
Supporting information

PyBindingCurve, simulation and curve fitting
to complex binding systems at equilibrium

Steven Shave1*, Yan-Kai Chen1, Nhan T. Pham1, and Manfred Auer1*

1 University of Edinburgh, School of Biological Sciences, University of Edinburgh, The King’s
Buildings, Max Born Crescent, CH Waddington Building, Edinburgh, Scotland EH9 3BF, United
Kingdom

*corresponding authors: s.shave@ed.ac.uk, manfred.auer@ed.ac.uk

PyBindingCurve source code available at https://github.com/stevenshave/pybindingcurve

Contents
Supporting Equation 1; deriving the fraction ligand bound for 1:1 binding systems..............................3

Supporting Equation 2; deriving the fraction total possible dimer present in the dimer formation
system ..4

Supporting Code Listing 1; Mathematica code solving fraction ligand bound to protein in a 1:1
binding system ...5

Supporting Code Listing 2; Mathematica code solving fraction ligand bound to protein in a 1:1:1
competition binding system...6

Supporting Code Listing 3; Mathematica solving the fraction total possible dimer present in the dimer
formation system..7

Supporting Code Listing 4; Mathematica solving the fraction total possible dimer present in the dimer
formation system in the presence of a dimerization inhibitor ...8

Supporting Code Listing 5; Python code solving 1:1 binding at equilibrium using root finding and
minimization of a constrained system and returning a dictionary of concentrations.9

Supporting Code Listing 6; Python code solving 1:1:1 binding at equilibrium using root finding and
minimization of a constrained system and returning a dictionary of concentrations.9

Supporting Code Listing 7; Python code solving homodimer complexation at equilibrium using root
finding and minimization of a constrained system and returning a dictionary of concentrations.10

Supporting Code Listing 8; Python code solving homodimer breaking with an inhibitor at equilibrium
using root finding and minimization of a constrained system and returning a dictionary of
concentrations. ...10

Supporting Code Listing 9; Python code solving 1:1 binding at equilibrium kinetically and returning
protein-ligand complex concentration. ..11

https://github.com/stevenshave/pybindingcurve

Supporting Code Listing 10; Python code solving 1:1:1 binding at equilibrium kinetically and
returning protein-ligand complex concentration..11

Supporting Code Listing 11; Python code solving homodimer complexation at equilibrium kinetically
and returning dimer complex concentration. ...11

Supporting Code Listing 12; Python code solving homodimer breaking with an inhibitor kinetically
and returning dimer complex concentration. ...12

PyBindingCurve User guide ..13

Installation ...13

Requirements ...13

Licence...13

Tutorial...14

Simulation of 1:1 binding and exploration of all options ..14

Fitting of data to 1:1 binding ...18

1:1:1 competition simulation ...21

Fitting to 1:1:1 competition ...23

Homodimer formation simulation ...25

Fitting to homodimer formation ..27

Homodimer breaking simulation ...29

Fitting to homodimer breaking ..31

Simulation of custom binding systems ..33

Documentation and API...38

pbc.BindingCurve ..40

pbc.systems and shortcut strings..43

pbc.BindingSystem..44

pbc.Readout ...45

Supporting Equation 1; deriving the fraction ligand bound for 1:1
binding systems.

[𝑃] = [Pf] + [PL]

[L] = [Lf] + [PL]

KD =
[Pf].[Lf]

[PL]

KD =
([P] ― [PL]).([L] ― [PL])

[PL]

KD[PL] = ([P] ― [PL])([L] ― [PL])

KD[PL] = [P][L] ― [P][PL] ― [L][PL] + [PL]2

0 = [P][L] ― KD[PL] ― [P][PL] ― [L][PL] + [PL]2

0 = [P][L] ― [PL](KD + [P] + [L]) + [PL]2

[PL]2 ― ([P] + [L] + KD)[PL] + [P][L] = 0

The quadratic equation above can be solved using the quadratic formula and the helper variables:

a = 1,

 b = ― (P + L + KD),

c = [P][L]

Resulting in

[PL] =
([P] + [L] + KD) ± ([P] + [L] + KD)2 ― 4[P][L]

2

Note: the negative root of the above equation is the physically relevant solution.

Where [P] is the total protein concentration, [Pf] is the free (unbound) protein concentration, [L] is the
total ligand concentration, [Lf] is the free (unbound) ligand concentration, [KD] is the protein-ligand
complex dissociation constant (KD), and [PL] is the protein-ligand complex concentration.

Supporting Equation 2; deriving the fraction total possible dimer
present in the dimer formation system

[P] = [Pf] + 2[PP]

KD =
[Pf].[Pf]

[PP]

KD =
([P] ― 2[PP])([P] ― 2[PP])

[PP]

KD[PP] = ([P] ― 2[PP])([P] ― 2[PP])

KD[PP] = [P]2 ― 4[P][PP] + 4[PP]2

4[PP]2 ― 4[P][PP] + [P]2 ― KD[PP] = 0

4[PP]2 ― (4[P] + KD)[PP] + [P]2 = 0

The quadratic equation above can be solved using the quadratic formula and the helper variables:

a = 4,

 b = ― (4[P] + KD),

c = [P]2

Resulting in

[PP] =
4[P] + KD ± (4[P] + KD)2 ― 16[P]2

8

Note: similar to 1:1 binding, the negative root of the above equation is the physically relevant
solution.

Where [P] is the total protein (monomer) concentration, [Pf] is the free (unbound) protein
concentration, [KD] is the dissociation constant (KD) of the dimer, and [PP] is the dimer complex
concentration.

A similar derivation is also available in Supporting material of: Benfield CT, Mansur DS, McCoy LE,
Ferguson BJ, Bahar MW, Oldring AP, Grimes JM, Stuart DI, Graham SC, Smith GL (2011) Mapping
the I κ B kinase β (IKKβ)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKβ-
mediated activation of nuclear factor κ B. J Biol Chem 286: 20727-20735

Supporting Code Listing 1; Mathematica code solving fraction ligand
bound to protein in a 1:1 binding system

Clear["Global`*"]
eqtn = {
 p == pf + pl,
 l == lf + pl,
 pl*Kdpl == pf*lf,
 y == ymin + ((ymax - ymin)*pl)/l
 };
toEliminate = {pf, lf, pl};
Solve[Simplify[Eliminate[eqtn, toEliminate]], y]

Symbol Meaning
p Total protein concentration
pf Free protein concentration
l Total ligand concentration
lf Free ligand concentration
pl Protein-ligand complex concentration
Kdpl The KD for the protein-ligand complex
ymin The minimum baseline readout signal
ymax The maximum readout intensity
y Fraction ligand bound to protein

Output:

Supporting Code Listing 2; Mathematica code solving fraction ligand
bound to protein in a 1:1:1 competition binding system

Clear["Global`*"]
eqtn = {
 p == pf + pl + pi,
 i == if + pi,
 l == lf + pl,
 pl*Kdpl == pf*lf,
 pi*Kdpi == pf*if,
 y == ymin + ((ymax - ymin)*pl/l)};
toEliminate = {pf, lf, if, pi, pl};
Solve[Simplify[Eliminate[eqtn, toEliminate]], y]

Symbol Meaning
p Total protein concentration
pf Free protein concentration
i Total inhibitor concentration
if Free inhibitor concentration
l Total (labelled) ligand concentration
lf Free (labelled) ligand concentration
pl Protein-ligand complex concentration
pi Protein-inhibitor complex concentration
Kdpl The KD for the protein-ligand complex
Kdpi The KD for the protein-inhibitor complex
ymin The minimum baseline readout signal
ymax The maximum readout intensity
y Fraction ligand bound to protein

Output too large to list here, can be found converted to Python code in the source code at:

https://github.com/stevenshave/pybindingcurve/blob/master/pybindingcurve/systems/analytical_equat
ions.py

https://github.com/stevenshave/pybindingcurve/blob/master/pybindingcurve/systems/analytical_equations.py
https://github.com/stevenshave/pybindingcurve/blob/master/pybindingcurve/systems/analytical_equations.py

Supporting Code Listing 3; Mathematica solving the fraction total
possible dimer present in the dimer formation system

Clear["Global`*"]
eqtn = {
 p == pf + (2*pp),
 pp*Kdpp == pf*pf,
 y == ymin + ((ymax - ymin)*(2*pp/p))};
toEliminate = {pf, pp};
Solve[Simplify[Eliminate[eqtn, toEliminate]], y]

Symbol Meaning
p Total protein concentration
pf Free protein concentration
pp Total dimer concentration
Kdpp The KD for the protein dimer complex
ymin The minimum baseline readout signal
ymax The maximum readout intensity
y Fraction possible dimer

Output:

Supporting Code Listing 4; Mathematica solving the fraction total
possible dimer present in the dimer formation system in the presence
of a dimerization inhibitor

Clear["Global`*"]
eqtn4 = {
 p == pf + (2*pp) + pi,
 i == if + pi,
 pp*Kdpp == pf*pf,
 pi*Kdpi == pf*if,
 y == ymin + ((ymax - ymin)*(2*pp/p))};
toEliminate = {pf, if, pi, pp};
Solve[Simplify[Eliminate[eqtn4, toEliminate]], y]

Symbol Meaning
p Total protein concentration
pf Free protein concentration
pp Total dimer concentration
i Total inhibitor concentration
if Free inhibitor concentration
pi Protein-inhibitor complex concentration
Kdpp The KD for the protein dimer complex
Kdpi The KD for the protein-inhibitor complex
ymin The minimum baseline readout signal
ymax The maximum readout intensity
y Fraction ligand bound to protein

Output too large to list here, can be found converted to Python code in the source code at:

https://github.com/stevenshave/pybindingcurve/blob/master/pybindingcurve/systems/analytical_equat
ions.py

https://github.com/stevenshave/pybindingcurve/blob/master/pybindingcurve/systems/analytical_equations.py
https://github.com/stevenshave/pybindingcurve/blob/master/pybindingcurve/systems/analytical_equations.py

Supporting Code Listing 5; Python code solving 1:1 binding at
equilibrium using root finding and minimization of a constrained
system and returning a dictionary of concentrations.

from mpmath import mpf, findroot
def system01_minimizer(p, l, kdpl):
 p = mpf(p)
 l = mpf(l)
 kdpl = mpf(kdpl)
 if kdpl==0:
 kdpl+=1e-10
 def f(p_f, l_f):
 pl = p_f * l_f / kdpl
 return p - (p_f + pl), l - (l_f + pl)
 p_f, l_f = findroot(f, [p*0.5,l*0.5], tol=1e-10, solver="anderson")
 return {"pf": p_f, "lf": l_f, "pl": (p_f * l_f) / kdpl}

Supporting Code Listing 6; Python code solving 1:1:1 binding at
equilibrium using root finding and minimization of a constrained
system and returning a dictionary of concentrations.

from mpmath import mpf, findroot
1:1:1 competition - see
https://stevenshave.github.io/pybindingcurve/simulate_competition.html
def system02_minimizer(p, l, i, kdpl, kdpi):
 kdpl = mpf(kdpl)
 kdpi = mpf(kdpi)
 if kdpl==0:
 kdpl+=1e-10
 if kdpi==0:
 kdpi+=1e-10
 p = mpf(p)
 l = mpf(l)
 i = mpf(i)
 def f(p_f, l_f, i_f):
 pl = p_f * l_f / kdpl
 pi = p_f * i_f / kdpi
 return p - (p_f + pl + pi), l - (l_f + pl), i - (i_f + pi)
 p_f, l_f, i_f = findroot(f, [p*0.5,l*0.5,i*0.5], tol=1e-10, solver="anderson")
 return {
 "pf": p_f,
 "lf": l_f,
 "if": i_f,
 "pl": (p_f * l_f) / kdpl,
 "pi": (p_f * i_f) / kdpi,
 }

Supporting Code Listing 7; Python code solving homodimer
complexation at equilibrium using root finding and minimization of a
constrained system and returning a dictionary of concentrations.

from mpmath import mpf, findroot
def system03_minimizer(p, kdpp):
 p = mpf(p)
 kdpp = mpf(kdpp)
 if kdpp==0:
 kdpp+=1e-10
 def f(p_f):
 pp = p_f * p_f / kdpp
 return p - (p_f + 2 * pp)
 p_f = findroot(f, [mpf(0), p], tol=1e-10, solver="anderson")
 return {"pf": p_f, "pp": (p_f * p_f) / kdpp}

Supporting Code Listing 8; Python code solving homodimer breaking
with an inhibitor at equilibrium using root finding and minimization
of a constrained system and returning a dictionary of concentrations.

from mpmath import mpf, findroot
def system04_minimizer(p, i, kdpp, kdpi):
 p = mpf(p)
 i = mpf(i)
 kdpp = mpf(kdpp)
 kdpi = mpf(kdpi)
 if kdpp==0:
 kdpp+=1e-10
 if kdpi==0:
 kdpi+=1e-10
 def f(p_f, i_f):
 pp = p_f * p_f / kdpp
 pi = p_f * i_f / kdpi
 return p - (p_f + pi + 2 * pp), i - (i_f + pi)
 p_f, i_f = findroot(f, (0, max(p,i)), tol=1e-10, solver="anderson")
 return {"pf": p_f, "if": i_f, "pp": (p_f * p_f) / kdpp, "pi": (p_f * i_f) / kdpi}

Supporting Code Listing 9; Python code solving 1:1 binding at
equilibrium kinetically and returning protein-ligand complex
concentration.

import numpy as np
from scipy.integrate import solve_ivp
def system01_p_l_Kd__pl(parameters: dict, interval=(0, 100)):
 p, l, Kdpl = np.float64(parameters['p']), np.float64(parameters['l']),
np.float64(parameters['Kdpl'])
 def ode(concs, t, Kdpl):
 p, l, pl = concs
 r1 = -p*l + Kdpl*pl
 dpdt = r1
 dldt = r1
 dpldt = - r1
 return [dpdt, dldt, dpldt]
 return solve_ivp(lambda t,y:ode(y,t,Kdpl), interval, [p,l,0.0]).y[2,-1]

Supporting Code Listing 10; Python code solving 1:1:1 binding at
equilibrium kinetically and returning protein-ligand complex
concentration.

import numpy as np
from scipy.integrate import solve_ivp
def system02_p_l_i_Kdpl_Kdpi__pl(parameters: dict, interval=(0, 100)):
 p, l, i, Kdpl, Kdpi = np.float64(parameters['p']), np.float64(parameters['l']),
np.float64(parameters['i']), np.float64(parameters['Kdpl']),
np.float64(parameters['Kdpi'])
 def ode(concs, t, Kdpl, Kdpi):
 p, l, i, pl, pi = concs
 r1 = -p*l + Kdpl*pl
 r2 = -p*i + Kdpi*pi
 dpdt = r1 + r2
 dldt = r1
 didt = r2
 dpldt = - r1
 dpidt = - r2
 return [dpdt, dldt, didt, dpldt, dpidt]

Supporting Code Listing 11; Python code solving homodimer
complexation at equilibrium kinetically and returning dimer complex
concentration.

import numpy as np
from scipy.integrate import solve_ivp
def system03_p_Kdpp__pp(parameters: dict, interval=(0, 100)):
 p, Kdpp = np.float64(parameters['p']), np.float64(parameters['Kdpp'])
 def ode(concs, t, Kdpp):
 p, pp = concs
 r1 = -(p*p) + Kdpp*pp
 dpdt = 2*r1
 dppdt = - r1

 return [dpdt, dppdt]
 return solve_ivp(lambda t,y:ode(y,t,Kdpp), interval, [p,0.0]).y[1,-1]

Supporting Code Listing 12; Python code solving homodimer
breaking with an inhibitor kinetically and returning dimer complex
concentration.

import numpy as np
from scipy.integrate import solve_ivp
def system04_p_i_Kdpp_Kdpi__pp(parameters: dict, interval=(0, 100)):
 p, i, Kdpp, Kdpi = np.float64(parameters['p']), np.float64(parameters['i']),
np.float64(parameters['Kdpp']), np.float64(parameters['Kdpi'])
 def ode(concs, t, Kdpp, Kdpi):
 p, i, pp, pi = concs
 r_pp = -(p*p) + Kdpp*pp
 r_pi = -p*i + Kdpi*pi
 dpdt = 2*r_pp + r_pi
 didt = r_pi
 dppdt = -r_pp
 dpidt = -r_pi
 return [dpdt, didt, dppdt, dpidt]
 return solve_ivp(lambda t,y:ode(y,t,Kdpp, Kdpi), interval, [p, i, 0.0, 0.0]).y[2,-1]

PyBindingCurve User guide

PyBindingCurve is a Python package for simulation, plotting and fitting of experimental parameters
to protein-ligand binding systems at equilibrium. In simple terms, the most basic functionality allows
simulation of a two species binding to each other as a function of their concentrations and the
dissociation constant (KD) between the two species.

Installation
PyBindingCurve may be installed from source present in the GitHub repository
https://github.com/stevenshave/pybindingcurve via git pull, or from the Python Package Index
(https://pypi.org/project/pybindingcurve/) using the command :

pip install pybindingcurve

Requirements
PyBindingCurve requires Python 3.7 or later due to custom binding systems making use of ordered
dictionary keys. The following packages are also required

 Matplotlib (2.x)
 Numpy (1.15.x)
 lm_fit (1.0.0)
 mpmath (1.1.0)
 autograd (1.3)

License
MIT License

https://github.com/stevenshave/pybindingcurve
https://pypi.org/project/pybindingcurve/
https://stevenshave.github.io/pybindingcurve/LICENSE

Tutorial

Simulation of 1:1 binding and exploration of all options

Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_1to1_simulation.py

A 1:1 binding system typically consists of a protein and a ligand. However, this 1:1 system is suitable
for simulation of any two different species forming a complex. This system can therefore be used to
simulate hetero-dimer formation, where two different proteins form a complex. In this simple
example, we will imagine wanting to know the concentration of a complex formed. We can choose to
work in a common unit, typically nM, or µM, as long as all numbers are in the same unit, the result is
valid. We assume µM for all concentrations and KDs bellow.

First, we may want to produce a plot of protein vs complex concentration for a fixed amount of
ligand, simulating the titration of protein into a cuvette for example. We must import PyBindingCurve
and NumPy, and then make a new BindingCurve object which takes as an argument the type of
system that should be represented. In this case “1:1” will define the correct system. For a list of all
systems, please see “pbc.systems and shortcut strings” in the PyBindingCurve documentation.

import numpy as np
import pybindingcurve as pbc
my_system = pbc.BindingCurve("1:1")

We then define the system parameters in a python dictionary, defining p (protein concentration) as a
linear NumPy sequence from 0 to 20 µM, l (ligand concentration) as 10 µM, and the protein-ligand
KD to be 1 µM.

system_parameters = {"p": np.linspace(0, 20), "l": 10, "kdpl": 1}

We can now add the curve to the plot. If we want multiple simulations on the same plot, then it is
good to give the curve a name with the optional name parameter.

my_system.add_curve(system_parameters, name= “Curve 1”)

Now we add another, higher affinity curve to the plot, defining a similar system with a lower KD and
add it to the curve.

system_parameters_higher_affinity = {"p": np.linspace(0, 20), "l": 10, "kdpl": 0.5}
my_system.add_curve(system_parameters_higher_affinity, name “Curve 2”)

Finally show the plot. Optionally, title, xlabel and ylabel variables may also be passed to title the plot
and axes.

my_system.show_plot()

This produces the following plot:

https://github.com/stevenshave/pybindingcurve/blob/master/example_1to1_simulation.py

To obtain exact single points from the plot, we may call the query function of my_system:

print(my_system.query({“p”:5, “l”:10, “kdpl”:1})

If a list or NumPy array is included as a system parameter, then a NumPy array of results is returned.

We may want to simulate a system in terms of a signal, not the concentration of complex. In this
case, we may pass additional parameters, setting the ymax and/or ymin variables in the system
parameters. Inclusion of these will scale the signal present between these values. This is very
important if a detector is used with a maximum or minimum sensitivity and you wish to simulate
response. Changing our system parameters to include a maximal response of 2000 units will result in
subtle scale and axes changes:

system_parameters = {"p": np.linspace(0, 20), "l": 10, "kdpl": 1, 'ymax':2000}
system_parameters_higher_affinity = {"p": np.linspace(0, 20), "l": 10, "kdpl": 0.5,
'ymax':2000}
my_system.add_curve(system_parameters, name= “Curve 1”)
my_system.add_curve(system_parameters_higher_affinity, name= “Curve 2”)
my_system.show_plot()

Additionally, we may transform the readout by passing a range of pbc.Readout objects to add_curve,
or query. To display curves as a fraction total ligand bound, we would pass pbc.Readout.fracion_l.
For more information on readouts, please see pbc.Readout in the PyBindingCurve documentation.
Supplying a readout overrides the automatic signal readout selection when a ymin or ymax parameter
has been found in a system:

system_parameters = {"p": np.linspace(0, 20), "l": 10, "kdpl": 1, 'ymax':2000}
system_parameters_higher_affinity = {"p": np.linspace(0, 20), "l": 10, "kdpl": 0.5,
'ymax':2000}

my_system.add_curve(system_parameters, readout=pbc.Readout.fraction_l)
my_system.add_curve(system_parameters_higher_affinity, readout=pbc.Readout.fraction_l)

my_system.show_plot()

Results in the following:

Fitting of data to 1:1 binding

Example code is available here:

https://github.com/stevenshave/pybindingcurve/blob/master/example_1to1_fit.py

A titration of protein from nothing to 200 µM into a cuvette containing 10 µM ligand produces the
following signal from the instrument:

[P] µM 0 20 40 60 80 100 120 140 160 180 200
Signal 54.4 483.2 636.7 709.3 798.7 900.5 907.9 890.6 901.0 1004.6 922.5

We may easily fit this data using PBC and obtain two values… the KD of the complex, as well as the
maximal signal (ymax) achievable with the system.

We first import PBC and Numpy:

import numpy as np
import pybindingcurve as pbc

Next we create NumPy arrays to hold our protein concentration and signal:

xcoords = np.array([0.0, 20.0, 40.0, 60.0, 80.0, 100.0, 120.0, 140.0, 160.0, 180.0,
200.0])
ycoords = np.array([54.4, 483.2, 636.7, 709.3, 798.7, 900.5, 907.9, 890.6, 901.0, 1004.6,
922.5])

We now define a PBC BindingCurve object governed by the 1:1 binding system, and add the
experimental data to PBC’s internal plot using the add_scatter function of the returned BindingCurve
object:

my_system = pbc.BindingCurve("1:1")
my_system.add_scatter(xcoords, ycoords)

When simulating a curve, we define a system with all parameters required to fully describe the
simulation. In this case, we know four things; the amount of protein in the system (xcoords), the
concentration of ligand present, the minimal signal, and finally the response. We supply the amount
of protein and ligand, along with the known minimum signal for no protein being present (calculated
by calling np.min on ycoords), and not yet the response to define the system which will be supplied as
an argument to the fitting function in the next code segment:

system_parameters = {"p": xcoords, "l": 10, “ymin”:np.min(ycoords)}

We then perform the fit, capturing two pieces of data; the fitted system (a dictionary of system
parameters best describing the system) and the fit accuracy data. The call to PBC.BindingCurve.fit
takes the known system parameters, followed by the unknown system parameters, and finally the
signal data which we are fitting to. Unknown system parameters are passed in a dictionary, much like
the system parameters, but their assigned value is only used as a starting point guess for the fitting

https://github.com/stevenshave/pybindingcurve/blob/master/example_1to1_fit.py

routines and can normally be set to any value. A reasonable guess at the true value, however, is good
practice. Inclusion of either ymin or ymax as either a known, or unknown system parameters allows
PBC to infer that we are fitting to a signal, not an absolute, known complex concentration:

fitted_system, fit_accuracy = my_system.fit(system_parameters, {"kdpl": 0, “ymax”:1000},
ycoords)

We may now print out the fitted parameters, along with the accuracy of the parameters. Internally,
PBC utilizes the lmfit package to return fitted parameters along with a true fit accuracy, specifying a
range within which we are 95% certain that the true value is within:

for k, v in fit_accuracy.items():
 print(f"Fit: {k}={fitted_system[k]} +/- {v}")

Running the above code results in the following output:

Fit: kdpl=24.720148154934403 +/- 3.800620728975203
Fit: ymax=1072.308288861583 +/- 34.03937019626566

Indicating that the system’s KD is 24.72 +/- 3.8 µM.

To visualize how well this fit describes the experimental data, we can use the returned system
parameters to plot a curve over the scatter data already added to the pbc.BindingCurve object’s
internal plot. However, the returned system object currently looks like this:

{'p': array([0., 20., 40., 60., 80., 100., 120., 140., 160., 180., 200.]), 'l': 10,
'ymin': 54.4, 'kdpl': 24.720148154934403, 'ymax': 1072.308288861583}

Simulating and plotting such a system would produce a plot with only 11 points along the x-axis and
would not look correct. We therefore increase the number of points present for protein concentration
with the following command:

 fitted_system["p"] = np.linspace(0, np.max(xcoords))

We may then add the curve to the plot and visualize the result.

my_system.add_curve(fitted_system)
my_system.show_plot()

Resulting in the following:

1:1:1 competition simulation
Competition is often used in assays, utilizing displacement of a labelled ligand by new inhibitor to
detect competitive binding and displacement of the label. Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_competition_simulation.py

First perform imports:

import numpy as np
import pybindingcurve as pbc

We can choose to work in a common unit, typically nM, or µM, as long as all numbers are in the same
unit, the result is valid. We assume µM for all concentrations bellow.

Create the PBC BindingCurve object, governed by a 'competition' system.

my_system = pbc.BindingCurve("competition")

First, let’s simulate a curve with no inhibitor present (essentially 1:1)

my_system.add_curve(p": np.linspace(0, 40, 20), "l": 10, "i": 0, "kdpi": 1, "kdpl": 10},
"No inhibitor")

Add curve with inhibitor (i)

my_system.add_curve(
 {"p": np.linspace(0, 40, 20), "l": 10, "i": 10, "kdpi": 1, "kdpl": 10}, "[i] = 10 µM"
)

Add curve with more inhibitor (i)

my_system.add_curve(
 {"p": np.linspace(0, 40, 20), "l": 10, "i": 25, "kdpi": 1, "kdpl": 10}, "[i] = 25 µM"
)

Display the plot:

my_system.show_plot()

Which results in the following:

https://github.com/stevenshave/pybindingcurve/blob/master/example_competition_simulation.py

Fitting to 1:1:1 competition

Using experimental competition data, we may obtain system parameters, such as inhibitor KD.
Example code is available here:

https://github.com/stevenshave/pybindingcurve/blob/master/example_competition_fit.py

Perform the standard imports:

import numpy as np
import pybindingcurve as pbc

We can choose to work in a common unit, typically nM, or µM, as long as all numbers are in the same
unit, the result is valid. We assume µM for all concentrations bellow.

Define experimental data:

xcoords = np.array([0.0, 4.2, 8.4, 16.8, 21.1, 31.6, 35.8, 40.0])
ycoords = np.array([150, 330, 1050, 3080, 4300, 6330, 6490, 6960])

Construct the PyBindingCurve object, operating on a 1:1:1 (competition) system and add
experimental data to the plot:

my_system = pbc.BindingCurve("1:1:1")
my_system.add_scatter(xcoords, ycoords)

Known system parameters, kdpl will be added to this by fitting:

system_parameters = {"p": xcoords, "l": 10, "i": 10, "kdpl": 10}

Now we call fit, passing the known parameters, followed by a dict of parameters to be fitted along
with an initial guess, pass the ycoords, and what the readout (ycoords) is:

fitted_system, fit_accuracy = my_system.fit(system_parameters, {"kdpi": 0}, ycoords)

Print out the fitted parameters:

for k, v in fit_accuracy.items():
 print(f"Fit: {k}={fitted_system[k]} +/- {v}")

Assign more points to 'p' to make a smooth plot:

fitted_system["p"] = np.linspace(0, np.max(xcoords))

https://github.com/stevenshave/pybindingcurve/blob/master/example_competition_fit.py

Add a new curve, simulated using fitted parameters to our BindingCurve object and show the plot:

my_system.add_curve(fitted_system)
my_system.show_plot()

Which results in the following output and plot:

Fit: kdpi=0.44680894202996824 +/- 0.10384753604598472
Fit: ymax=9920.875421523158 +/- 98.92963212643627

Homodimer formation simulation

Homodimer formation is a very simple, with only one species present, two units of which bind
together to make one of a new species (dimer). Dissociation of the dimer then makes two monomers.
Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_simulati
on.py

First, we perform the standard imports:

import numpy as np
import pybindingcurve as pbc

Define our system, homodimer formation has only p (protein, or monomer concentration) and kdpp
(the dissociation constant of the dimer). We can choose to work in a common unit, typically nM, or
µM, as long as all numbers are in the same unit, the result is valid. We assume µM for all
concentrations bellow:

system_parameters = {"p": np.linspace(0, 10), "kdpp": 10}

Make a pbc BindingCurve defined by the 'homodimer formation' binding system:

my_system = pbc.BindingCurve("homodimer formation")

We can now add the curve to the plot and show it:

my_system.add_curve(system_parameters)
my_system.show_plot()

This produces the following simulation plot of the theoretical experiment. It is theoretical as monomer
is titrated in, with no dimer present, something not achievable, although it could be done in reverse.

https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_simulation.py
https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_simulation.py

Fitting to homodimer formation

Using experimental competition data, we may obtain system parameters, such as dimerization KD.
Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_fit.py

Perform the standard imports:

import numpy as np
import pybindingcurve as pbc

We can choose to work in a common unit, typically nM, or µM, as long as all numbers are in the same
unit, the result is valid. We assume µM for all concentrations bellow.

We define the known experimental data bellow:

xcoords = np.array([0.0,2,4,6,8,10])
ycoords = np.array([0., 0.22, 0.71, 1.24,1.88,2.48])

Construct the PyBindingCurve object, operating on a homodimer formation system and add
experimental data to the plot:

my_system = pbc.BindingCurve("homodimer formation")
my_system.add_scatter(xcoords, ycoords)

Known system parameters, kdpp will be added to this by fitting:

system_parameters = {"p": xcoords}

Now we call fit, passing the known parameters, followed by a dict of parameters to be fitted along
with an initial guess, pass the ycoords, and what the readout (ycoords) is:

fitted_system, fit_accuracy = my_system.fit(system_parameters, {"kdpp": 0}, ycoords)

Print out the fitted parameters:

for k, v in fit_accuracy.items():
 print(f"Fit: {k}={fitted_system[k]} +/- {v}")

Producing:

Fit: kdpp=9.939776196471206 +/- 0.15729785759220752

Assign more points to 'p' to make a smooth plot:

fitted_system["p"] = np.linspace(0, np.max(xcoords))

https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_fit.py

Add a new curve, simulated using fitted parameters to our BindingCurve object and show the plot:

my_system.add_curve(fitted_system)
my_system.show_plot()

Producing:

Homodimer breaking simulation

Homodimer breaking is like a competition experiment, however breaking of the dimer results in two
monomers. Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_simulati
on.py

First, we perform the standard imports:

import numpy as np
import pybindingcurve as pbc

We can choose to work in a common unit, typically nM, or µM, as long as all numbers are in the same
unit, the result is valid. We assume µM for all concentrations bellow. Define out homodimer
breaking system, titrating in inhibitor:

system_parameters = {"p": 30, "kdpp": 10, "i": np.linspace(0,60), "kdpi": 1}

Create the PBC BindingCurve object, expecting a 'homodimer breaking' system:

my_system = pbc.BindingCurve("homodimer breaking")

Add the system to PBC, generating a plot and display it:

my_system.add_curve(system_parameters)
my_system.show_plot()

Resulting in:

https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_simulation.py
https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_simulation.py

Fitting to homodimer breaking

Using experimental competition data, we may obtain system parameters, such as dimerization KD.
Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_fit.py

Perform the standard imports:

import numpy as np
import pybindingcurve as pbc

We can choose to work in a common unit, typically nM, or µM, as long as all numbers are in the same
unit, the result is valid. We assume µM for all concentrations bellow.

Define experimental data:

xcoords = np.array([0.0, 16.7, 33.3, 50.0, 66.7, 83.3, 100.0])
ycoords = np.array([0.0, 0.004, 0.021, 0.094, 0.312, 1.188, 3.854])

Construct the PyBindingCurve object, operating on a homodimer breaking system and add
experimental data to the plot:

my_system = pbc.BindingCurve("homodimerbreaking")
my_system.add_scatter(xcoords, ycoords)

 Known system parameters, kdpl will be added to this by fitting:

system_parameters = {"p": xcoords, "i": 100, "kdpp": 10}

Now we call fit, passing the known parameters, followed by a dict of parameters to be fitted along
with an initial guess, pass the ycoords, and what the readout (ycoords) is:

fitted_system, fit_accuracy = my_system.fit(system_parameters, {"kdpi": 0}, ycoords)

Print out the fitted parameters:

for k, v in fit_accuracy.items():
 print(f"Fit: {k}={fitted_system[k]} +/- {v}")

Assign more points to 'p' to make a smooth plot:

fitted_system["p"] = np.linspace(0, np.max(xcoords))

Add a new curve, simulated using fitted parameters to our BindingCurve object and display the plot:

https://github.com/stevenshave/pybindingcurve/blob/master/example_homodimer_formation_fit.py

my_system.add_curve(fitted_system)
my_system.show_plot()

Resulting in:

Fit: kdpi=1.0024780308947485 +/- 0.001698935583536732

Simulation of custom binding systems

Custom binding system example 1

Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_custom_binding_system.py

PyBindingCurve is able to write custom functions representing a binding system from very simple
system definition strings. This allows the simple definition, solving, plotting and fitting to any
custom system.

We define these custom systems as simple strings with reactions separated either on newlines,
commas, or a combination of the two. Reactions take the form:

 r1+r2<->p

Denoting reactant1 + reactant2 form p.

PBC will generate equations representing the custom system and use root finding techniques to
calculate species concentrations at equilibrium. Readouts are signified by inclusion of a star (*) on a
species. If no star is found, then the first seen product is

used. Some system examples follow:- "P+L<->PL" - standard protein-ligand binding

- "P+L<->PL, P+I<->PI" - competition binding

- "P+P<->PP" - dimer formation (default readout on PP - dimer)

- "P*+P<->PP" - dimer formation (readout specified on P - monomer)

- "monomer+monomer<->dimer" - dimer formation (default readout on PP)

- "P+L<->PL1, P+L<->PL2, PL1+L<->PL1L2, PL2+L<->PL1L2" - 1:2 site binding

KDs passed to custom systems use underscores to separate species. P+L<->PL would require the KD
passed as kd_p_l_pl. Running with incomplete system parameters will prompt for the correct ones.
All species and KDs are cast to lower-case, simplifying parameter passing.

We can choose to work in a common unit, typically nM, or µM, as long as all numbers are in the same
unit, the result is valid. We assume µM for all concentrations and KDs bellow.

https://github.com/stevenshave/pybindingcurve/blob/master/example_custom_binding_system.py

To simulate a highly complex system, where protein binds to ligand, but protein can dimerize, while
protein dimer binds to an inhibitor, and the protein dimer has can bind a single ligand, and our readout
is on the protein monomer bound to ligand, we would define the system as follows:

custom_system="""
 P+L<->PL*
 P+P<->PP
 PP+I<->PPI
 PPI+L<->PPIL
"""

We can simulate this system in Python as follows:

import numpy as np
import pybindingcurve as pbc
custom_system="""
 P+L<->PL*
 P+P<->PP
 PP+I<->PPI
 PPI+L<->PPIL
"""
my_system = pbc.BindingCurve(custom_system)

We then define the system parameters in a python dictionary.

system_parameters = {
 'p': np.linspace(0,5),
 'l':0.5,
 'i':4.0,
 'kd_p_l_pl':4.3,
 'kd_p_p_pp':1.2,
 'kd_pp_i_ppi':1.2,
 'kd_ppi_l_ppil':0.2,
}

We can now add the curve to the plot. If we want multiple simulations on the same plot, then it is
good to give the curve a name with the optional name parameter.

my_system.add_curve(system_parameters, name= “Curve 1”)

Finally show the plot. Optionally, title, xlabel and ylabel variables may also be passed to title the plot
and axes.

my_system.show_plot()

This produces the following plot:

To obtain exact single points from the plot, we may call the query function of my_system.

If a list or NumPy array is included as a system parameter, then a NumPy array of results is returned.

We may want to simulate a system in terms of a signal, not the concentration of complex. In this
case, we may pass additional parameters, setting the ymax and/or ymin variables in the system
parameters. Inclusion of these will scale the signal present between these values. This is very
important if a detector is used with a maximum or minimum sensitivity and you wish to simulate
response.

Custom binding system example 2
In 2020, Han1 published a paper describing the treatment of ternary complex formation and provided Excel
workbooks capable of simulating these systems using a kinetic approach [1].

1. Han, B., A suite of mathematical solutions to describe ternary complex formation and their
application to targeted protein degradation by heterobifunctional ligands. Journal of Biological
Chemistry 2020, 295 (45), 15280-15291.

We exemplify the simplicity and power of PyBindingCurve custom system definitions by simulating the complex
formation of Cdc34-Cc0651-Ubiquitin. The interaction of the E2 enzyme Cdc34 with Ubiquitin is stabilized by the
small molecule Cc0651. A flow of binding events can be seen bellow, with Cdc34 denoted as ‘P’, the compound
Cc0651 as ‘C’, and Ubiquitin as ‘U’. Interaction affinities are a combination of estimated and experimental values
taken from literature 2.

2. Huang, H.; Ceccarelli, D. F.; Orlicky, S.; St-Cyr, D. J.; Ziemba, A.; Garg, P.; Plamondon, S.; Auer, M.;
Sidhu, S.; Marinier, A., E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin.
Nature chemical biology 2014, 10 (2), 156-163.

We may define the system using the PyBindingCurve simple custom system nomenclature. Not the star against
the final PCU product, denoting that the readout should be PCU:

Example code is available here:
https://github.com/stevenshave/pybindingcurve/blob/master/example_custom_binding_system2.py

We can simulate this system in Python as follows:

import numpy as np
import pybindingcurve as pbc

Define the custom system

custom_system="""
 P+C<->PC
 P+U<->PU
 PC+U<->PCU
 PU+C<->PCU*
"""

We then define the PBC object and system parameters in a python dictionary.

my_system = pbc.BindingCurve(custom_system)
system_parameters = {
 'p': 5,

https://github.com/stevenshave/pybindingcurve/blob/master/example_custom_binding_system2.py

 'c':np.linspace(0,200),
 'u':50,
 'kd_p_c_pc':250,
 'kd_pc_u_pcu':14,
 'kd_p_u_pu':1000,
 'kd_pu_c_pcu':14
 }

We can now add the curve to the plot. If we want multiple simulations on the same plot, then it is
good to give the curve a name with the optional name parameter.

my_system.add_curve(system_parameters, name= “Curve 1”)

Finally show the plot. Optionally, title, xlabel and ylabel variables may also be passed to title the plot
and axes.

my_system.show_plot()

This produces the following plot:

Documentation and API

Full PyBindingCurve source code can be found here: https://github.com/stevenshave/pybindingcurve

Conventionally, the standard import utilized in a run of PyBindingCurve (PBC) are defined as
follows:

import pybindingcurve as pbc
import numpy as np

PyBindingCurve is imported with the short name ‘pbc’, and then NumPy as ‘np’ to enable easy
specification of ranged system parameters, evenly spaced across intervals mimicking titrations.

Next, we initialize a PBC BindingCurve object. Upon initialization, either a string or BindingSystem
object is used to define the system to be simulated. Simple strings such as “1:1”, “competition”,
“homodimer breaking” can be used as an easy way to define the type of binding system that should be
mathematically modelled. See the list of available system shortcut strings bellow in the ‘pbc.systems
and shortcut strings’ section bellow. Custom objects may also be created of type
pybindingcurve.BindingSystem, of which there exist a large choice within PyBindingCurve, or the
user may create a custom BindingSystem to initialize PBC objects:

my_system=pbc.BindingCurve(“1:1”)

There are three main modes of operation within PyBindingCurve; 1) Visualization of protein-ligand
behavior within a titration, simulating a range of conditions. 2) Simulation of a single system state
with discrete parameters. 3) Fitting of experimental data. A description of these follows:

1. Simulation with visualization: pass a dictionary containing system parameters to the
add_curve function of the BindingCurve object (my_system). Required system parameters
depend on the system being modelled. In the case of 1:1 binding, we require p (protein
concentration), l (ligand concentration), kdpl (dissociation constant between p and l), and
optionally, a ymax and/or ymin variable if dealing with simulation of a signal. add_curve
expects one changing parameter, which will be the x-axis. By default, complex concentration
will be the readout of a system, but that can be changed by passing different readout options
to add_curve. See the ‘pbc.Readout’ section bellow for further information. With one curve
added, we can add more curves, or simply display the plot by calling the show_plot function.

system_parameters={‘p’:np.linspace(0,20), ‘l’:20, ‘kdpl’:10)
my_system.add_curve(system_parameters)
my_system.show_plot()

2. Single point simulation: if you require not a simulation with a curve, but a single point with
set concentrations and KDs, then query may be called with a dictionary of system parameters
and data returned. Additionally, if the dictionary contains a NumPy array, representing a
titration (for example, the system parameters above), then a NumPy array of the readout is
returned instead of a single value:

complex_conc = my_system.query({‘p’:10, ‘l’:20, ‘kdpl’:10})

3. Fit experimental data to a system to obtain experimental parameters, such as KD. A common
situation is determining KD from measurements obtained from experimental data. We can
perform this as follows, with x- and y-coordinates, we add the experimental points to the plot,
define system parameters that we do know (protein concentrations, and the amount of ligand),

https://github.com/stevenshave/pybindingcurve

and then call fit on the system passing in parameters to fit and an initial guess (1), along with
the known parameters. We then iterate and print the fitted parameters.

xcoords = np.array([0.0, 20.0, 40.0, 60.0, 80.0, 100.0, 120.0, 140.0, 160.0, 180.0,
200.0])
ycoords = np.array([0.544, 4.832, 6.367, 7.093, 7.987, 9.005, 9.079, 8.906, 9.010,
10.046, 9.225])
my_system.add_scatter(xcoords, ycoords)
system_parameters = {"p": xcoords, "l": 10}
fitted_system, fit_accuracy = my_system.fit(system_parameters, {"kdpl": 1}, ycoords)
for k, v in fit_accuracy.items():
 print(f"Fit: {k}={fitted_system[k]} +/- {v}")

pbc.BindingCurve
The BindingCurve object allows the user to work with a specific system, supplying tools for
simulation and visualization (plotting), querying of single point values, and fitting of experimental
parameters to observation data.

Initialization
When initializing this main class of PBC, we may supply either a pbc.BindingSystem, a human
readable shortcut string such as “1:1”, “competition”, “homodimer formation”, etc., or a system
definition string. For a full list of systems, shortcuts, and custom systems definition strings, please
refer to the ‘pbc.systems and shortcut strings’ section.

Initialization of a BindingCurve object takes the following arguments:

 """
 BindingCurve class, used to simulate systems

 BindingCurve objects are governed by their underlying system, defining the
 (usually) protein-ligand binding system being represented. It also
 provides the main interface for simulation, visualisation, querying and
 the fitting of system parameters.

 Parameters

 binding_system : BindingSystem or str
 Define the binding system which will govern this BindingCurve object.
 Can either be a BindingSystem object, a shortcut string describing a
 system (such as '1:1' or 'competition', etc), or a custom binding
 system definition string.

"""

Once initialized with a pbc.BindingSystem, we may perform the following utilizing its member
functions.

add_curve
The add curve function is the main way of simulating a binding curve with PBC. Once a
BindingCurve object is initialized,

add_curve(parameters, name = None, readout = None)
 """
 Add a curve to the plot

 Add a curve as specified by the system parameters to the
 pbc.BindingSystem's internal plot using the underlying binding system
 specified on intitialisation.

 Parameters

 parameters : dict
 Parameters defining the system to be simulated
 name : str or None, optional
 Name of curve to appear in plot legends
 readout : Readout.function, optional
 Change the system readout to one described by a custom readout
 function. Predefined standard readouts can be found in the static
 pbc.Readout class.
 """

query
When simulation with visualization (plotting) is not required, we can use the query function to
interrogate a system, returning either singular values, or arrays of values if one of the input parameters
is an array or list.

query(self, parameters, readout: Readout = None):
 """
 Query a binding system

 Get the readout from from a set of system parameters

 Parameters

 parameters : dict
 System parameters defining the system being queried. Will usually
 contain protein, ligand etc concentrations, and KDs
 readout : func or None
 Change the readout of the system, can be None for unmodified
 (usually complex concentration), a static member function from
 the pbc.Readout class, or a custom written function following the
 the same defininition as those in pbc.Readout.

 Returns

 Single floating point, or array-like
 Response/signal of the system

 """

fit
With a system defined, we may fit experimental data to the system.

def fit(self, system_parameters: dict, to_fit: dict, ycoords: np.array, bounds: dict =
None):
 """Fit the parameters of a system to a set of data points

 Fit the system to a set of (usually) experimental datapoints.
 The fitted parameters are stored in the system_parameters dict
 which may be accessed after running this function. It is
 possible to fit multiple parameters at once and define bounds
 for the parameters. The function returns a dictionary of the
 accuracy of fitted parameters, which may be captured, or not.

 Parameters:
 system_parameters : dict
 Dictionary containing system parameters, will be used as arguments
 to the systems equations.
 to_fit : dict
 Dictionary containing system parameters to fit.
 xcoords : np.array
 X coordinates of data the system parameters should be fit to
 ycoords : np.array
 Y coordinates of data the system parameters should be fit to
 bounds : dict
 Dictionary of tuples, indexed by system parameters denoting the
 lower and upper bounds of a system parameter being fit, optional,
 default = None

 Returns

 tuple (dict, dict)
 Tuple containing a dictionary of best fit systems parameters,
 then a dictionary containing the accuracy for fitted variables.
 """

add_scatter
Experimental data can be added plots with the add_scatter command, taking a simple list of x and y
coordinates

def add_scatter(self, xcoords, ycoords):
 """
 Add scatterpoints to a plot, useful to represent real measurement data

 X and Y coordinates may be added to the internal plot, useful when
 fitting to experimental data, and wanting to plot the true experimental

 values alongside a curve generated with fitted parameters.

 Parameters

 xcoords : list or array-like
 x-coordinates
 ycoords : list or array-like
 y-coordinates

 """

show_plot
With curves, scatterpoints and fits applied, we may display the plot

def show_plot(
 self,
 title: str = "System simulation",
 xlabel: str = None,
 ylabel: str = None,
 min_x: float = None,
 max_x: float = None,
 min_y: float = None,
 max_y: float = None,
 log_x_axis: bool = False,
 log_y_axis: bool = False,
 pbc_plot_style: dict = pbc_plot_style,
 png_filename: str = None,
 svg_filename: str = None,
 show_legend: bool = True,
):
 """
 Show the PyBindingCurve plot

 Function to display the internal state of the pbc BindingCurve objects
 plot.

 Parameters

 title : str
 The title of the plot (default = "System simulation")
 xlabel: str
 X-axis label (default = None)
 ylabel : str
 Y-axis label (default = None, causing label to be "[Complex]")
 min_x : float
 X-axis minimum (default = None)
 max_x : float
 X-axis maximum (default = None)
 min_y : float
 Y-axis minimum (default = None)
 max_y : float
 Y-axis maximum (default = None)
 log_x_axis : bool
 Log scale on X-axis (default = False)
 log_y_axis : bool
 Log scale on Y-axis (default = False)
 ma_style : bool
 Apply MA styling, making plots appear like GraFit plots
 png_filename : str
 File name/location where png will be written
 svg_filename : str
 File name/location where svg will be written

 """

pbc.systems and shortcut strings
pbc.systems contains all default systems supplied with PBC, and exports them to the PBC namespace.
Systems may be passed as arguments to pbc.BindingCurve objects upon initialization to define the
underlying system governing simulation, queries, and fitting. Additionally, the following shortcut
strings may be used as shortcuts, all spaces are removed from the input string, and so are represented
without whitespace bellow:

Shortcut string list pbc equivalent
simple
1:1
1:1analytical

System_analytical_one_to_one__pl

simplemin
simpleminimized
simpleminimised
1:1min
1:1minimized
1:1minimised

System_minimizer_one_to_one__pl

simplelagrange
1:1lagrange

System_lagrange_one_to_one__pl

simplekinetic
1:1kinetic

System_kinetic_one_to_one__pl

homodimerformation System_analytical_homodimerformation__pp
homodimerformationmin
homodimerformationminimiser
homodimerformationminimizer
homodimermin
homodimerminimiser
homodimerminimizer

System_minimizer_homodimerformation__pp

homodimerformationlagrange
homodimer formation lagrange

System_lagrange_homodimerformation__pp

homodimerformationkinetic
homodimer formation kinetic

System_kinetic_homodimerformation__pp

competition, 1:1:1 System_analytical_competition__pl
competitionmin
competitionminimiser
competitionminimizer
1:1:1min
1:1:1minimiser
1:1:1minimizer

System_minimizer_competition__pl

competitionlagrange System_lagrange_competition__pl
homodimerbreaking
homodimerbreakingmin
homodimerbreakingminimiser
homodimerbreakingminimizer

System_minimizer_homodimerbreaking__pp

Homodimerbreakinglagrange System_lagrange_homodimerbreaking__pp
Homodimerbreakingkinetic System_kinetic_homodimerbreaking__pp
homodimerbreakinganalytical System_analytical_homodimerbreaking__pp
1:2
1:2min
1:2minimizer
1:2minimiser

System_minimizer_1_to_2__pl12

1:2lagrange System_lagrange_1_to_2__pl12
1:3
1:3min
1:3minimizer
1:3minimiser

System_minimizer_1_to_3__pl123

1:3lagrange System_lagrange_1_to_3__pl123

1:4
1:4lagrange

System_lagrange_1_to_4__pl1234

1:5
1:5lagrange

System_lagrange_1_to_5__pl12345

Custom systems can be passed allowing the use of custom binding systems derived from a simple
syntax. This is in the form of a string with reactions separated either on newlines, commas, or a
combination of the two. Reactions take the form:

 r1+r2<->p

Denoting reactant1 + reactant2 form the product. PBC will generate and solve custom defined
constrained systems. Readouts are signified by inclusion of a star (*) on a species. If no star is found,
then the first seen product is used. Some system examples follow:

 "P+L<->PL" - standard protein-ligand binding
 "P+L<->PL, P+I<->PI" - competition binding
 "P+P<->PP" - dimer formation
 "monomer+monomer<->dimer" - dimer formation
 "P+L<->PL1, P+L<->PL2, PL1+L<->PL1L2, PL2+L<->PL1L2" - 1:2 site

binding

KDs passed to custom systems use underscores to separate species and product. P+L<->PL would
require the KD passed as kd_p_l_pl. Running with incomplete system parameters will prompt for the
correct ones.

pbc.BindingSystem
Custom binding systems may be defined through inheritance from the base class pbc.BindingSystem.
This provides basic functionality through a standard interface to PBC, allowing simulation, querying
and fitting. It expects the child class to provide a constructor which passes a function for querying the
system and a query method. An example pbc.BindingSystem for 1:1 binding solved analytically is
defined as follows:

class System_analytical_one_to_one_pl(BindingSystem):
 def __init__(self):
 super().__init__(
 analyticalsystems.system01_one_to_one__p_l_kd__pl, analytical=True
)
 self.default_readout = "pl"

 def query(self, parameters: dict):
 if self._are_ymin_ymax_present(parameters):
 parameters_no_min_max = self._remove_ymin_ymax_keys_from_dict_return_new(
 parameters
)
 value = super().query(parameters_no_min_max)
 with np.errstate(divide="ignore", invalid="ignore"):
 return (
 parameters["ymin"]
 + ((parameters["ymax"] - parameters["ymin"]) * value)
 / parameters["l"]
)
 else:
 return super().query(parameters)

Here, we see the parent class constructor called upon initialization of the object with two arguments,
the first is a python function which calculates the complex concentration present in a 1:1 binding
system, which itself takes the appropriate parameters to calculate this. In addition, a flag is set to
define when the solution is being solved analytically. The query method examines the content of the
system and deals with the presence of ymin and ymax to denote a signal is being simulated. Query
should ultimately end up calling query on the parent class, which has been set to return the result of
the previously assigned function in the constructor.

pbc.Readout
The pbc.Readout class contains three static methods, not requiring object initialization for use. These
methods all take in a system parameters dictionary describing the system, and the y_values resulting
from system query calls (either through simulation of querying for singular values). These readout
functions offer a convenient way to transform results. For example, the readout function to transform
complex concentration into fraction ligand bound is defined as follows:

def fraction_l(system_parameters: dict, y):
 """ Readout as fraction ligand bound """
 return "Fraction l bound", y / system_parameters["l"]

This returns a tuple, with the first value being used in labelling of the plot y-axis, and the second the
y-values to be plotted; in this case, the original y values divided by the overall starting ligand
concentration. Similar functions can be defined and used interchangeably with those found in
pbc.Readout.

