
S2 Appendix

Model checking

As suggested by a reviewer, we first investigated model adequacy through the Bayesian

mid p-value. Initially, we follow Marshall and Spiegelhalter (2003), and compare the

actual observation yi,t with the predictive posterior distribution p(Y rep
i,t | y−[i,t]), where

Y rep
i,t is a replicate of the observation in neighbourhood i and week t, and y−[i,t] denotes

the set of observations excluding the one in neighbourhood i and week t. To check how

extreme the observed value is under the predictive posterior distribution generated by a

particular model, the mid p-value for each observation is computed as

p(Y rep
i,t < yi,t | y−[i,t]) + 0.5p(Y rep

i,t = yi,t | y−[i,t]). (1)

This suggests that this comparison should be made through cross-validation; that is, we

should exclude one observation at a time, fit the models, and compute the p-value each

time. Because of the large sample size we have (N × T = 160 × 44 observations), and

the computational burden to fit the proposed models, this approach would be extremely

time consuming (Marshall and Spiegelhalter, 2003). Once a sample from the posterior

distribution of the parameters of a particular model is available, Marshall and Sipegelhal-

ter (2003) propose a mixed predictive method to approximate the posterior distribution

excluding one observation at a time, p(Θ | y−[i,t]), where Θ represents the parameter

vector of interest.

Panels of Figure 1 show the estimated mid p-values. Clearly Model 4 provides a

distribution that has high probability mass around 0.5. In particular, 13.2% (933 out
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of 160 × 44) of the mid p-values are smaller than 0.1 or greater than 0.9, suggesting

reasonable fit of the model. As pointed out by Gelman (2013), Bayesian p-values tend

to have distributions more concentrated near 0.5. One of the reasons might be due to

weakly informative priors, such that the center of the posterior predictive distribution

will be close to yi,t.
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(a) Histograms

Figure 1: Distribution of the Bayesian p-values under the different fitted models.

To further investigate model adequacy we followed Czado et al. (2009) and computed

the Probability Integral Transform (PIT). Based on a sample of size L from the posterior

distribution of the parameter vector for each model, the cumulative predictive probabil-

ities to compute the PIT were estimated as the mean of P (Yi,t < yobsi,t | µ
(l)
i,t ), where

l = 1, · · · , L and yobsi,t denotes the observed count in neighbourhood i and week t. De-

viations from the Uniform(0,1) distribution indicate poor fitting. As described in Czado

et al. (2009) if the PIT is U-shaped this indicates an overdispersed predictive distribu-

tion. On the other hand, if the PIT is inversely U-shaped this indicates a underdispersed

predictive distribution. A uniform PIT is indication of a well calibrated predictive dis-
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tribution. Panels of Figure 2 show the nonrandomized PIT histograms under each of the

fitted models. According to the PIT, model 4 provides the most calibrated fitted values

and suggest adequate fitting.
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Figure 2: Nonrandomized PIT histograms computed as proposed in Czado et al. (2009).

Deviations from the Uniform(0,1) distribution (dashed line) indicate poor fititng.

To showcase the fitted and observed values from Model 4, Panels of Figure 3 show the

posterior summary of the fitted values together with the respective observed values for the

same neighborhoods shown in Figure 8 of the main text. These plots were chosen because

they represent well the fitted values obtained for each of the n = 160 neighborhoods.
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Figure 3: Posterior summaries (mean: solid line; shaded area: pointwise 95% credible

interval), under Model 4, together with observed number of cases of chikungunya (solid

circles) for the same nine neighbourhoods displayed in Figure 8 of the main text.
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