to wild-type and variant proteins, can be computed using an alchemical 
transformation for the mutated entity in aqueous solution and within the ligand-protein 
complex. In an alchemical transformation, some atoms gradually vanish from the initial state, 
while some slowly appear towards the final state. In the simulations, a hybrid molecule is 
constructed which consists of both the initial and final states. A coupling parameter λ (0 £ λ £ 
1) is introduced to describe an intermediate state l, where λ=0 and λ=1 correspond to the initial 
and final thermodynamic states. In order to avoid “end-point catastrophes”14, a soft-core 
potential is used for pairwise van der Waals interactions involving the perturbed atoms. 

We have extended the TIES methodology to study relative binding affinities caused by 
the protein mutations when bound to a ligand, a variant which we call TIES-PM5. TIES-
PM is conceptually identical to TIES, except that the alchemically transforming region includes 
the mutating protein residue. Corrections for electrostatic finite-size effects have been added 
to the TIES-PM approach6, extending the domain of applicability of the method to cases where 
a change of net charge between the pair of variants occurs along the alchemical path used in 
thermodynamic integration. 
The convergence analyses of our previous studies show that 5 replicas and 4 ns simulation per 
replica at each l window are sufficient to generate precise results2,15, and are hence used in the 
current study. Thirteen λ windows, consisting of the two endpoints representing the two 
physical states (wild-type and mutant ERs) and 11 intermediate alchemical states, were 
simulated for the alchemical process of the mutations. The intermediate windows were 
mixtures of the two physical states (Eq. S3). Five replicas were used for each λ window, from 
which the energy deviations and the statistical errors were calculated. 

Simulation setup. Ensembles of 25 replicas for ESMACS, and 5 replicas for each l window 
in TIES, were conducted using the package NAMD 2.1216. Amber and AmberTools17 were 
used to set up and analyse of the simulations. Protonation states of all titratable residues were 
assigned at neutral pH using the reduce algorithm18, and checked virtually for the residues near 
the binding site. The non-bonded cutoff was 12 Å, and the Particle Mesh Ewald (PME) method 
was used to treat the long-range Coulomb interactions. All simulations were performed using 
the protocol incorporated in the binding affinity calculator (BAC)19. Each replica was first 
minimized with all heavy protein atoms restrained at their initial positions. The initial velocities 
were then generated independently from a Maxwell–Boltzmann distribution at 50 K, and the 
systems were heated up to 300 K. Once the system reached the correct temperature, an 
isothermal–isobaric ensemble (NPT) was maintained with a temperature of 300 K and a 
pressure of 1 bar. A series of equilibration runs, totaling 2 ns, were conducted, while the 
restraints on heavy atoms were gradually reduced. Finally, 4 ns production simulations were 
run for each replica for all ESMACS and TIES simulations. A 2 fs time step was used for all 
MD simulations. Trajectories were recorded every 10 ps in the production runs. 

For ESMACS, the trajectories were further analysed by MMPBSA.py.MPI to extract the 
energetic information for each snapshot. A script was then run to aggregate these results from 
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the ensemble of simulations and values of ΔGESMACS computed along with bootstrap statistics. 
In TIES, energy derivatives were recorded during MD simulations, which were integrated 
using a trapezoidal rule to obtain the alchemical free energy ΔGalch. Some of the drugs contain 
polar moieties which form hydrogen bonds with protein residues as well as water molecules in 
the binding site. While the water molecules were explicitly included in the simulations, their 
contributions to the binding free energies were taken into account explicitly in TIES-PM 
calculations, and implicitly in ESMACS calculations. 
Hydrogen-bond analyses were performed for the trajectories of the wild-type and mutant 
proteins at both active and inactive states. A hydrogen bond was considered to be formed when 
the distance between a hydrogen-bond acceptor and a hydrogen-bond donor was less than a 
defined distance cutoff and the acceptor−hydrogen−donor angle was greater than an angle 
cutoff. The module cpptraj of AmberTools17 was used, with the default distance cutoff of 3.0 
Å and the angle cutoff of 135°. The frequency of occurrence was reported as the percentage of 
snapshots in which a specified hydrogen bond was observed.  

Standard errors and convergence. Ensemble averaging1 was used to compute means and 
bounded standard errors of the calculated macroscopic free energies. Using the data from 
ensemble simulations, the macroscopic binding affinities were estimated with well-defined 
mean and bounded standard error. To do this, we used bootstrap resampling to resample (with 
replacement) the data from our sample of 25 values and calculate the corresponding mean. A 
very large number of bootstrap samples (100,000 in our studies) was generated, drawing with 
replacement from the population of the original data set. “Resample with replacement” allowed 
some data in the original set to appear more than once, while others did not appear at all. The 
standard deviation of the means provided an estimate of the standard error in the calculated 
binding affinity (DG). The variances of DDG values from ESMACS in Table 2 were the sum 
of the variances of two independent DG values.   
The error analyses for TIES were done in a similar way to that in ESMACS. The standard 
errors, 𝜎., were evaluated for each λ window using the bootstrap resampling as mentioned 
above. The error associated with each alchemical free energy calculation, 𝜎/+&0, was computed 
using: 

𝜎/+&01 =W𝜎.
1(∆𝜆)1

.

 

where 𝜎.1 was the variance associated with the relevant λ-window in the aqueous or bound 
calculation. The overall error, σ, for the free energy difference (DDG) was then computed using: 

𝜎1 = 𝜎/+&0_/345'461 + 𝜎/+&0_!'4#$1  

Mutations Identified from Sequencing Analysis 

Variant-calling computational analysis was performed on the sequenced data obtained from 50 
breast cancer samples and missense variants were identified. These missense single nucleotide 
polymorphism (SNP) variants in the sequenced data were called by SeqScape Software 3 
(applied biosystems). A mutation report was generated for each patient. Chromatogram 
analysis was performed on the sequenced data to detect artifacts/mis-called-nucleotides and 
aberrations. In this manner, a list of SNPs was generated consisting of the patient number, 
mutation and its novelty or known status from variant databases such as dbSNP20. The variants 
in SNP list were identified in the cDNA of the ESR1 reference manually. From	 our	
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sequencing	 study	 22	 nonsynonymous	 mutations	 were	 identified	 (see	 Table	 S2).	
Modelling	and	analysis	of	nsSNPs	was	performed	in	StSNP21.	

Among the identified 22 mutations, 14 mutations were noted to be novel with no annotations 
available in nucleotide variants repositories and 9 mutations were found to be known with their 
respective annotations accessible in variant databases such as dbSNP. Frequencies of detected 
variants in the studied 50 breast cancer samples were computed to understand the occurrence 
and cluster pattern of variants across the analysed patient cohort (see Table S3). The study of 
variants’ occurrence and clustering patterns could be used for further statistical analysis to 
detect unique and prevalent variants among diverse ethnic population thus aiding the goal of 
precision medicine in pharmacology. Additionally, chromatogram quality of the identified 
mutations signifying the possible real or possible artefact status of respective mutations is also 
represented in Table S3. 
As can be seen in Table S3, the mutations with the highest frequency among these patients are 
annotated ones. Looking at the sequencing accuracy and chromatogram quality, we observe 
that the highest frequency mutations at positions 10, 243 and 325 are "clear", conferring 
significant accuracy of the bases called by the sequencer. However, other mutations in this 
table exhibit variations in the significance of their being true mutations or mis-called 
mutations/artefacts. 

Among the mutations studied using modelling analysis we have the following: 

a) the mutation at position 387 was found to be a possible artefact because of unclear 
chromatogram; 

b) the mutation at position 384 was identified as a possible real mutation due to clear 
chromatogram; 

c) the mutation at position 485 was observed with a clear chromatogram and possibly real; 
d) the mutations at positions 529 and 548 were identified as possible artefacts due to 

unclear chromatograms. 
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Table S2. Identified mutations in the ESR1 gene. 

No Mutation Freq Database rs# for mutation 
in database 

Known/Novel 
Status 

Chromosome 
position 

1 S/S 10 20 dbSNP rs2077647 known 6:151807942 

2 P/H 55 1 - - novel 6:151808076 

3 A/A 87 4 dbSNP rs746432 known 6:151808173 

4 P/S 147 1 - - novel 6:151808351 

5 R/R 243 30 dbSNP rs4986934 known 6:151880740 

6 S/F 282 3 - - novel 6:151944257 

7 A/A 318 1 dbSNP rs1401125809 known 6:151944366 

8 P/P 325 30 dbSNP rs1801132 known 6:151944387 

9 L/V 384 1 - - novel 6:152011709 

10 T/A 431 1 dbSNP rs1204611622 known 6:152061046 

11 T/I 485 1 - - novel 6:152094469 

12 T/T 594 7 dbSNP rs2228480 known 6:152098960 

13 H/Y 16 1 - - novel 6:151807958 

14 T/S 140 1 - - novel 6:151808330 

15 R/S 162 1 - - novel 6:151842630 

16 D/A 170 1 - - novel 6:151842653 

17 K/K 210 1 COSMIC COSM4992439 known 6:151842774 

18 C/F 221 1 - - novel 6:151880673 

19 R/P 269 1 - - novel 6:151944218 

20 L/R 387 1 - - novel 6:152011719 

21 K/N 529 1 - - novel 6:152098765 

22 R/P 548 1 - - novel 6:152098821 
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Table S3. Frequency, and reall or artefact status of variants identified in 50 breast cancer 
patient samples. (K = Known; N = Novel; Chromatogram clear = possible functional 
mutation; Chromatogram unclear = possible artefact). 

Mutation 
Position 

Known/
Novel 
Status 

Frequency Patient Number Chromatogram 
Quality 

Possible-real/ 
Possible-artefact 

16(H/Y) N 1 4 unclear artefact 
55(P/H) N 1 15 clear real 
87(A/A) K 4 34,36,38,45 clear real 
140(T/S) N 1 48 unclear artefact 
147(P/S) N 1 2 clear real 
162(R/S) N 1 20 unclear artefact 
170(D/A) N 1 20 unclear artefact 
210(K/K) K 1 15 unclear artefact 
221(C/F) N 1 26 unclear artefact 
269(R/P) N 1 44 unclear artefact 
282(S/F) N 3 15,38,49 clear real 
318(A/A) K 1 5 clear real 
384(L/V) N 1 39 clear real 
387(L/R) N 1 33 unclear artefact 
431(T/A) K 1 27 unclear artefact 
485(T/I) N 1 10 clear real 
529(K/N) N 1 24 unclear artefact 
548(R/P) N 1 22 unclear artefact 
594(T/T) K 7 3,17,36,40,46,47,49 clear real 

243(R/R) K 30 

5,10,14,15,16,17,19,21,
26,27,28,31,33,34,35,3
6,37,38,39,40,41,42,43,
44,45,46,47,48,49,50 

clear real 

10(S/S) K 20 
10,13,15,16,26,30,31,3
6,37,38,39,41,42,43,44,
45,46,47,48,49 

clear real 

325(P/P) K 30 

3,5,8,9,12,15,17,18,21,
22,23,25,26,29,31,33,3
4,35,36,37,38,39,40,42,
43,45,47,48,49,50 

clear real 
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