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Supplementary Notes  

Note S1: The expectation and variance of best 𝑅2score  

Given a set of samples with experimentally determined labels {𝑦𝑜𝑏𝑠,𝑖} and corresponding unknown real 

labels {𝑦𝑖}, By assuming a normally distributed experimental noise term𝜀𝑦,𝑖 ∼ 𝑁(0, 𝜎𝑦,𝑖), 𝑦𝑜𝑏𝑠,𝑖 = 𝑦𝑖 +

𝜀𝑦,𝑖 (𝑦𝑖 ∈ 𝑅). A complete set of features is known as 𝑥𝑖 ∈ 𝑅𝑘 for each sample. The “complete” means 

that this set of features are sufficient to accurately calculate the real value of label 𝑦𝑖 with 𝑦 = 𝑓(𝑥) for 

all samples. The performance of this real function 𝑓(𝑥) on the dataset {𝑥𝑖 ,𝑦𝑜𝑏𝑠,𝑖} gives an upper bound 

for the expected performance of any ML model. The coefficient of determination (𝑅2) of the model 

𝑓(𝑥) in the above argument is given by 

𝑅2 = 1−
∑𝑚

𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − �̂�𝑜𝑏𝑠,𝑖)2

∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2

= 1−
∑𝑚

𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖))2

∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2

 

where 𝑚 is the number of samples. 

𝑅2 = 1 −
∑𝑚

𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − �̂�𝑜𝑏𝑠,𝑖)2

∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2

 

Since 𝑓(𝑥𝑖) = 𝑦𝑖 , 𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖) = 𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑖 = 𝜀𝑦,𝑖, thereby the numerator is ∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 −

𝑓(𝑥𝑖))2 = ∑𝑚
𝑖=1 𝜖𝑦,𝑖

2 . The expectation is given by 

⟨𝑅2⟩ = 1 − ⟨
∑𝑚

𝑖=1 𝜖𝑦,𝑖
2

∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖−𝑦𝑜𝑏𝑠)2

⟩ = 1 − ∑𝑚
𝑖=1 ⟨

𝜖𝑦,𝑖
2

∑𝑚
𝑗=1 (𝑦𝑜𝑏𝑠,𝑖−𝑦𝑜𝑏𝑠)2

⟩. 

Since 𝜖𝑦,𝑖is normally distributed with a zero-mean and variance of 𝜎𝑦,𝑖
2 , then 

𝜀𝑦,𝑖

𝜎𝑦,𝑖
 follows a standard 

normal distribution. Thereby (
𝜀𝑦,𝑖

𝜎𝑦,𝑖
)2follows a chi-squared distribution with a degree of 1 (𝜒2(1)). The 

numerator becomes 𝜖𝑦,𝑖
2 = 𝜎𝑦,𝑖

2 𝜖𝑦,𝑖
2

𝜎𝑦,𝑖
2 ∼ 𝜎𝑦,𝑖

2 ⋅  𝜒2(1). We assume that the variance of the observed values 

𝑦𝑜𝑏𝑠,𝑖  is normally distributed with a variance of 𝜎𝑜𝑏𝑠
2 , then 

∑𝑚
𝑗=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2 ∼ 𝜎𝑜𝑏𝑠

2 ⋅ 𝜒2(𝑚− 1). 

The ratio between two chi-squared distributions is an 𝐹distribution multiplied by the ratio between  their 

degrees of freedom, thereby  

⟨𝑅2⟩ = 1 − ∑𝑚
𝑖=1

𝜎𝑦,𝑖
2

𝜎𝑜𝑏𝑠
2 ⟨

𝜒2(1)

𝜒2(𝑚−1)
⟩ = 1 − ∑𝑚

𝑖=1

𝜎𝑦,𝑖
2

𝜎𝑜𝑏𝑠
2

1

𝑚−1
⟨𝐹(1, 𝑚 − 1)⟩. 

Since ⟨𝐹(1, 𝑚 − 1)⟩ =
𝑚−1

𝑚−3
, then 

⟨𝑅2⟩ = 1 −
1

𝑚 − 3
∑

𝑚

𝑖=1

𝜎𝑦,𝑖
2

𝜎𝑜𝑏𝑠
2

= 1 −
𝑚

𝑚 − 3

𝜎𝑦
2

𝜎𝑜𝑏𝑠
2

 

 

The variance is given by 
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𝑉𝑎𝑟(𝑅2) = 𝑉𝑎𝑟(1 −
∑𝑚

𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖))2

∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2

) = 𝑉𝑎𝑟(
∑𝑚

𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖))2

∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2

) 

With a similar approach as for expectation,  

𝑉𝑎𝑟(𝑅2) = 𝑉𝑎𝑟(∑

𝑚

𝑖=1

𝜎𝑦,𝑖
2

𝜎𝑜𝑏𝑠
2

1

𝑚 − 1

𝜖𝑦,𝑖
2 /𝜎𝑦,𝑖

2

(∑𝑚
𝑖=1 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑜𝑏𝑠)2/𝜎𝑜𝑏𝑠

2 )/(𝑚 − 1)
) 

𝜎𝑦,𝑖
2

𝜎𝑜𝑏𝑠
2  is a constant and the expectation of the ratio part is 

2(𝑚−1)2(𝑚−2)

(𝑚−3)2(𝑚−5)
, thereby 

𝑉𝑎𝑟(𝑅2) =
1

(𝑚 − 1)2
2(𝑚 − 1)2(𝑚 − 2)

(𝑚 − 3)2(𝑚 − 5)
∑

𝑚

𝑖=1

𝜎𝑦,𝑖
4

𝜎𝑜𝑏𝑠
4 =

2𝑚(𝑚 − 2)

(𝑚 − 3)2(𝑚 − 5)

𝜎𝑦
4

𝜎𝑜𝑏𝑠
4  

 

 

Note S2: The expectation and variance of MSE 

The expectation of MSE on the dataset {𝑥𝑖 ,𝑦𝑜𝑏𝑠,𝑖}is given by 

⟨𝑀𝑆𝐸⟩  = ⟨
1

𝑚
∑

𝑚

𝑖=1

(𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖))2⟩ 

 

Since 𝑓(𝑥𝑖) = 𝑦𝑖 , 𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖) = 𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑖 = 𝜀𝑦,𝑖, thereby 

 

⟨𝑀𝑆𝐸⟩ =
1

𝑚
⟨∑

𝑚

𝑖=1

𝜖𝑦,𝑖
2 ⟩ =

1

𝑚
∑

𝑚

𝑖=1

𝜎𝑦,𝑖
2 ⟨

𝜖𝑦,𝑖
2

𝜎𝑦,𝑖
2 ⟩  

 

Since 𝜖𝑦,𝑖is normally distributed with a zero mean and variance of 𝜎𝑦,𝑖
2 , then 

𝜀𝑦,𝑖

𝜎𝑦,𝑖
 follows a standard 

normal distribution. Thereby (
𝜀𝑦,𝑖

𝜎𝑦,𝑖
)2follows a chi-squared distribution with a degree of 1 (𝜒2(1)). The 

expectation of this 𝜒2(1) is 1, thereby  

⟨𝑀𝑆𝐸⟩ =
1

𝑚
∑

𝑚

𝑖=1

𝜎𝑦,𝑖
2 = 𝜎𝑦

2 

This gives a lower bound of expected MSE values for machine learning models.  

 

Accordingly the variance of MSE is given by 

𝑉𝑎𝑟(𝑀𝑆𝐸)  = 𝑉𝑎𝑟(
1

𝑚
∑

𝑚

𝑖=1

(𝑦𝑜𝑏𝑠,𝑖 − 𝑓(𝑥𝑖))2) = 𝑉𝑎𝑟(
1

𝑚
∑

𝑚

𝑖=1

𝜎𝑦,𝑖
2

𝜖𝑦,𝑖
2

𝜎𝑦,𝑖
2 ) 

The 𝜎𝑦,𝑖
2  is a constant and the variance of 

𝜖𝑦,𝑖
2

𝜎𝑦,𝑖
2 ∼ 𝜒2(1) is 2. Thereby 
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𝑉𝑎𝑟(𝑀𝑆𝐸) =
2

𝑚2
∑

𝑚

𝑖=1

𝜎𝑦,𝑖
4 =

2𝜎𝑦
4

𝑚
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Supplementary Figures  

 

A         B 

              

Figure S1. Examples of the data distributions of two sets of yobs each for the (A) linear and (B) nonlinear 

functions used for Monte Carlo simulations of the upper bound of 𝑅2 assuming different levels of 

feature noise (corresponding to Figures 2A and 2B, respectively). 
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Figure S2. Distribution of enzyme Topt values in the dataset (A) before and (B) after cleaning. 
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Figure S3. Deep NN architecture. There are three convolution layers in each of three blocks and have 

the same hyper-parameters. The hyper-parameter space for optimization with Hyperopt1 is listed in 

Table S3. 
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Figure S4. Models trained using amino acid composition (20 features) showed the same predictive 

performance as the whole iFeature set, both with and without OGT as an extra feature, as well as before 

and after data cleaning. This showed that, compared to the amino acid composition, the 5,454 additional 

features derived from the protein sequence did not carry additional information for predicting enzyme 

Topt. Future improvement of Topt prediction therefore necessitates that more relevant features are 

engineered, for instance ones extracted from protein 3D structures. The plots show the performance of 

five regression models when trained on different feature sets without OGT as an additional feature, 

with (A) the dataset before cleaning and (B) the dataset after data cleaning. Detailed description of those 

feature sets can be found in Methods 4.6. Error bars show the standard deviation of R2 scores obtained 

in 5-fold cross validation.  

 

 

 

 

 

 

 

 



 

9 

 

Figure S5. The performance five regression models when trained on different f eature sets with OGT 

as an additional feature, with (A) the dataset before cleaning and (B) the dataset after data cleaning. 

Detailed description of those feature sets can be found in Methods 4.6. Error bars show the standard 

deviation of R2 scores obtained in 5-fold cross validation. 
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Figure S6. Predict Topt of CAZy enzymes 2. (A) 924, 642 sequences covering 6 CAZy families can be mapped to 

an optimal growth temperature (OGT) value by cross-referencing the source organism name and an OGT dataset3. 

The distribution of OGT and predicted Topt of each CAZy family was shown in (B). A list of commercialized 

enzyme Topt values from nzytech (https://www.nzytech.com/) were collected to validate our predictions. nzytech 

data were downloaded from https://www.nzytech.com/resources/catalogues/. A pdf file cazymes_2019.pdf was 

downloaded. Then this pdf file was parsed to obtain the CAZy family id, source organism name and optimal 

temperature of all enzymes in the file. Since there is no sequence provided, nor any sequence/gene id that could 

be mapped to a sequence database, it’s impossible to exactly map those enzymes to the ones in CAZy database. 

Thereby we used the following stra tegies to do the mapping: for a given CAZy family id from a specific organism, 

if there is only one record in nzytech dataset and also only one record in CAZy dataset, then we consider those 

two enzymes are the same enzyme. In such a way, we could find experimental Topt values from nzytech dataset. 

To validate our prediction, the enzymes in the training dataset were also removed by comparing protein sequences 

of those CZAy enzymes to ones in the training dataset. In the end, 27 enzymes from family GH were o btained 

(there are only less than 10 enzymes were found for other families, then they are not included in comparison) . 

Even though our prediction is still not a perfect estimation of experimental values ( RMSE: 11.84 °C ) , this is a 

more accurate estimation than OGT values (Figure S3C and S3D). AA: Auxiliary Activity, CBM: Carbohydrate-

Binding Module, CE: Carbohydrate Esterase, GH: Glycoside Hydrolase, GT: Glycosyl Transferase, PL: 

Polysaccharide Lyase. 

https://paperpile.com/c/8CiNok/vnjor
https://paperpile.com/c/8CiNok/0z7Y2
https://www.nzytech.com/
https://www.nzytech.com/resources/catalogues/
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Figure S7. The estimated upper bounds for condition-specific subsets of the transcriptomics dataset. 

NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) identifiers GSE were used to 

group the data across conditions and ⟨𝑅2⟩𝐿𝐺 was estimated for the four largest subsets with 281, 60, 50 

and 46 samples, respectively. 

 

  

https://www.ncbi.nlm.nih.gov/geo/
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Figure S8. Distribution of 35 quantitative traits collected from Peter J et al 4. 

 

  

https://paperpile.com/c/8CiNok/wtg0
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Figure S9. Comparison between ⟨𝑅2⟩𝐿𝐺and ⟨𝑅2⟩𝑀𝐶for datasets of 35 quantitative traits collected from 

Peter J et al 4. 
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Supplementary Tables  

Table S1. The estimated ⟨𝑅2⟩𝐿𝐺 for melting temperature datasets from  Leuenberger et al 5.  

 
𝜎𝑦
2 𝜎𝑜𝑏𝑠

2  ⟨𝑅2⟩𝐿𝐺 

S. cerevisiae 1.562 5.892 0.93 

E. coli 1.312 7.392 0.97 

Human Hela cell 5.492 6.572 0.30 

T. thermophilus 1.292 8.022 0.97 

Note: Leuenberger R et al 5 measured melting temperatures (Tm values) of  3,557 proteins from Escherichia coli 

(730), Saccharomyces cerevisiae (707),  Thermus thermophilus (1,083), and human Hela cells (1,037) via a 

proteomics approach. In this approach, proteins were first digested into peptides by limited proteolysis. Then Tms 

of those peptides were  measured. Thirdly, peptides with high-quality Tm values were clustered the average Tm  

were assigned as the Tm of this cluster. At last, the cluster with the lowest Tm was assigned as the Tm of the protein. 

Since the standard error was not reported for protein  Tm values, the reported 95% confidence interval of single 

peptides were used to estimate the standard error of protein Tm values with following approach: 1) calculate the 

standard error of each peptide listed Table S3 of 5 from its 95% confidence interval listed in Table S3 of 5 as 

(tm_ciu-tm_cil)/2/1.96, in which tm_ciu and tm_cil are the upper and lower bounds; 2) for a dataset with a list of 

proteins from considered organism(s), calculate the average squared standard errors of the peptides in the dataset; 

3) estimate the average number of peptides in each protein in the considered dataset by dividing the number of 

peptides in each protein by the theoretical number of domains (from Table S3 of 5); 4) the average peptide standard 

error from step 2) was divided by the root of the average peptide number obtained from step 3). This value was 

considered as an approximation of the average standard error √𝜎𝑦
2 of the considered dataset.  

 

 

 

  

https://paperpile.com/c/8CiNok/wZc3g
https://paperpile.com/c/8CiNok/wZc3g
https://paperpile.com/c/8CiNok/wZc3g
https://paperpile.com/c/8CiNok/wZc3g
https://paperpile.com/c/8CiNok/wZc3g
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Table S2. Regression models used and the corresponding hyper-parameter spaces.  

 

Regression 

model 

Module Hyperparameter range 

Linear model sklearn.linear_model.LinearRegression None 

Elastic net sklearn.linear_model.ElasticNetCV Default 

Bayes ridge sklearn.linear_model.BayesianRidge None 

Support vector 

regressor 

sklearn.svm.SVR 'C': 

numpy.logspace(-5, 10, num=16, 

base=2.0), 

 'Epsilon': 

[0, 0.01, 0.1, 0.5, 1.0, 2.0, 4.0] 

Decision tree sklearn.tree.DecisionTreeRegressor 'Min_samples_leaf': 

numpy.linspace(0.01, 0.5, 10) 

Random forest sklearn.ensemble.RandomForestRegressor 'Max_features': 

numpy.arange(0.1, 1.1, 0.1) 
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Table S3. The investigated hyper-parameter space of the deep neural network (Figure S3). 

 parameter Range 

Block 1 

kernel size [20, 30, 40] 

filter [32, 64] 

stride [2, 4, 8] 

dilation [1, 2, 4] 

pool size [2, 4, 8] 

drop out (0, 0.4) 

Block 2 

kernel size [10, 20, 30] 

filter [64, 128] 

stride  [1, 2] 

dilation [1, 2, 4] 

pool size [1, 2, 4] 

drop out (0, 0.4) 

Block 3 

kernel size [10, 20] 

filter [128, 256] 

stride  [1, 2] 

dilation [1, 2, 4] 

pool size [1, 2, 4] 

drop out (0, 0.4) 

1st dense layer 

size [64, 128] 

drop out (0, 0.3) 
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2nd dense layer 

size [32, 64] 

drop out (0, 0.3) 
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