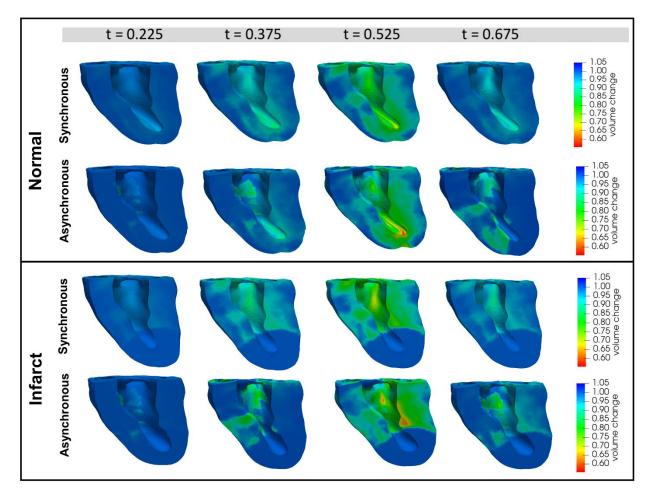
The Impact of Myocardial Compressibility on Organ-Level Simulations of the Normal and Infarcted Heart

Hao Liu^{1,+}, Joao S. Soares^{2,+}, John Walmsley¹, David S. Li¹, Samarth Raut¹, Reza Avazmohammadi³, Paul Iaizzo⁴, Mark Palmer⁶, Joseph H. Gorman III⁵, Robert C. Gorman⁵, and Michael S. Sacks^{1,*}

1 James T. Willerson Center for Cardiovascular Modeling and Simulation, The University of Texas at Austin, Austin, TX, USA


2 Engineered Tissue Multiscale Mechanics and Modeling Laboratory, Virginia Commonwealth University, Richmond, VA, USA

3 Computational Cardiovascular Bioengineering Lab, Texas A&M University, College Station, TX, USA 4 Visible Heart Lab, University of Minnesota Twin Cities, Minneapolis, MN, USA

5 Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA 6 Corporate Core Technologies, Medtronic, Inc.

* msacks@oden.utexas.edu

+Both authors contributed equally to this work

Figure S1. Comparisons of volume reduction in one cardiac cycle between synchronous and asynchronous cases in both normal and infarct in-silico heart models