

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Laboratory evaluation of SARS-CoV-2 antibodies: detectable IgG up to 20 weeks post infection.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048142
Article Type:	Original research
Date Submitted by the Author:	21-Dec-2020
Complete List of Authors:	Robertson, Louise; Ulster University, Biomedical Sciences Research Institute Moore, Julie; Ulster University - Coleraine Campus, Biomedical Sciences Research Institute Bilghe, Kevin; Ulster University - Coleraine Campus, Biomedical Sciences Research Institute Ng, Mark Kok Yew; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Quinn, Nigel; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Jennings, Fergal; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Warnock, Gary; Southern Health and Social Care Trust, Microbiology Laboratory Sharpe, Peter; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Clarke, Mark; Northern Ireland Blood Transfusion Service, Belfast City Hospital Maguire, Kathryn; Northern Ireland Blood Transfusion Service Rainey, Sharon; Northern Ireland Blood Transfusion Service Rainey, Sharon; Northern Ireland Blood Transfusion Service, Belfast City Hospital Price, Ruth; Ulster University, Biomedical Sciences Research Institute Burns, William; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Kowalczyk, Amanda; Ulster University, Biomedical Sciences Research Institute Akuuah, Agnes; University of Ulster, Biomedical Sciences Research Institute MeNamee, Sara; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Wallace, Gayle; Belfast Health and Social Care Trust, Royal Victoria Hospital Hunter, David; Belfast Health and Social Care Trust, Royal Victoria Hospital Sager, Steve; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University, Biomedical Sciences Research Institute Mocre, Tara; Ulster University, Biomedical Sciences Research Institute

	Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Diagnos microbiology < INFECTIOUS DISEASES
		1
		SCHOLARONE™
		Manuscripts
F	or peer review	only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1 ว		
2	1	Laboratory avaluation of SARS CoV 2 antibodiacy detectable laC up to 20
4	1	Laboratory evaluation of SARS-Cov-2 antibodies: detectable igG up to 20
5	Z	weeks post mection.
6	2	
7	3	Authors: Louise L. Debartson ¹ , Julia S. Maara ¹ , Kavin Bligha ¹ , Kak You Ng ² , Nigal
8	4	Authors. Louise J. Robertson', Julie S. Moore', Nevin Bilgne', Nok Yew Ng ² , Nigel
9 10	5	Quinn ^o , Fergai Jennings ^o , Gary Warnock ⁺ , Peter Sharpe ^o , Mark Clarke ^o , Kathryn
11	6	Maguire ³ , Sharon Rainey ³ , Ruin Price ¹ , William Burns ² , Amanda Kowalczyk ¹ , Agnes
12	/	Awuan', Sara Michamee ² , Gayle Wallace ⁶ , David Hunter ⁶ Steve Sager', Connie
13	8	Chao Shern', M. Andrew Nesbit', James McLaughlin ² , Tara Moore ¹⁴⁷ .
14	9	
15	10	Biomedical Sciences Research Institute, Ulster University, Northern Ireland
16	11	² Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern
17	12	Ireland
18	13	³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern
20	14	Ireland
21	15	⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland
22	16	⁵ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland
23	17	⁶ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland.
24	18	⁷ Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States
25	19	
26	20	*Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk
27	21	Professor James McLaughlin jad.mclaughlin@ulster.ac.uk
20 29	22	
30		
31	23	
32		
33	24	
34		
35	25	
30		
38	26	
39		
40	27	
41		
42	28	
43 11		
44	29	
46		
47	30	
48		
49	31	
50		
51	32	
52 53		
55 54	33	
55		
56	34	
57		
58 50	35	
60		

2 3 4	36	Abstract
5 6	37	Objective
7 8 9	38	To evaluate the dynamics and longevity of the humoral immune response to SARS-
	39	CoV-2 infection and assess the performance of the UK-RTC AbC-19 Rapid Test
10 11	40	lateral flow immunoassay (LFIA) for the target condition of SARS-CoV-2 spike
12 13	41	protein IgG antibodies.
14 15 16	42	Design
	43	Nationwide serological study.
17 18	44	Setting
19 20	45	Northern Ireland, UK, May - August 2020.
21	46	Participants
22 23	47	Plasma samples were collected from a diverse cohort of individuals from the general
24 25	48	public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood
26 27	49	donations and research studies (n=223) and through a convalescent plasma
28	50	program (n=183).
29 30	51	Main Outcome Measures
31 32	52	SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-
33 34	53	CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2
34 35 36 37	54	ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity,
	55	estimated using a reference standard system to establish a characterised panel of
38 39	56	330 positive and 488 negative SARS-CoV-2 IgG samples.
40 41	57	Results
42	58	We detected persistence of SARS-CoV-2 IgG up to 140 days (20 weeks) post
43 44	59	infection, across all three laboratory-controlled immunoassays. On the known positive
45 46	60	cohort, the UK-RTC AbC-19 lateral flow immunoassay showed a sensitivity of 97.58%
47 48 49 50 51 52 53 54 55 56	61	(95.28%-98.95%) and on known negatives, showed specificity of 99.59% (98.53 %-
	62	99.95%).
	63	Conclusions
	64	Through comprehensive analysis of a cohort of pre-pandemic and pandemic
	65	individuals, we show detectable levels of IgG antibodies, lasting up to 140 days,
	66	providing insight to antibody levels at later time points post infection. We show good
57 58	67	laboratory validation performance metrics for the AbC-19 rapid test for SARS-CoV-2
59 60	68	spike protein IgG antibody detection in a laboratory-based setting.

BMJ Open

1 2		
3 4	69	
5 6 7 8 9	70	Strengths and Limitations
	71	Strength - This paper describes for the first time a non-clinical laboratory evaluation
10 11	72	and comparison of the ability of three different immunoassays to detect SARS-CoV-2
12 13	73	antibodies in the same samples detecting different subtypes of antibodies against
14 15 16	74	different targets of the viral antigenic repertoire, that does not rely on PCR-positivity
16 17 18	75	as definition of expected test outcome, to provide a panel of known antibody positive
19 20	76	and antibody negative serology for evaluation of newly developed immunoassays.
21 22	77	
23 24 25	78	Strength - This study demonstrates AbC-19 lateral flow point of care detection of IgG
26 27	79	antibodies to the full trimeric spike protein of SARS-CoV-2 virus, the antibodies made
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	80	in response to the vaccines used globally, in a large cohort of subjects, 330 positive
	81	samples, up to 140 days post infection, across a broad age range (18-90 years).
	82	Robust antibody responses were observed in all age groups tested, including over-
	83	65s, who are most at risk of severe COVID-19 symptoms, with the eldest in our
	84	population having priority for mass vaccination.
	85	
	86	Strength - This study shows excellent correlation between approved laboratory-based
44 45	87	assays and the newly developed AbC-19 lateral flow point of care lateral flow test for
46 47 48 49 50 51 52	88	the detection of SARS-CoV-2 antibodies in characterised cohorts of known positive
	89	and negative plasma samples in an evaluation conducted according to MHRA
	90	guidelines during a pandemic.
53 54 55	91	
56 57	92	Limitation- This study was conducted in a standardised setting with very experienced
58 59	93	users on plasma characterised as positive or negative for the presence of antibodies
60		

Keywords

Introduction

using a reference standard alongside one other assay which would allow for the possibility of spectrum bias and may well not reflect the true performance metrics of any of the assays evaluated when translated to real life settings, using finger prick blood samples, in which pre-test probability would impact greatly on positive and negative predictive values.

The World Health Organization declared a pandemic in March 2020 due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), identified late 2019 in Wuhan, China, causing COVID-19 disease (1,2).

SARS-CoV-2, COVID-19, immunoassay, LFIA, pandemic, antibody assay

A global race ensued to develop diagnostic assays, with the most common being viral RNA detection (RT-qPCR assays), to detect acute infection(3). RT-qPCR assays are labour and reagent intensive, limited by a short temporal window for positive diagnosis, and exhibit potential for false negative results (4). Evidence suggests sensitivity of RT-qPCR can be as low as 70% (5). Lockdown measures and "flattening the curve" strategies meant many infected individuals were instructed to self-isolate and were not offered a diagnostic RT-qPCR, with much of the testing limited to patients admitted to hospital, who perhaps reflect a more severely infected cohort. Consequently, a potentially large number of cases were unconfirmed or undetected(6).

The ability to accurately detect SARS-CoV-2 specific antibodies, which develop after an immune response is evoked, is vital for building biobanks of convalescent sera for treatment, monitoring immune response to infection alongside surveillance studies

and assessing responses to vaccination programmes. The timing for when antibody
against the novel SARS-CoV-2 virus can be measured is at this time not fully
characterised.

Commercial serology immunoassays are mostly laboratory-based and measure IgG antibody levels in plasma or serum. Alternatively, lateral flow immunoassays (LFIAs), require a finger prick blood sample and can be used at point-of-care (POC) or in the home; particularly important in the context of lockdown enforcement during the pandemic. Currently, a limited number of laboratory-based chemiluminescence immunoassays are approved for use in the UK including the Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM against the SARS-CoV-2 Nucleocapsid antigenic region (Roche Diagnostics, Basel, Switzerland) and the Abbott SARS-CoV-2 IgG assay against the same antigenic region (Abbott Diagnostics, Abbott Park, IL, USA).

The complexities of the humoral immune response to SARS-CoV-2 is a much-debated topic. In a US study, approximately one in 16 individuals lacked detectable IgG antibodies up to 90 days post symptom onset, despite previous RT-PCR confirmed infection (7). Patients who remain asymptomatic may mount a humoral immune response which is short-lived, with detectable levels of antibody falling rapidly (8). This, alongside potentially low sensitivity and lack of RT-PCR test availability across the UK has hindered development of well characterised gold standard serology test for IgG antibodies to SARS-CoV-2.

Herein, we describe the use of Roche and Abbott commercial immunoassays, as well
 as the EuroImmun Anti-SARS-CoV-2 ELISA-IgG against the S1 domain of the spike
 antigenic protein of SARS-CoV-2 (EuroImmun UK, London, UK) to characterise pre pandemic and pandemic COVID-19 blood samples (n=880) from within Northern
 Ireland and report on longevity of IgG antibodies detected. Presently, there is no gold

standard assay for comparison, therefore we aimed to establish a reference based on a positive COVID-19 antibody status. We present results of a laboratory evaluation of the UK-RTC AbC-19 with a target condition of antibodies against a cohort of 330 known IgG antibody positive samples according to this 'positive by two' system and 488 negative samples (223 pre-pandemic assumed negative and 265 known negative) for IgG to SARS-CoV-2.

- **Methods**

50,0 Participant samples

The flow of participant samples is summarised in Figure S1. A small cohort (n=19) of anonymised plasma samples were obtained from a partner USA laboratory for initial protocol development only. All participants provided informed consent with no adverse events. An online recruitment strategy was employed, with the study advertised through internal Ulster University email, website and social media. A BBC Newsline feature providing the pandemic study email address also prompted interest from the general population. The first 800 respondents who expressed interest were provided with an online patient information sheet, consent form and health questionnaire and invited to register to attend a clinic. Participants were eligible for the study if they were over 18 years of age. Exclusion criteria included anyone with a blood disorder or contraindication to giving a blood sample, or anyone currently exhibiting symptoms of COVID-19. To enrich the cohort for samples potentially positive for SARS-CoV-2 IgG antibody, further participants were invited if they had previously tested PCR positive or had the distinctive symptom of loss of taste and smell. Blood sampling clinics were held at locations around Northern Ireland between May and July 2020 resulting in

Page 9 of 45

1 2 **BMJ** Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

169 collection of 263 10ml EDTA plasma samples from 263 separate study participants. 170 Additional anonymised plasma samples were obtained from Southern Health and Social Care Trust (SHSCT) Healthcare workers (n=195), and Northern Ireland Blood 171 172 Transfusion Service (NIBTS, n=184) through convalescent plasma programs. 173 174 Pre-pandemic samples (prior to June 2019, n=136) were obtained from Ulster 175 University ethics committee approved studies with ongoing consent and from NIBTS 176 (n= 200, more than 3 years old). Plasma samples were used at no more than 3 freeze-177 thaw cycles for all analyses reported within this manuscript. 178 179 **Clinical information** 180 Basic demographic information and data with regard to probable or definite prior infection with SARS-CoV-2 virus was obtained from PANDEMIC study participants 181 182 through the secure online questionnaire requiring responses about positive RT-PCR 183 result and/or time from symptom onset. Anonymised participant samples from USA, SHSCT and NIBTS were provided with age, gender and time since PCR-positive, 184 185 where a previous test had been carried out. 186 187 Laboratory-based immunoassays 188 Details of laboratory immunoassays are summarised in supplementary methods and 189 Table S1. 190 191 UK-RTC AbC-19 LFIA 192 UK-RTC AbC-19 testing was conducted at Ulster University according to 193 manufacturer's instructions (details in Table S1). Assays were performed as cohorts,

with samples in batches of 10, with one researcher adding 2.5µL of plasma to the assay and a second adding 100µL of buffer immediately following sample addition. After 20 minutes, the strength of each resulting test line was scored from 0-10 according to a visual score card (scored by 3 researchers; Figure S2). A score \geq 1 was positive. Details of samples used for analysis for detection of antibodies are available in Supplementary methods.

201 Statistical analysis

As per Daniel (9) a minimum sample size based on prevalence can be calculated using the following formula: $n = \frac{Z^2 P(1-P)}{d^2}$, where n = sample size, Z = Z statistic for a chosen level of confidence, P = estimated prevalence, and d = precision. Assuming a prevalence of SARS-CoV-2 of 10% and a precision of 5%, we estimate that the required sample size at 99% confidence (Z = 2.58) to be 240 individuals. If the true prevalence is lower, 5%, the estimated required sample size given a precision of 2.5% is 506 individuals. A minimum sample size of 200 known positives and 200 known negatives is given within MHRA guidelines for SARS-CoV-2 LFIA antibody immunoassays(10).

Statistical analysis was conducted in in R v 4.0.2(11). To assess discordance between test results, data was first filtered to include individuals with an Abbott test result in the range ≥ 0.25 & ≤ 1.4 , with a 2 x 2 contingency table produced that comprised all possible combinations of [concordant|discordant] test results [within|outside of] this range. A p-value was derived via a Pearson χ^2 test after 2000 p-value simulations via the stats package.

AbC-19 LFIA performance analyses were performed using MedCalc online (MedCalc
 AbC-19 LFIA performance analyses were performed using MedCalc online (MedCalc
 Software, Ostend, Belgium). ROC analysis was performed via the pROC package. To

Page 11 of 45

1

BMJ Open

2	
3	
4	
5	
6	
7	
/ 0	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
.) 20	
∡∪ רי	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
55 74	
34	
35	
36	
37	
38	
39	
10	
+∪ ⊿1	
41	
42	
43	
44	
45	
46	
<u>4</u> 7	
т/ ЛО	
40	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

compare test result (Positive|Negative) to age, a binary logistic regression model was produced with test result as outcome – a p-value was then derived via χ^2 ANOVA. To compare time against test result (encoded continuously), a linear regression was performed. We calculated median per time-period and then converted these to log [base 2] ratios against the positivity cut-off for each assay. All plots were generated via ggplot2 or custom functions using base R(12).

226 **Results**

225

227 We analysed samples from a mixed cohort of individuals from the general public 228 (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations and research studies (n=223) and through a convalescent plasma program (n=183). 229 230 Antibody levels in plasma from these 880 individuals were assessed using the three 231 SARS-CoV-2 immunoassays; EuroImmun IgG, Roche Elecsys IgG/IgM/IgA and 232 Abbott Architect IgG (Table S1). This included a cohort of 223 pre-pandemic plasma samples collected and stored during 2017 to end of May 2019 to determine assay 233 234 specificity. Of the 657 participants whose samples were collected during the 235 pandemic, 265 (40.33%) previously tested RT-PCR positive with a range of 7-173 236 days since diagnosis. A total of 225 participants gave time since self-reported COVID-237 19 symptoms, with a range of 5-233 days from symptom onset, whilst 198 had no 238 symptom or PCR data available.

0 239

240 Laboratory based antibody immunoassays

A positive result for antibody on one or more of the three laboratory immunoassays was recorded for 385/657 (58.6%) participants who provided a sample during the

pandemic. By EuroImmun ELISA, 346 were positive, 20 borderline and 291 were negative. The Roche assay detected 380 positive and 277 negative, whilst Abbott determined 310 positive and 347 negative (Table S2). The median age across all age groups combined was lower for participants testing positive across each of the immunoassays (median [sd] for positive versus negative, respectively: EuroImmun, 41 [13.16] vs 48 [12.95]; Roche, 42 [13.08] vs 48 [13.00]; Abbott, 41 [13.18] vs 47 [13.09]). (Figure S3, p<0.0001). When segregated by age group, however, differences were less apparent in certain groups (Figure S4). Excluding the pre-pandemic cohort, this gap reduced but remained statistically significant EuroImmun, 41 [13.18] vs 45 [12.49]; Roche, 42 [13.15] vs 45 [12.49]; Abbott, 41 [13.26] vs 44 [12.63]) (p<0.01) (median [sd] for positive versus negative). Of note, out of 265 individuals with a previous positive RT-PCR result for SARS-CoV-2 viral RNA, 14 (5.2%) did not show detectable antibodies by any of the three immunoassays, with no association found with age, gender or time between test and blood draw (data not shown).

The three commercial laboratory immunoassays provide a ratio value that increases with IgG antibody titre. When correlation between these values is assessed, good overall agreement is observed between the three immunoassays (Figure 1, Figure S5). As highlighted by Rosadas *et al.*, we also see significant disagreement in the Abbott 0.25-1.4 range when compared to EuroImmun and Roche (Figure 1a,b; chi-square p-values: EuroImmun vs Abbott, p<0.001; Roche vs Abbott, p<0.001)(13).

50 263 51

53 264 Duration of humoral response to SARS-CoV-2
 54

⁵⁵ 265 We found IgG antibodies could still be detected in individuals (excluding pre-

- ⁵⁷₅₈ 266 pandemic) across all three immunoassays used up to week 20 (day 140) (Figure 2).
- 60 267 We note a statistically significant decrease in signal with respect to time across each

BMJ Open

assay (p-value [slope]): EuroImmun, p=0.036 [-0.785]; Roche, p=0.002 [-0.125]; Abbott, p<0.0001 [-3.585]. These remained statistically significant after adjustment for age. Antibody levels (expressed as a ratio of median result per timepoint divided by positivity cut off; Table 2) peaked at Week 1-2 for EuroImmun (1.33) and Abbott (1.64), though reached highest levels at Week 8-12 when measured by Roche (5.45). By week 21-24, median score for all tests had dropped below the positivity cut off, though a small number of RT-PCR positive samples remained above the positive cut off at these later timepoints (Figure 2).

277 UK-RTC AbC-19

Using the commercial immunoassays described we established a well characterised
serology sample set of 'known positive' and 'known negative' for IgG antibodies to
SARS-CoV-2 to evaluate performance metrics for the UK-RTC AbC-19 Rapid LFIA.

AbC-19 detects IgG antibodies against the spike protein antigen, so we therefore required all samples to be positive by the EuroImmun SARS-CoV-2 IgG ELISA, which likewise detects antibodies against the S1 domain (14). To develop this characterised cohort, samples were also required to be positive by a second immunoassay (Roche or Abbott). To analyse specificity of the AbC-19 LFIA for detection of SARS-CoV-2 IgG antibody, we assessed 350 plasma samples from participants classed as 'known negative for SARS-CoV-2 IgG antibody' on the AbC-19 LFIA. All samples were from individuals confirmed to be negative across all three laboratory assays (Roche, EuroImmun, Abbott). Using these positive n=304 and negative n=350 antibody cohorts, we determined a sensitivity for detecting SARS-CoV-2 IgG antibody of 97.70% (95% CI; 95.31%-99.07%) and specificity of 100% (98.95%-100.00%) for the AbC-19 LFIA (Table 1).

Page 14 of 45

BMJ Open

3 4 5 6	293	Given a recent report of lower specificity in the AbC-19 LFIA (15) and the possibility
	294	of introducing sample bias, we revised our inclusion criteria for the negative cohort.
/ 8 0	295	For the pre-pandemic cohort, we included samples from all 223 individuals,
10 11	296	regardless of results on other laboratory immunoassays. When this assumed
12 13 14 15 16 17	297	negative pre-pandemic cohort was used for laboratory evaluation for target condition
	298	of antibodies, we observed a specificity of 99.55% (97.53% to 99.99%, Table 1). We
	299	obtained more AbC-19 devices and expanded the negative cohort to include all
19 20	300	samples that matched our criteria (samples collected during the pandemic to be
21 22	301	negative by all three laboratory assays and all pre-pandemic samples regardless of
23 24 25	302	other immunoassay results). The specificity observed on this extended negative
26 27	303	cohort of 488 samples was 99.59% (98.53% to 99.95%, Table 1). For sensitivity
28 29	304	analysis on a positive cohort (samples positive by EuroImmun and one other test),
30 31 22	305	we were able to analyse all samples previously untested due to limited testing
32 33 34	306	capacity and tested a positive cohort of 330 samples giving a sensitivity of 97.58%
35 36 37 38 39 40 41	307	(95.28% to 98.95%, Table 1).
	308	
	309	When used for its intended use case, the AbC-19 LFIA provides binary
42 43	310	positive/negative results. However, when assessing LFIA in the laboratory, each test
44 45	311	line was scored against a scorecard by three independent researchers (0 negative, 1-
46 47 48	312	10 positive; Figure S2). Compared to quantitative outputs from the Abbott, EuroImmun
48 49 50 51 52	313	and Roche assays, the AbC-19 LFIA shows good correlation (Abbott r=0.84 [p<0.001];
	314	EuroImmun r=0.86 [p<0.001]; Roche r=0.82 [p<0.001]; Figure 3, Figure S5-Figure S7).
53 54	315	
55 56 57 58 59 60	316	Analytical specificity and sensitivity of AbC-19 LFIA

Page 15 of 45

BMJ Open

We observed no cross-reactivity across samples with known H5N1 influenza, Respiratory syncytial virus, Influenza A, Influenza B, Bordetella Pertussis, Haemophilus Influenzae, Seasonal coronavirus NL63 and 229E on the AbC-19 LFIA (n=34 samples, n=8 distinct respiratory viruses; Table S3). Against a panel of external reference SARS-CoV-2 serology samples, the AbC-19 LFIA detected antibodies with scores commensurate to the EuroImmun ELISA scores (Figure S8, Table S4).

Discussion

Serological antibody immunoassays are an important tool in helping combat the SARS-CoV-2 pandemic. One difficulty faced in validation of antibody diagnostic assays has been access to samples with known SARS-CoV-2 antibody status. As previously described, there is no clear gold standard for reference against which to assess SARS-CoV-2 immunoassays. A positive RT-PCR test has been used previously to indicate previous COVID-19 infection, though this approach is limited by a high rate of false negatives, failure in some cases to develop IgG antibodies (serosilence or lack of antibody against the same antigenic component of the virus as the immunoassay uses as a capture antigen) and the lack of RT-PCR testing availability early in the pandemic (3,5,16). We failed to detect SARS-CoV-2 IgG antibody in 14 of 265 (5.2%) of previously RT-PCR SARS-CoV-2 viral RNA positive participants in this study. It is unclear if this is due to insufficient/absent antibody production in these individuals, or due to a false positive PCR result which may occur in the UK at a rate between 0.8- 4.0% (17). Self-assessment of symptoms for COVID-19 disease is a poor indicator of previous infection, even amongst healthcare workers (18). Asymptomatic individuals may be unaware of infection and others may harbour pre-existing immunity or elucidate a T cell response. Additionally, the kinetics of a SARS-

Page 16 of 45

CoV-2 virus infection contributes to the loss of sensitivity of RT-PCR to detect virus with time, contributing to false negative RT-PCR test results for individuals who may be late to present for virus detection tests (5,19).

Our results show strong correlation between all three immunoassays, with shortcomings in the Abbott system output 0.25-1.4 range, as described previously, suggesting an overestimated positive cut-off (Figure 1) (13). Our detection of antibodies 140 days after RT PCR positive status (20 weeks, and beyond in a small number of samples) indicates persistence IgG antibodies to both the spike protein and nucleocapsid protein, despite typical patterns of antibody decay after acute viral antigenic exposure being as rapid (20). Others have reported SARS-CoV-2 antibodies decline at 90 days (19), we also noted a statistically significant decline over time but levels remain detectable at 140 days (Figure 2). We note that IgG levels reach their peak (Roche ratio 5.45 times threshold cut-off) as late as Week 8-12 from first symptoms or a viral RNA RT-PCR positive result, though this may be an artefact of lower number of participants at earlier timepoints (Table 2). Longitudinal studies on SARS-CoV-1 convalescent patients suggests that detectable IgG can still be present as long as 2 years after infection (21). Further studies are needed on large cohorts with sequential antibody immunoassays performed on symptomatic and non-symptomatic individuals as well as those with mild or severe COVID-19 to fully elucidate the humoral immune response to SARS-CoV-2. This is vital to inform vaccine durability, so-called 'immune passports' and in the definition of a protective threshold for anti-SARS-CoV-2 antibodies.

Page 17 of 45

1

BMJ Open

2	
3	366
4	
5	367
6	507
/	368
0	500
9 10	200
11	369
12	
13	370
14	
15	371
16	
17	372
18	
19	373
20	515
21	271
22	5/4
23	
24	375
25	
20 27	376
2/	
20 20	377
30	
31	378
32	2,0
33	370
34	517
35	200
36	380
37	
38	381
39	
40	382
41	
42	383
43	
44 45	384
45 46	201
40 47	385
48	565
49	200
50	386
51	
52	387
53	
54	388
55	
56	389
57	
58	390

56 To assess sensitivity and specificity of the AbC-19 LFIA for its ability to detect SARS-57 CoV-2 antibody in a laboratory evaluation, we developed a reference standard for 58 SARS-CoV-2 antibodies, which does not rely on a single test as reference. A similar 59 approach was used in a recent seroprevalence study in Iceland, whereby two positive 70 antibody results were required to determine a participant sample as positive for SARS-71 CoV-2 antibody (16).

73 Our evaluation of performance metrics for the UK-RTC AbC-19 LFIA to detect 74 antibodies for SARS-CoV-2 gave 97.58% sensitivity and 99.59% specificity. In a 75 recent evaluation of the AbC-19 tests, Mulchandani et al. observed a specificity of 76 97.9% (97.2%-98.4%) on a cohort of pre-pandemic samples and report a sensitivity 77 of 92.5% (88.8% to 95.1%) for detecting previous infections (based on a previous 78 RT-PCR result) or 84.7% (80.6% to 88.1%) against the Roche Elecsys antibody test, 79 which detects IgM/IgG/IgA SARS-CoV-2 antibodies to the nucleocapsid portion of 30 SARS-CoV-2 (18).

32 In our study, good correlation was observed in guantitative score between results on all immunoassays with the highest observed between EuroImmun and AbC-19 LFIA 33 34 (Figure S6, S7). This is to be expected, given both the AbC-19 LFIA and EuroImmun 35 ELISA detect IgG antibodies against spike protein. For the assessment of immunity to 36 prior natural infection as well as to immunisation, it is important to note IgG antibodies against SARS-CoV-2 spike protein detected by laboratory-based EuroImmun ELISA 37 38 and AbC-19 LFIA are known to correlate with neutralizing antibodies, which may 39 confer future immunity (22,23).

Previous evaluations of the sensitivity and specificity reported by Public Health England (PHE), showed a EuroImmun sensitivity of 72% and specificity of 99%, Abbott with sensitivity of 92.7% and specificity of 100% and Roche with sensitivity of 83.9% and specificity of 100% (24–26). The PHE analyses for each of these tests used previous infection (RT-PCR positive status) as a reference standard, the limitations of which are discussed above.

In the use of characterised 'known positive' and 'known negative' cohorts, one limitation of this study is its potential for spectrum bias, whereby our positive-by-two reference system may artificially raise the threshold for positive sample inclusion, possibly resulting in the overestimation of the sensitivity of any test evaluated (27). However, similar issues have been raised when using previous RT-PCR result or definitive COVID-19 symptoms as inclusion criteria given these will likely skew a cohort towards more severe disease (5). Importantly, our mixed origin of samples forming the cohort provides a positive cohort for assessing assay sensitivity that includes individuals from the general public, healthcare workers and from convalescent plasma programmes. Our analysis of specificity on only pre-pandemic individuals (n=223) shows similar specificity (99.55%) to the larger mixed 'known negative cohort' (n=488, sensitivity 99.59%). In the absence of a clear gold standard test, our system relies on no single test (each with their individual shortcomings) and instead takes an average of three.

413 Our assessment of the UK RTC AbC-19 LFIA using our characterised cohorts of 414 known SARS-CoV-2 antibody positive and antibody negative plasma, in a laboratory 415 setting shows good performance metrics for its ability to detect SARS-CoV-2 lgG

Page 19 of 45

BMJ Open

antibody. We note it uses plasma from venous blood samples, as opposed to the use of a finger prick blood sample. Additionally, when this UK RTC AbC-19 LFIA was used on our cohort, a number of the positive results scored low, (1/10 using the score card under laboratory conditions, Figure 3) with a faint test band visible to a trained laboratory scientist but perhaps difficult to identify as positive by individuals performing a single test (Figure S6). This faint line may be reflective of the longer time from infection for the Northern Ireland cohort used. If this AbC-19 LFIA is to be used in clinical settings it is important to determine if all users observe the same results as observed in this laboratory evaluation.

4 425

This assessment of the AbC-19 LFIA does not provide data on how this test will perform in a seroprevalence screening scenario, but instead provides metrics for the performance of the test, where presence of SARS-CoV-2 antibodies is of interest, as opposed to previous COVID-19 infection. An important potential use of the AbC-19 LFIA would be in monitoring the immune response to vaccination, with most vaccines utilising SARS-CoV-2 Spike protein antigens (28). It is not yet known if presence of SARS-CoV-2 antibodies indications immunity from infection.

⁴² 433

5 434 **Conclusion**

We present a comprehensive analysis of 880 pre-pandemic and pandemic individuals
and show IgG antibodies are detectable up to 140 days from symptoms or positive
RT-PCR test, showing persistence of immunity at later time points than previously
published. We use antibody positive as an alternative to RT-PCR positive status as a
standard for assessing SARS-CoV-2 antibody assays and show strong performance
for the UK-RTC AbC-19 LFIA rapid point of care test in detecting SARS-CoV-2

> antibodies. It is fully understood that user experience in future studies in the real world is important and may alter the performance characteristics. Also, the effect of operator training will have direct effects upon test performance. We welcome further clinical evaluation of the AbC-19 LFIA in large cohorts of symptomatic and asymptomatic individuals alongside large studies assessing COVID-19 outcomes in individuals with longitudinal studies to fully validate its implementation across all intended use cases.

Declarations

Ethics approval and consent to participate

All study participants provided informed consent. This study was approved by Ulster University Institutional Ethics committee (REC/20/0043), South Birmingham REC (The PANDEMIC Study IRAS Project ID: 286041Ref 20/WM/0184) and adhered to the Declaration of Helsinki and Good Clinical Practice.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

Consent for publication

Not applicable.

Dissemination to participants and related patient and public communities.

Links to this work will be included on the study website

(https://www.ulster.ac.uk/coronavirus/research/research-output/pandemic-study) and

participants will be alerted that the work has been published.

Data sharing

Data are available on reasonable request to the corresponding author.

Competing interests:

Page 21 of 45

1 2 **BMJ** Open

3 4	4
5 6	4
7 8	4
9 10 11	4
12 13	4
14 15	4
16 17 18	4
19 20	4
21 22 22	4
23 24 25	4
26 27	4
28 29 20	4
30 31 32	4
33 34	4
35 36 27	4
37 38 39	4
40 41	4
42 43	4
44 45 46	4
47 48	4
49 50 51	4
51 52 53	4
54 55	4
56 57 58	4
59 60	4

At the time of this study TM and JML acted as advisors to CIGA HealthCare, an
industrial partner in the UK Rapid Test Consortium. No personal financial reward or
renumeration was received for this advisory role. At the time of submission of this
manuscript TM and JML no longer held these advisory positions.

470 All other authors have no potential conflict of interest to report.

471 **Funding:**

472 Costs for assays and laboratory expenses only will be paid by UK-RTC as is normal
 473 practice (UU-UK-RTC-2020-001). The authors have not been paid or financially
 474 benefitted from this study.

The advisory roles within CIGA Healthcare were unpaid temporary roles. This
 manuscript and associated data within this paper has only been used to build
 confidence into the overall device design and performance assessment of the UK RTC
 AbC-19 devices and such work was never commissioned for any government
 contractual consideration.

 $\frac{1}{6}$ 480 Authors' contributions:

TM, JML conceived the study. LR, JM and TM performed all laboratory analyses. LR, 81 82 SM and KYN analysed data, KB performed all statistical analyses/interpretations and produced figures. NQ, FJ, GW and PS performed all Roche analyses and provided 83 84 SHSCT cohort samples. MC, KM and SR performed all Abbott analyses and 85 provided Blood Transfusion cohort samples. TM, RP and AN coordinated participant 86 recruitment, consent and sampling. WB and JML developed online consent forms, questionnaires and databases. LR, JM, AK, AA, GW, DH, SS, CCS performed 87 88 sample collection and processing. LR and TM wrote the manuscript, with significant contributions from JM and KB. All authors reviewed and approved the final 89 90 manuscript.

1 2				
3 4	491			
5 6	492	Ackn	owledgements: We are extremely grateful to all the people of Northern Ireland	
7 8 9	493	who f	took part in this study and gave blood during the pandemic. We are indebted to	
10 11	494	the p	hlebotomists- Geraldine Horrigan and Pamela Taylor who conducted the blood	
12 13 14 15 16	495	draws	s whilst ensuring the highest possible level of safety to the participants. We are	
	496	also	grateful to Kingsbridge Private Hospital Group for sponsorship and providing	
17 18	497	every	thing needed for blood collection including the clinical rooms. We acknowledge	
19 20	498	Dr Tony Byrne for use of his laboratory and Professor Gareth Davison for laboratory		
21 22	499	space	e and equipment during the pandemic within a locked down University.	
23 24 25	500			
26 27	501	Refe	rences	
28 29 20	502			
30 31 32	503	1.	World Health Organisation. Rolling updates on coronavirus disease (COVID-	
33 34 35 36 37 38 39	504		19) [Internet]. 2020 [cited 2020 Aug 11]. Available from:	
	505		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-	
	506		they-happen	
40 41	507	2.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and	
42 43	508		epidemiology of 2019 novel coronavirus: implications for virus origins and	
44 45	509		receptor binding. Lancet. 2020 Jan 30;395.	
40 47 48	510	3.	Petherick A. Developing antibody tests for SARS-CoV-2. Lancet [Internet].	
49 50 51 52 53 54	511		2020 Apr 4 [cited 2020 Sep 12];395(10230):1101–2. Available from:	
	512		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30788-	
	513		1/fulltext#.X10EdBi-Ayk.mendeley	
56 57	514	4.	Winichakoon P, Chaiwarith R, Liwsrisakun C, Salee P, Goonn A, Limsukon A,	
57 58 59 60	515		et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out	

1 2			
3 4 5 6 7 8 9	516		COVID-19. Vol. 58, Journal of Clinical Microbiology. American Society for
	517		Microbiology; 2020.
	518	5.	Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ
9 10 11	519		[Internet]. 2020;370. Available from:
12 13	520		https://www.bmj.com/content/370/bmj.m3325
14 15	521	6.	Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the
16 17	522		case for health-care worker screening to prevent hospital transmission. Lancet
18 19 20	523		(London, England) [Internet]. 2020 May 2 [cited 2020 Sep
21 22	524		12];395(10234):1418–20. Available from:
23 24	525		http://www.ncbi.nlm.nih.gov/pubmed/32305073
25 26 27 28 29 30 31 32 33 34	526	7.	Petersen LR, Sami S, Vuong N, Pathela P, Weiss D, Morgenthau BM, et al.
	527		Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected
	528		persons. Clin Infect Dis [Internet]. 2020 Nov 4; Available from:
	529		https://doi.org/10.1093/cid/ciaa1685
35 36	530	8.	Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and
37 38 39 40 41 42 43 44 45	531		immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med
	532		[Internet]. 2020;26(8):1200-4. Available from: https://doi.org/10.1038/s41591-
	533		020-0965-6
	534	9.	Daniel WW. Biostatistics : a foundation for analysis in the health sciences. 7th
46 47	535		Editio. New York: John Wiley & Sons, Ltd; 1999. 720 p.
48 49 50	536	10.	Medicines and Healthcare product Regulatory Agency. Target product profile:
50 51 52 53 54 55 56 56	537		antibody tests to help determine if people have immunity to SARS-CoV-2
	538		[Internet]. 2020 [cited 2020 Apr 24]. Available from:
	539		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
58 59 60	540		ttachment_data/file/881162/Target_Product_Profile_antibody_tests_to_help_d

2									
2 3 4	541		etermine_if_people_have_immunity_to_SARS-CoV-2_Version_2.pdf						
5 6	542	11.	The R Development Core Team. R: A language and environment for statistical						
7 8	543		computing. ISBN 3-900051-07-0. 2017.						
9 10 11 12 13	544	12.	Wickham H. ggplot2 Elegant Graphics for Data Analysis. Springer. 2016.						
	545	13.	Rosadas C, Randell P, Khan M, McClure MO, Tedder RS. Testing for						
14 15	546		responses to the wrong SARS-CoV-2 antigen? Lancet (London, England)						
16 17 18	547		[Internet]. 2020 Sep 5 [cited 2020 Sep 13];396(10252):e23. Available from:						
19 20	548		http://www.ncbi.nlm.nih.gov/pubmed/32866429						
21 22	549	14.	UK-RTC and Abingdon Health. Charting the course to a post-COVID world.						
23 24 25	550		2020.						
25 26 27	551	15.	Mulchandani R, Jones HE, Taylor-Phillips S, Shute J, Perry K, Jamarani S, et						
28 29	552		al. Accuracy of UK Rapid Test Consortium (UK-RTC) "AbC-19 Rapid Test" for						
30 31 22	553		detection of previous SARS-CoV-2 infection in key workers: test accuracy						
32 33 34 35 36 37 38 39 40 41 42 43	554		study. BMJ [Internet]. 2020 Nov 11;371:m4262. Available from:						
	555		http://www.bmj.com/content/371/bmj.m4262.abstract						
	556	16.	Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H,						
	557		Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N						
	558		Engl J Med [Internet]. 2020 Sep 1; Available from:						
44 45	559		https://doi.org/10.1056/NEJMoa2026116						
46 47 48	560	17.	Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results:						
48 49 50 51 52	561		hidden problems and costs. Lancet Respir Med [Internet]. 2020 Nov 11;						
	562		Available from: https://doi.org/10.1016/S2213-2600(20)30453-7						
53 54	563	18.	Mulchandani R, Taylor-Phillips S, Jones H, Ades T, Borrow R, Linley E, et al.						
55 56 57	564		Self assessment overestimates historical COVID-19 disease relative to						
58 59 60	565		sensitive serological assays: cross sectional study in UK key workers.						

Page 25 of 45

BMJ Open

1 2									
3 4 5 6 7 8 9	566		medRxiv [Internet]. 2020 Jan 1;2020.08.19.20178186. Available from:						
	567		http://medrxiv.org/content/early/2020/08/22/2020.08.19.20178186.abstract						
	568	19.	lyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al.						
9 10 11	569		Persistence and decay of human antibody responses to the receptor binding						
12 13	570		domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol						
14 15	571		[Internet]. 2020 Oct 8;5(52):eabe0367. Available from:						
16 17 18	572		http://immunology.sciencemag.org/content/5/52/eabe0367.abstract						
19 20	573	20.	Andraud M, Lejeune O, Musoro JZ, Ogunjimi B, Beutels P, Hens N. Living on						
21 22	574		Three Time Scales: The Dynamics of Plasma Cell and Antibody Populations						
23 24 25	575		Illustrated for Hepatitis A Virus. Fraser C, editor. PLoS Comput Biol [Internet].						
25 26 27	576		2012 Mar 1 [cited 2020 Sep 28];8(3):e1002418. Available from:						
28 29	577		https://dx.plos.org/10.1371/journal.pcbi.1002418						
30 31 32	578	21.	Wu L-P, Wang N-C, Chang Y-H, Tian X-Y, Na D-Y, Zhang L-Y, et al. Duration						
32 33 34 35 36 37 38 39 40 41 42 43 44 45	579		of antibody responses after severe acute respiratory syndrome. Emerg Infect						
	580		Dis [Internet]. 2007 Oct;13(10):1562–4. Available from:						
	581		https://pubmed.ncbi.nlm.nih.gov/18258008						
	582	22.	lyer AS, Jones FK, Nodoushania A, Kelly M, Becker M, Slater D, et al.						
	583		Dynamics and significance of the antibody response to SARS-CoV-2 infection.						
	584		medRxiv [Internet]. 2020 Jan 1;2020.07.18.20155374. Available from:						
46 47	585		http://medrxiv.org/content/early/2020/07/20/2020.07.18.20155374.abstract						
48 49 50	586	23.	Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang M, et						
51 52	587		al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in						
53 54	588		humans during a fishery vessel outbreak with high attack rate. medRxiv						
55 56 57	589		[Internet]. 2020 Jan 1;2020.08.13.20173161. Available from:						
58 59 60	590		http://medrxiv.org/content/early/2020/08/14/2020.08.13.20173161.abstract						

3 4	591	24.	Public Health England. Evaluation of the Abbott SARS-CoV-2 IgG for the						
5 6	592		detection of anti-SARSCoV-2 antibodies [Internet]. 2020. Available from:						
7 8 0	593		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a						
10 11 12 13 14 15 16	594		ttachment_data/file/890566/Evaluation_of_Abbott_SARS_CoV_2_IgG_PHE.pd						
	595		f						
	596	25.	Public Health England. Evaluation of the Euroimmun Anti-SARS-CoV-2 ELISA						
16 17 18	597		(IgG) serology assay for the detection of anti-SARS-CoV-2 antibodies						
19 20	598		[Internet]. 2020. Available from:						
21 22	599		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a						
23 24 25	600		ttachment_data/file/893433/Evaluation_of_Euroimmun_SARS_CoV_2_ELISA_						
26 27	601		lgG_1pdf						
28 29 30 31 32 33 34 35 36 37 38 39	602	26.	Public Health England. Evaluation of Roche Elecsys AntiSARS-CoV-2						
	603		serology assay for the detection of anti-SARS-CoV-2 antibodies. 2020.						
	604	27.	Hall MK, Kea B, Wang R. Recognising Bias in Studies of Diagnostic Tests Part						
	605		1: Patient Selection. Emerg Med J [Internet]. 2019/07/13. 2019 Jul;36(7):431-						
	606		4. Available from: https://pubmed.ncbi.nlm.nih.gov/31302605						
40 41	607	28.	Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z.						
42 43	608		Immunological considerations for COVID-19 vaccine strategies. Nat Rev						
44 45	609		Immunol [Internet]. 2020;20(10):615–32. Available from:						
40 47 48	610		https://doi.org/10.1038/s41577-020-00434-6						
49 50	611								
51 52									
53 54									
55 56									
57 58									
59 60									

613 Table 1: UK-RTC AbC-19 LFIA performance metrics against known antibody

614 positive and known antibody negative cohorts.

Total Negative	True Negative	False Positive	Total Positive	True Positive	False Negative	Sensitivity % (95 Cl)	Specificity % (95 Cl)	
	Pre-pandemic (n=223)							
223	222	1	n/a	n/a	n/a	n/a	99.55% (97.53% to 99.99%)	
	Initially reported cohorts (n=654)							
350	350	0	304	297	7	97.70% (95.31%- 99.07%)	100.00% (98.95%- 100.00%)	
Extended cohorts (n=818)								
488	486	2	330	322	8	97.58% (95.28%- 98.95%)	99.59% (98.53%- 99.95%)	

Table 2: Antibody level ratios for assays over time

	Ratio Antibody level:assay positivity cut-off									
		Week								
	Pre-	1-2	3-4	5-8	9-12	13-	18-	21-	25-	29+
	2020					16	20	24	28	
EuroImmun	-2.65	1.33	0.2	0.87	1.32	0.47	0.04	-2.01	-2.26	-2.01
Roche	-3.64	3.16	3.05	5.21	5.45	4.14	4.42	-3.54	-3.69	-3.61
Abbott	-5.54	1.64	-0.51	0.99	0.86	0.08	-0.59	-5.13	-5.13	-6.13
Sample number (n=)	223	20	10	50	90	202	53	11	12	11

Antibody level ratios for assays over time show varying peaks levels depending on test. Calculated by first establishing the median per time period, then calculating log2 ratio for each period versus each respective assay positivity cut-off.

622 Figure Legends

Figure 1: Two-way correlation scatter plots comparing a) Eurolmmun b) Abbott and c) Roche immunoassays. Pearson χ^2 test was used to assess correlations. The results for each test were log transformed to ensure results follow a normal distribution. Negative agreement shown as blue dots, red dots show positive agreement for the two immunoassays, whilst black dots show disagreement and grey dots as the EuroImmun borderline results. Vertical lines mark the Abbott test range 0.25-1.4. n=880. The graphs show positive correlations between all immunoassays evaluated, with the fewest disagreement of results between the Log of Roche and the Log of EuroImmun. Fit lines LOESS, with 95% confidence interval shaded.

29 633

Figure 2: SARS-CoV-2 antibody levels by (a) Eurolmmun, (b) Roche, and (c) Abbott, relative to weeks since first reported symptoms or positive PCR result (where data available, n=682). RT-PCR positive individuals are denoted by red dots. while individuals with time since symptom data are denoted in black. Dashed lines delineate loge equivalent of positivity threshold (Eurolmmun 1.1, Roche 1.0, Abbott 1.4) for each test, and the negativity threshold for EuroImmun (0.8; borderline result between the two lines). Black bars indicate median, within IQR (interguartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interguartile range).

52 643

Figure 3: AbC-19 extended cohort (n=818) correlation to a) EuroImmun b) Roche
 and c) Abbott scores. Box plots overlaid on scatter plot, comparing AbC-19 test
 scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line

1 ว

of best fit with 95% confidence interval shaded in grey. Black bars indicate median,

within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red

to per terien ont

triangles indicate outliers, based on 1.5* IQR (interquartile range).

2 3 4	647
5 6	648
7 8	649
9 10 11	
11 12 13	
13 14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29 20	
30 31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 50	

Category

- Both negative
- Both positive
- Disagreement
- Eurolmmun borderline

Figure S1: Flow of participant plasma samples through the study.

All available samples from participants within each cohort, and the included and excluded samples at all stages. Freeze thaw cycles were closely monitored for all sample aliquots. Pre-pandemic samples taken forward for Roche, Abbott and EuroImmun testing were selected based on aliquot volume and availability.

Figure S2: Visual Score card for quantitative interpretation of AbC-19 LFIA test bands. A scale of 0 (not pictured, negative-no test line visible) to 10 (positivestrongest test line). Any LFIA scoring 1 or above was classified as positive.

Figure S3: Age violin plots overlaid with scatter for samples included in correlation analysis (where age data available) n=880.

The above graphs allow comparison of the distributions and probability density of ages for EuroImmun, Roche and Abbott immunoassays. Wider areas of the violin plot represent high probability density, whilst narrow areas represent low probability density. Horizontal bar indicates median age. The red violin plots represent the negative results, the green violin plot represent the borderline results and the blue/turquoise violin plots represent the positive results.

Figure S4: Age violin plots separated into age groups (where age data available) for samples included in correlation analysis.

The above figure presents graphs for each immunoassay (EuroImmun, Roche and Abbott) with the corresponding age groups <35 years, <45 years, <55 years, <65 years and >= 65 years. The red violin plots represent the negative results, the green violin plot represents the borderline EuroImmun results, and the blue/turquoise violin plots represent the positive results (n=848).

 BMJ Open

Figure S5: AbC-19 initially reported cohort n=654 correlation to a) EuroImmun b) Roche and c) Abbott scores. Box plots overlaid on scatter plot, comparing AbC-19 test scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line of best fit with 95% confidence interval shaded in grey. Black bars indicate median, within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interquartile range).

Figure S6: Correlation matrix between Abbott, EuroImmun, Roche and initially reported AbC-19 cohort (n=654) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S7: Correlation matrix between Abbott, EuroImmun, Roche and extended AbC-19 cohort (n=818) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S8: NIBSC external reference serology standards and known respiratory

virus serology samples.

The scorecard score 0-10 was annotated on test cassette beneath sample ID when agreed by three independent experienced researchers. All LFIAs had a visible control line.

Table S1: Summary specifications for SARS-CoV-2 immunoassays

investigated.

8									
9 10nmunoassay 11	Principle	Antigen Target	Assay Time (min)	Antibody Detected	Measurement	Result	Calibration	Evaluation of results	Results
12 13 fgurolmmun fgLISA 17 18	Enzyme-linked immunosorbent assay (enzyme-HRP)	S1 domain of the spike protein	120	lgG	Photometric measurement of the color intensity using wavelength of 450 nm and a reference wavelength between 620 nm and 650 nm	OD (Optical density)	One Positive calibrator	OD of clinical sample/OD of calibrator	< 0.8 Negative, ≥ 0.8 to <1.1 Borderline, ≥ 1.1 Positive
20 21 22 23 24 25 26 27 26 27 26 27 26 27 26 27 26 27 29 30 31 32 33 34 35	Electro- chemiluminescence	Nucleocapsid	18	IgG, IgA and IgM	Application of a voltage to the electrode then induces chemiluminescent emission which is measured by a photomultiplier	RLU (Relative Light Intensity)	One Positive calibrator and one Negative calibrator	The analyzer automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non- reactive as well as in the form of a cut-off index (COI; signal sample/cut- off).	< 1.0 Negative, ≥ 1.0 Positive
36 37 38 34bbott 4Architect 5ARS-CoV-2 42 43 44	Chemiluminescent microparticle immunoassay	Nucleocapsid	30	lgG	The resulting chemiluminescent reaction is measured as a relative light unit (RLU).	RLU (Relative Light Intensity)	One Positive calibrator	Results are reported by dividing the sample result by the calibrator result (mean of 3 calibrators). The default result unit for the SARS-CoV-2 IgG assay is Index (S/C).	< 1.4 Negative, ≥ 1.4 Positive
46 47 48 4 %bC-19 50 51 52 53	Rapid Point of Care Lateral Flow Immunoassay	Full length Spike protein	20	lgG	The colour intensity of the test line is analysed using the reference score card.	Binary	The presence of a control line indicates the test is valid.	A result is positive if there is both a test line and a control line, whilst a result is negative if only the control line is present.	Using the reference score card; Positive scores ≥1 Negative scores=0

Table S2: Pandemic participant laboratory-based SARS-CoV-2 antibody result.

Test	Positive (%)	Borderline (%)	Negative (%)
Abbott	310/657 (47.2%)	n/a	347/657 (62.8%)
Eurolmmun	346/657 (52.7%)	20/657 (3.2%)	291/657 (44.4%)
Roche	380/657 (57.8%)	n/a	277/657 (42.2%)
One or more test	385/657 (58.6%)	3/657 (0.45%)	269/657 (40.9%)

Breakdown of individual immunoassay results or result by one or more test.

Table S3: Analytical specificity analysis on the AbC-19 LFIA LFIAs were assessed using 34 serum samples with known other respiratory viruses, negative results for all suggests analytical specificity for SARS_CoV_2 IgG.

SAMPLE	Number of samples	Number of AbC- 19 Positive results	Number of AbC- 19 Negative results
H5N1 Influenza (NIBSC 7/150)	1	0	1
RSV (NIBSC 16/284)	1	0	1
Influenza B (NIBSC 9/222)	1	0	1
Bordetella Pertussis (NIBSC 89/530)	1	0	1
Influenza A	5	0	5
Influenza B	5	0	5
Respiratory syncytial virus	5	0	5
Haemophilus Influenzae	5	0	5
Seasonal coronavirus NL63	5	0	5
Seasonal coronavirus 229E	5	0	5

Table S4: AbC-19 LFIA results with NIBSC external reference samples

NIBSC standard serology samples were provided with a data sheet indicating the SARS-CoV-2 antibody levels. We measured SARS-CoV-2 antibody levels in these samples and obtained similar results with the EuroImmun IgG ELISA in our laboratory.

NIBSC	AbC-19 LFIA result	Ulster University lab result	NIBSC provic	led antibody d	lata		
#		Eurolmmun IgG (S1 domain)	Eurolmmun IgG (S1 domain)	Eurolmmun IgA	In- house IgG S1	In- house IgG N	In- house IgG sSpike
20/120	pos (10)	pos (8.39)	pos (8.59)	pos (10.1)	5580	3417	2693
20/122	pos (7)	pos (3.49)	pos (3.47)	pos (1.1)	3202	2425	1488
20/124	pos (1)	pos (1.56)	pos (1.62)	pos (1.84)	1636	3296	118
20/126	pos (1)	neg (0.60)	neg (0.64)	pos (1.63)	1181	995	8
20/128	neg (0)	neg (0.23)	neg (0.21)	neg (0.02)	<50	<50	<50
20/130	pos (8)	pos (6.96)	pos (7.77)	• pos (9.74)	5388	17197	2707

Supplementary Methods

Laboratory-based immunoassays

Researchers were blinded to other test results when processing these assays.

EuroImmun Anti-SARS-CoV-2 ELISA-IgG (EuroImmun, EI 2606-9601 G) was carried out according to manufacturer's instructions. Optical density (OD) at 450nm and reference OD at 620nm was read on BMG Labtech Fluostar Omega spectrophotometer (BMG Labtech). Ratios were calculated by dividing absorbance of the clinical sample by the absorbance of EuroImmun calibrator, with a score of < 0.8 determined negative, \geq 0.8 to <1.1 borderline and \geq 1.1 positive. For a portion of samples provided by NIBTS, EuroImmun IgG assay data was provided to researchers by NIBTS.

Roche Elecsys immunoassay (Roche Diagnostics, kit 09203079190) was carried out according to manufacturer's instructions on the Roche cobas e601 (C6000 line) or e801 (C8000 line) analysers. The analyser automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non-reactive as well as in the form of a cut-off index (COI; signal sample/cut-off). A score of <1.0 is determined negative, while a score \geq 1.0 is positive.

Abbott Architect SARS-CoV-2 immunoassay was carried out according to manufacturer's instructions on the Abbott Architect i2000SR analyser (Abbott, kit 18115FN00, calibrator kit 17412FN00, Control kit 17531FN00). The external control is entered into a Quality Monitor programme and must be within 3 standard deviations of the mean (cumulative; External control NIBSC QCRSARSCoV-2QC1 Lot 20/B764-01). Results are reported by dividing the sample result by the calibrator result. The result unit for the SARS-CoV-2 IgG assay is Index (Sample/Calibrator). A ratio of < 1.4 is determined negative and \geq 1.4 is determined positive.

Analytical specificity and sensitivity assessment

Four virology samples (H5N1 influenza serology 7/150, RSV serology 16/284, Influenza B 9/222 and Bordetella Pertusis 89/530) were obtained from NIBSC (National Institute for Biological Standards, Herts, UK). An additional 30 serology

BMJ Open

 samples from known virus infections were a kind gift from SugenTech, Soeul, Korea. 15 of these virology samples were obtained from Trina (Trina Bioreactives AG, Switzerland) from 5 different individuals per virus (Influenza A IgG, Influenza B IgG and RSV IgG). A further 15 of these virology samples were obtained from AbBaltris, Kent from 5 different individuals per virus (Haemophilus Influenza IgG, Seasonal Coronavirus NL63 and 229E Seasonal Coronavirus). All these serology samples alongside a panel of 6 external standard research reagents (Table S4; NIBSC; Cat: 20/118 and 20/130) were assessed on the AbC-19 LFIA to confirm analytical specificity and sensitivity.

Section & Topic	No	Item	Reported on pag
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
	-	(such as sensitivity, specificity, predictive values, or AUC)	-
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2
	_	(for specific guidance, see STARD for Abstracts)	_
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	3-4
	4	Study objectives and hypotheses	4-5
METHODS			-
Study desian	5	Whether data collection was planned before the index test and reference standard	5
control of the second sec	_	were performed (prospective study) or after (retrospective study)	-
Participants	6	Eligibility criteria	5
	7	On what basis potentially eligible participants were identified	5/6
	-	(such as symptoms, results from previous tests, inclusion in registry)	0,0
	8	Where and when potentially eligible participants were identified (setting, location and dates)	5/6
	9	Whether participants formed a consecutive, random or convenience series	-, -
Test methods	- 10a	Index test, in sufficient detail to allow replication	7
. cor methodo	10h	Reference standard, in sufficient detail to allow replication	6
	11	Rationale for choosing the reference standard (if alternatives exist)	о Д
	122	Definition of and rationale for test positivity cut-offs or result categories	7 sunn tahle 1
	120	of the index test distinguishing pre-specified from exploratory	7, Supp table 1
	12h	Definition of and rationale for test positivity cut-offs or result categories	Sunn methods
	120	of the reference standard, distinguishing pre-specified from exploratory	supp table 1
	120	Whether clinical information and reference standard results were available	Sunn methods
	154	to the performers/readers of the index test	Supp methous
	13b	Whether clinical information and index test results were available	6
	100	to the assessors of the reference standard	°,
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	7/8
		How indeterminate index test or reference standard results were handled	10 Sunn Fig1
		How missing data on the index test and reference standard were handled	Sunn Fig 1
	0 17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	11
	18	Intended sample size and how it was determined	7
	10		,
Participants	10	Elow of participants, using a diagram	Supp Fig 1
ruiticipunts	20	Baseline demographic and clinical characteristics of participants	8/0
	20	Distribution of severity of disease in those with the target condition	9,5 Q
	21d 21h	Distribution of alternative diagnoses in those with une target condition	9 0
	22 210	Time interval and any clinical interventions between index test and reference standard	<i>э</i> 5
Tast results	22	Cross tabulation of the index test results (or their distribution)	
iest results	23	by the results of the reference standard	rig 5, Suhh Lig 2
	2∕1	Estimates of diagnostic accuracy and their precision (such as 05% confidence intervals)	10/11 Table 1
	24 25	Any advarta avants from parforming the index test or the reference standard	
DISCUSSION	25	Any auverse events norm performing the muex test of the reference standard	3
DISCOSSION	26	Study limitations, including sources of national bias, statistical unsertainty, and	1//15
	20	generalisability	14/10
	77	Beneralisations for practice, including the intended use and divised role of the index test	15
OTHER	21	implications for practice, including the intended use and cifical role of the index test	5
	20	Pogistration number and name of registry	N/a
	2ð 20	Measo the full study protocol can be accessed	IN/d
	29	where the full study protocol can be accessed	documents
		For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml	

 30 Sources of funding and other support; role of funders	18

BMJ Open

Laboratory evaluation of SARS-CoV-2 antibodies: detectable IgG more than 10 months post infection.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048142.R1
Article Type:	Original research
Date Submitted by the Author:	26-Apr-2021
Complete List of Authors:	Robertson, Louise; Ulster University, Biomedical Sciences Research Institute Moore, Julie; Ulster University - Coleraine Campus, Biomedical Sciences Research Institute Bilghe, Kevin; Ulster University - Coleraine Campus, Biomedical Sciences Research Institute Ng, Mark Kok Yew; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Quinn, Nigel; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Jennings, Fergal; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Warnock, Gary; Southern Health and Social Care Trust, Microbiology Laboratory Sharpe, Peter; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Clarke, Mark; Northern Ireland Blood Transfusion Service, Belfast City Hospital Maguire, Kathryn; Northern Ireland Blood Transfusion Service Rainey, Sharon; Northern Ireland Blood Transfusion Service Rainey, Sharon; Northern Ireland Blood Transfusion Service, Belfast City Hospital Price, Ruth; Ulster University, Biomedical Sciences Research Institute Burns, William; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Kowalczyk, Amanda; Ulster University, Biomedical Sciences Research Institute Akuah, Agnes; University of Ulster, Biomedical Sciences Research Institute MeNamee, Sara; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Wallace, Gayle; Belfast Health and Social Care Trust, Royal Victoria Hospital Sager, Steve; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Moore, Tara; Ulster University, Biomedical Sciences Research Institute Mocra, Tara; Ulster University, Biomedical Sciences Research Institute

Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Immunology (including allergy)
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Diagnosti microbiology < INFECTIOUS DISEASES
	SCHOLARONE™
	Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1		
2		
4	1	Laboratory evaluation of SARS-CoV-2 antibodies: detectable IgG more than 10
5	2	months post infection.
6		
7	3	
8	4	Authors: Louise J. Robertson ¹ , Julie S. Moore ¹ , Kevin Blighe ¹ , Kok Yew Ng ² , Nigel
9	5	Quinn ³ , Fergal Jennings ³ , Gary Warnock ⁴ , Peter Sharpe ³ , Mark Clarke ⁵ , Kathryn
10	6	Maguire ⁵ , Sharon Rainev ⁵ , Ruth Price ¹ , William Burns ² , Amanda Kowalczvk ¹ , Agnes
11	7	Awuah ¹ Sara McNamee ² Gavle F Wallace ⁶ David Hunter ⁶ Steve Sager ¹ Connie
12	8	Chao Shern ⁷ M Andrew Neshit ¹ James McLaughlin ^{2*} Tara Moore ^{1&7*}
13	0	Chao Sherri , M. Andrew Nesbit , James McLadgrillin , Tara Moore .
14	9	1 Diseasediased Osianaase Dasasensk hastituta Ullatan University. Nanthana haland
15	10	Biomedical Sciences Research Institute, Uister University, Northern Ireland
16	11	² Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern
17	12	Ireland
18	13	³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern
19	14	Ireland
20	15	⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland
21	16	⁵ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland
22	17	⁶ Roval Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland
25	10	7 Avolling, 1505 Adams Dr. Monlo Park, CA 04025, United States
24	10	Avenino, 1505 Adams DI, Menio Park, CA 94025, Onneu States
25	19	
20	20	*Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk
28	21	Professor James McLaughlin j <u>ad.mclaughlin@ulster.ac.uk</u>
29	22	
30		
31	23	
32		
33	24	
34	27	
35	25	
36	23	
37	26	
38	26	
39		
40	27	
41		
42	28	
45 11		
45	29	
46		
47	30	
48	50	
49	21	
50	51	
51	22	
52	32	
53		
54	33	
55		
56	34	
57		
58	35	
59 60		
00		

2 3 4	36	Abstract
5 6	37	Objective
7	38	To evaluate the dynamics and longevity of the humoral immune response to SARS-
8 9	39	CoV-2 infection and assess the performance of professional use of
10 11	40	the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target
12 13	41	condition of SARS-CoV-2 spike protein IgG antibodies.
14	42	Design
16	43	Nationwide serological study.
17 18	44	Setting
19 20	45	Northern Ireland, UK, May 2020- February 2021.
21	46	Participants
22 23	47	Plasma samples were collected from a diverse cohort of individuals from the general
24 25	48	public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood
26 27	49	donations and research studies (n=223) and through a convalescent plasma
28	50	program (n=183). Plasma donors (n=101) were followed with sequential samples
29 30	51	over 11 months post symptom onset.
31 32	52	Main Outcome Measures
33 34 35	53	SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-
	54	CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2
36 37	55	ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity,
38 39	56	estimated using a three-reference standard system to establish a characterised
40	57	panel of 330 positive and 488 negative SARS-CoV-2 lgG samples.
41	58	Results
43 44	59	We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post
45 46	60	infection, across a minimum of two laboratory immunoassays. On the known positive
47	61	cohort, the UK-RTC AbC-19 lateral flow immunoassay showed a sensitivity of 97.58%
48 49	62	(95.28%-98.95%) and on known negatives, showed specificity of 99.59% (98.53 %-
50 51	63	99.95%).
52 53	64	Conclusions
53 54	65	Through comprehensive analysis of a cohort of pre-pandemic and pandemic
55 56	66	individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when
57 58	67	assessed by EuroImmun ELISA, providing insight to antibody levels at later time points
59 60	68	post-infection. We show good laboratory validation performance metrics for the AbC-

19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-based setting. Strengths and Limitations Strength - This paper describes a non-clinical laboratory evaluation and comparison of the ability of three different immunoassays to detect SARS-CoV-2 antibodies in the same samples, detecting different subtypes of antibodies against different targets of the viral antigenic repertoire, that does not rely on PCR-positivity as definition of expected test outcome, to provide a panel of known antibody positive and antibody negative serology for evaluation of newly developed immunoassays. Strength - This study demonstrates AbC-19 lateral flow point of care detection of IgG antibodies to the full trimeric spike protein of SARS-CoV-2 virus, the antibodies made in response to the vaccines used globally, in a large cohort of subjects, more than 10 months post infection, across a broad age range (18-78 years). Robust antibody responses were observed in all age groups tested, including over-65s, who are most at risk of severe COVID-19 symptoms, and were prioritised in the UK-wide mass vaccination programme. Strength - This study shows excellent correlation between approved laboratory-based assays and the AbC-19 lateral flow point of care lateral flow test for the detection of SARS-CoV-2 antibodies in characterised cohorts of known positive and negative plasma samples in an evaluation conducted according to MHRA guidelines during a pandemic.

4	93
5 6	94
7 8 9	95
9 10 11	96
12 13	97
14 15 16	98
10 17 18	99
19 20	100
21 22	101
23 24 25	102
26 27	103
28 29	104
30 31	105
32 33	106
34 35 36	107
37 38	108
39 40	109
41 42	110
43 44 45	111
46 47	112
48 49	113
50 51 52	114
52 53 54	115
55 56	116
57 58	117

93 Strength- Longitudinal data detecting IgG antibodies more than 10 months from 94 infection was collected as sequential samples over time through a convalescent 95 plasma donation program.

1 2 3

> 97 Limitation- This study was conducted in a standardised setting with very experienced users on plasma characterised as positive or negative for the presence of antibodies 98 99 using a reference standard, alongside one other assay which may introduce a possible 100 spectrum bias. The laboratory setting may not reflect the true performance metrics of 101 the assay evaluated when translated to real life settings, using finger prick blood 102 samples and in which pre-test probability would impact greatly on positive and 103 negative predictive values.

Keywords 105

106 SARS-CoV-2, COVID-19, immunoassay, LFIA, pandemic, antibody assay

108 Introduction

109 The World Health Organization declared a pandemic in March 2020 due to severe 110 acute respiratory syndrome coronavirus-2 (SARS-CoV-2), identified late 2019 in Wuhan, China, causing Coronavirus Disease 2019 (COVID-19) disease (1,2). 111

A global race ensued to develop diagnostic assays, with the most common being viral 112 113 RNA detection (RT-gPCR assays), to detect acute infection(3). RT-gPCR assays are labour and reagent intensive, limited by a short temporal window for positive diagnosis, 114 115 and exhibit potential for false negative results (4). Evidence suggests sensitivity of RTqPCR can be as low as 70% (5). False positive rates between 0.8- 4.0% have been 116 117 reported in the UK and are dependent on the Ct values accepted as indicating 59

Page 7 of 52

BMJ Open

infection, the number of SARS-CoV-2 genes analysed, and the proportion of asymptomatic individuals tested (6,7). Lockdown measures and "flattening the curve" strategies in the UK meant many infected individuals were instructed to self-isolate and were not offered a diagnostic RT-qPCR, with much of the testing limited to patients admitted to hospital, who perhaps reflect a more severely infected cohort. Consequently, a potentially large number of cases were unconfirmed or undetected (8).

The ability to accurately detect SARS-CoV-2 specific antibodies, which develop after an immune response is evoked, is vital for building biobanks of convalescent sera for treatment, monitoring immune response to infection alongside surveillance studies and assessing responses to vaccination programmes.

Commercial serology immunoassays are mostly laboratory-based and measure IgG antibody levels in plasma or serum. Alternatively, lateral flow immunoassays (LFIAs), require a finger prick blood sample and can be used at point-of-care (POC) or in the home; particularly important in the context of lockdown enforcement during the pandemic. A limited number of laboratory-based chemiluminescence immunoassays are approved for use in the UK including the Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM against the SARS-CoV-2 Nucleocapsid antigenic region (Roche Diagnostics, Basel, Switzerland) and the Abbott SARS-CoV-2 IgG assay against the same antigenic region (Abbott Diagnostics, Abbott Park, IL, USA).

1 138 The complexities of the humoral immune response to SARS-CoV-2 is a much-

³ 139 debated topic. In a US study, approximately one in 16 individuals lacked detectable

140 IgG antibodies up to 90 days post symptom onset, despite previous RT-PCR

141 confirmed infection (9). Patients who remain asymptomatic may mount a humoral

immune response which is short-lived, with detectable levels of antibody falling

rapidly (10). This, alongside the lack of RT-PCR test availability across the UK has
hindered development of well characterised gold standard serology test for lgG
antibodies to SARS-CoV-2.

Herein, we describe the use of Roche and Abbott commercial immunoassays, as well as the EuroImmun Anti-SARS-CoV-2 ELISA-IgG against the S1 domain of the spike (antigenic) protein of SARS-CoV-2 (EuroImmun UK, London, UK) to characterise pre-pandemic and pandemic COVID-19 blood samples (n=880) from within Northern Ireland and report on longevity of IgG antibodies detected. Furthermore, we follow IgG antibody levels in convalescent plasma donors (n=101 individuals) for up to 11 months. Currently, there is no gold standard assay for comparison, therefore we aimed to establish a reference based on a positive COVID-19 antibody status. We present results of a laboratory evaluation of the UK-RTC AbC-19 with a target condition of antibodies against a cohort of 330 known IgG antibody positive samples according to this 'positive by two' system and 488 negative samples (223 pre-pandemic assumed negative and 265 known negative) for IgG to SARS-CoV-2.

3 160

Participant samples

The flow of participant samples is summarised in Figure S1. A small cohort (n=19) of anonymised plasma samples were obtained from a partner USA laboratory for initial protocol development only. All participants provided informed consent. An online recruitment strategy was employed, with the study advertised through internal Ulster University email, website and social media. A BBC Newsline feature providing the pandemic study email address also prompted interest from the general population. Page 9 of 52

BMJ Open

The first 800 respondents who expressed interest were provided with an online patient information sheet, consent form and health questionnaire and invited to register to attend a clinic. Participants were eligible for the study if they were over 18 years of age. Exclusion criteria included anyone with a blood disorder or contraindication to giving a blood sample, or anyone currently exhibiting symptoms of COVID-19. To enrich the cohort for samples potentially positive for SARS-CoV-2 IgG antibody, further participants were invited if they had previously tested PCR positive or had the distinctive symptom of loss of taste and smell. Blood sampling clinics were held at locations around Northern Ireland between May and July 2020 resulting in collection of 263 10ml EDTA plasma samples from 263 separate study participants. Additional anonymised plasma samples were obtained from Southern Health and Social Care Trust (SHSCT) Healthcare workers (n=195), and Northern Ireland Blood Transfusion Service (NIBTS, n=184) through convalescent plasma programs. NIBTS convalescent plasma samples continued to be collected throughout 2020-early 2021, with a total of n=897 from n=676 individuals, including n=183 samples from the cross-sectional cohort. Individuals from this program with a positive RT-PCR result and EuroImmun starting value >6 were sequentially sampled over a period of up to 46 weeks resulting in a cohort of n=101 individuals, n=296 samples (including n=47 individuals from the cross-sectional cohort).

Pre-pandemic samples (prior to June 2019, n=136) were obtained from Ulster
University ethics committee approved studies with ongoing consent and from NIBTS
(n= 200, more than 3 years old). Plasma samples were used at no more than 3 freezethaw cycles for all analyses reported within this manuscript.

193 Clinical information

Basic demographic information and data with regard to probable or definite prior infection with SARS-CoV-2 was obtained from PANDEMIC study participants through the secure online questionnaire requiring responses about positive RT-PCR result and/or time from symptom onset. Anonymised participant samples from USA, SHSCT and NIBTS were provided with age, gender and time since PCR-positive, where a previous test had been carried out.

201 Laboratory-based immunoassays

202 Details of laboratory immunoassays are summarised in supplementary methods and203 Table S1.

205 UK-RTC AbC-19 LFIA

All analyses were performed on UK-RTC AbC-19 Technical Transfer 3 (TT3) devices at Ulster University according to manufacturer's instructions (details in Table S1). Assays were performed as cohorts, with samples in batches of 10, with one researcher adding 2.5µL of plasma to the assay and a second adding 100µL of buffer immediately following sample addition. After 20 minutes, the strength of each resulting test line was scored from 0-10 according to a visual score card (scored by 3 researchers; Figure S2). A score ≥ 1 was positive. Details of samples used for analysis for detection of antibodies are available in Supplementary methods.

215 Statistical analysis

216 As per Daniel (11) a minimum sample size based on prevalence can be calculated

217 using the following formula: $n = \frac{Z^2 P(1-P)}{d^2}$, where n = sample size, Z = Z statistic for a

BMJ Open

chosen level of confidence, P = estimated prevalence, and d = precision. Assuming a prevalence of SARS-CoV-2 of 10% and a precision of 5%, we estimate that the required sample size at 99% confidence (Z = 2.58) to be 240 individuals. If the true prevalence is lower, 5%, the estimated required sample size given a precision of 2.5% is 506 individuals. A minimum sample size of 200 known positives and 200 known negatives is given within MHRA guidelines for SARS-CoV-2 LFIA antibody immunoassays(12).

Statistical analysis was conducted in in R v 4.0.2(13). To assess discordance between test results, data was first filtered to include individuals with an Abbott test result in the range ≥ 0.25 & ≤ 1.4 , with a 2 x 2 contingency table produced that comprised all possible combinations of [concordant|discordant] test results [within|outside of] this range. A p-value was derived via a Pearson χ^2 test after 2000 p-value simulations via the stats package.

AbC-19 LFIA performance analyses were performed using MedCalc online (MedCalc Software, Ostend, Belgium). ROC analysis was performed via the pROC package. To compare test result (Positive|Negative) to age, a binary logistic regression model was produced with test result as outcome – a p-value was then derived via χ^2 ANOVA. To compare time against test result (encoded continuously), a linear regression was performed. We calculated median per time-period and then converted these to log [base 2] ratios against the positivity cut-off for each assay. All plots were generated via ggplot2 or custom functions using base R(14).

- 52 239
 - 240 Results

We analysed samples from a mixed cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations

and research studies (n=223) and through a convalescent plasma program (n=183). Antibody levels in plasma from these 880 individuals were assessed using the three SARS-CoV-2 immunoassays; EuroImmun IgG, Roche Elecsys IgG/IgM/IgA and Abbott Architect IgG (Table S1, Figure S3). This included a cohort of 223 prepandemic plasma samples collected and stored during 2017 to end of May 2019 to determine assay specificity. Of the 657 participants whose samples were collected during the pandemic, 267 (40.64%) previously tested RT-PCR positive with a range of 7-173 days since diagnosis. A total of 225 participants gave time since self-reported COVID-19 symptoms, with a range of 5-233 days from symptom onset, whilst 195 had no symptom or PCR data available. Samples collected in 2020 (n=657) ranged from 19-78 years of age with a median (IQR) of 43 years (±22), and n=454 were female and n=200 male (n=3, not disclosed). Pre-pandemic samples (n=223) ranged from 20-87 years of age with median (IQR) of 50 years (±20) and consisted of n=88 female and n=135 male.

36 257

Laboratory based antibody immunoassays

A positive result for antibody on one or more of the three laboratory immunoassays was recorded for 385/657 (58.6%) participants who provided a sample during the pandemic. By EuroImmun ELISA, 346 were positive, 20 borderline and 291 were negative. The Roche assay detected 380 positive and 277 negative, whilst Abbott determined 310 positive and 347 negative (Table S2, Figure S3). The median age across all age groups combined was lower for participants testing positive across each of the immunoassays (median [sd] for positive versus negative, respectively: EuroImmun, 41 [13.16] vs 48 [12.95]; Roche, 42 [13.08] vs 48 [13.00]; Abbott, 41 [13.18] vs 47 [13.09]). (Figure S4, p<0.0001). When segregated by age group, however, differences were less apparent in certain groups (Figure S5). Excluding the

BMJ Open

2	
3	
4	4
5	
6	1
7	
, 8	-
0 0	4
9 10	
10	4
11	
12	
13	_
14	,
15	4
16	
17	
18	
19	
20	1
21	
22	-
23	4
24	
25	4
26	
27	
28	
20 20	
20	4
30 21	
21	2
32 22	
33	
34	2
35	
36	
37	4
38	
39	-
40	-
41	
42	4
43	
44	
45	
46	
47	4
48	
40 40	
49 50	
50 F 1	-
51	4
52	
53	4
54	
55	
56	-
57	,
58	4
59	
60	4

268 pre-pandemic cohort, this gap reduced but remained statistically significant 269 Eurolmmun, 41 [13.18] vs 45 [12.49]; Roche, 42 [13.15] vs 45 [12.49]; Abbott, 41 270 [13.26] vs 44 [12.63]) (p<0.01) (median [sd] for positive versus negative). Of note, out 271 of 267 individuals with a previous positive RT-PCR result for SARS-CoV-2 viral RNA, 14 (5.2%, Figure S3a) did not show detectable antibodies by any of the three 272 273 immunoassays, with no association found with age, gender or time between test and 274 blood draw (data not shown).

275 The three commercial laboratory immunoassays provide a ratio value that increases 276 with IgG antibody titre. When correlation between these values is assessed, good overall agreement is observed between the three immunoassays (Figure 1, Figure 277 S5). As highlighted by Rosadas *et al.*, we also see significant disagreement in the 278 279 Abbott 0.25-1.4 range when compared to EuroImmun and Roche (Figure 1a,b; chi-280 square p-values: EuroImmun vs Abbott, p<0.001; Roche vs Abbott, p<0.001)(15).

281

Duration of humoral response to SARS-CoV-2 282

In a cross-sectional analysis of antibodies over time, we found IgG antibodies could 283 284 still be detected in individuals (excluding pre-pandemic) across all three 285 immunoassays used up to week 20 (day 140) (Figure 2). We note a statistically significant decrease in signal with respect to time across each assay (p-value 286 [estimate slope]): EuroImmun, p=0.028[-0.823]; Roche, p=0.002 [-0.125]; Abbott, 287 288 p<0.0001 [-3.673]. These remained statistically significant after adjustment for age. 289 Antibody levels (expressed as a ratio of median result per timepoint divided by 290 positivity cut off; Table 1) peaked at Week 1-2 for EuroImmun (1.33) and Abbott 291 (1.64), though reached highest levels at Week 8-12 when measured by Roche 292 (5.45). By week 21-24, median score for all tests had dropped below the positivity

cut off, though a small number of samples remained above the positive cut off at

Samples from the NIBTS convalescent plasma program continued to be collected

throughout 2020-early 2021. A total of n= 897 samples from n=676 individuals were

collected, 744/883 tested by EuroImmun were positive (>1.1, with values range of

0.051-34.361), 556/749 tested by Abbott were positive (>1.4, with values ranging

from 0.01-8.85). Individuals with a positive RT-PCR result and a EuroImmun result

>6 were sequentially sampled (with median 3, range 2-9 samples per individual) and

analysed by both EuroImmun (n=101 individuals), and Abbott immunoassays (n=75

individuals). Median age (IQR) for this cohort is 51 years (±21) with a range from 18-

70 years and n=27 female, n=74 male. Longitudinal analysis shows persistence of

detectable IgG antibodies until up to 302 days (43 weeks) by Abbott immunoassay

(at which point this assay was discontinued at NIBTS) and 323 days (46 weeks) by

EuroImmun ELISA, with a gradual decline over time (Figure S6). None of the

individuals who were initially positive by Euroimmun SARS-CoV-2 S1 IgG assay

dropped to below the EuroImmun positivity threshold (>1.1) over the course of the

follow-up while 26 who were initially positive by Abbott SARS-CoV-2 NP IgG fell

Page 14 of 52

these later timepoints (Figure 2).

312 UK-RTC AbC-19

below the Abbott threshold (>1.4).

Using the commercial immunoassays described we established a well characterised
 314 serology sample set of 'known positive' and 'known negative' for IgG antibodies to
 315 SARS-CoV-2 to evaluate performance metrics for the UK-RTC AbC-19 Rapid LFIA.
 316 AbC-19 detects IgG antibodies against the spike protein antigen, so we therefore

 $^{59}_{60}$ 317 required all samples to be positive by the EuroImmun SARS-CoV-2 IgG ELISA, which

Page 15 of 52

BMJ Open

likewise detects antibodies against the S1 domain (16). To develop this characterised cohort, samples were also required to be positive by a second immunoassay (Roche or Abbott). To analyse specificity of the AbC-19 LFIA for detection of SARS-CoV-2 IgG antibody, we assessed 350 plasma samples from participants classed as 'known negative for SARS-CoV-2 IgG antibody' on the AbC-19 LFIA. All samples were from individuals confirmed to be negative across all three laboratory assays (Roche, EuroImmun, Abbott). Using these positive n=304 and negative n=350 antibody cohorts, we determined a sensitivity for detecting SARS-CoV-2 IgG antibody of 97.70% (95% CI; 95.31%-99.07%) and specificity of 100% (98.95%-100.00%) for the AbC-19 LFIA (Table 2). Given a recent report of lower specificity in the AbC-19 LFIA (17) and the possibility of introducing sample bias, we revised our inclusion criteria for the negative cohort. For the pre-pandemic cohort, we included samples from all 223 individuals, regardless of results on other laboratory immunoassays. When this assumed negative pre-pandemic cohort was used for laboratory evaluation for target condition of antibodies, we observed a specificity of 99.55% (97.53% to 99.99%, Table 2). We expanded the negative cohort to include all samples that matched our criteria (samples collected during the pandemic to be negative by all three laboratory assays and all pre-pandemic samples regardless of other immunoassay results). The specificity observed on this extended negative cohort of 488 samples was 99.59% (98.53% to 99.95%, Table 2). For sensitivity analysis on a positive cohort (samples positive by EuroImmun and one other test), we were able to analyse all samples previously untested due to limited testing capacity and tested a positive cohort of 330 samples giving a sensitivity of 97.58% (95.28% to 98.95%, Table 2). When we sorted samples analysed in both negative (n=488) and positive cohorts (n=330) by

RT-PCR status and assessed AbC-19 LFIA sensitivity by including only those that were RT-PCR positive (n=227), the test showed a sensitivity of 92.07% (87.76%-95.23%, Table S3). However, of the n=18 RT-PCR positive individuals negative for IgG antibodies by AbC-19, n=12 showed no detectable antibodies by all three laboratory assays (EuroImmun, Roche or Abbott), suggesting that antibodies are not present in those samples.

When used as intended by the public, the AbC-19 LFIA provides binary positive/negative results. However, when assessing LFIA in the laboratory, each test line was scored against a scorecard by three independent researchers (0 negative, 1-10 positive; Figure S2). When compared to quantitative outputs from the Abbott, EuroImmun and Roche assays, the AbC-19 LFIA shows good correlation (Abbott r=0.84 [p<0.001]; Eurolmmun r=0.86 [p<0.001]; Roche r=0.82 [p<0.001]; Figure 3, Figure S7-Figure S9).

Analytical specificity and sensitivity of AbC-19 LFIA

We observed no cross-reactivity across samples with known H5N1 influenza, Respiratory syncytial virus, Influenza A, Influenza B, Bordetella Pertussis, Haemophilus Influenzae, Seasonal coronavirus NL63 and 229E on the AbC-19 LFIA (n=34 samples, n=8 distinct respiratory viruses; Table S4). Against a panel of external reference SARS-CoV-2 serology samples, the AbC-19 LFIA detected antibodies with scores commensurate to the EuroImmun ELISA scores (Figure S10, Table S5). Discussion

BMJ Open

Serological antibody immunoassays are an important tool in helping combat the SARS-CoV-2 pandemic. The duration of the humoral immune response is of particular importance, to inform an individual's protection following both natural infection and vaccination. Using a large cohort of individuals across a wide age range (18-78), we assessed antibody levels across up to three laboratory immunoassays perform a cross-sectional and longitudinal analysis over time. Our results show strong correlation between all three immunoassays, with shortcomings in the Abbott system output 0.25-1.4 range, as described previously, suggesting an overestimated positive cut-off (Figure 1) (15).

Longitudinal studies on SARS-CoV-1 convalescent patients suggests that detectable IgG can still be present as long as 2 years after infection (18). There are conflicting reports of the longevity of the humoral response to SARS-CoV-2 infection which differ in the make-up of the cohort studied, the assays used, and the length of time since symptom onset. To our knowledge, this study represents the longest follow-up period with detection of IgG antibodies to both spike and nucleocapsid protein more than 10 months after RT PCR positive status (and beyond in a small number of samples, Figure 2, Figure S6). In this study, samples were collected through a convalescent plasma program (Figure S6), with individuals selected for sequential plasma donation based on an initial high EuroImmun assay score. In contrast to the time series analysis of healthcare workers recruited prospectively by Manisty et al., we observed no cases where Euroimmun ELISA-measured anti-Spike antibody levels fell below threshold, whilst a large number of Abbott measured anti-Nucleocapsid antibody levels dropped below the positivity threshold (34.7% 26/75). However, this may be an overestimate given the shortcomings of the Abbott assay

described above (Figure 1) (19). In a similar longitudinal study of 51 symptomatic participants, Dan *et al.* estimated that half-life $(t_{1/2})$ for IgG-Spike (103 days) was longer than that for IgG-Nucleocapsid (68 days), although with a considerable overlap of 95% confidence intervals (20).

In our more diverse cross-sectional cohort, we also note a statistically significant decline over time but levels remain detectable at 140 days (Figure 2). We note that IgG levels reach their peak (Roche ratio 5.45 times threshold cut-off) as late as Week 8-12 from first symptoms or a viral RNA RT-PCR positive result, though this may be an artefact of lower number of participants at earlier timepoints (Table 1). Robust antibody responses are produced in our cohorts across a wide age range (18-78 years old, Figure 2, Figure S6). We detect a slightly but significantly lower median age of participants testing positive (Figure S4); however, this is likely be due to cohort characteristics and not a true reflection of the population or indication of test performance.

A difficulty faced in validation of antibody diagnostic assays has been access to samples with known SARS-CoV-2 antibody status. As previously described, there is no clear gold standard reference against which to assess SARS-CoV-2 immunoassays. A positive RT-PCR test has been used previously to indicate previous (COVID-19) SARS-CoV-2 infection, though this approach is limited by a high rate of false negatives and positives in RT-PCR testing, failure in some cases to develop IgG antibodies (sero-silence or lack of antibody against the same antigenic component of the virus as the immunoassay uses as a capture antigen) and the lack of RT-PCR testing availability early in the pandemic (3,5,21). SARS-CoV-2 IgG antibodies were undetectable in 14 of 267 (5.2%) of previously RT-PCR SARS-CoV-2 viral RNA Page 19 of 52

BMJ Open

positive participants in this study. It is unclear if this is due to insufficient/absent antibody production in these individuals at the time the sample was taken, or due to a false positive PCR result which may occur in the UK at a rate between 0.8-4.0% (6). Self-assessment of symptoms for COVID-19 (disease) is a poor indicator of previous infection, even amongst healthcare workers (22). Additionally, the kinetics of a SARS-CoV-2 virus infection contributes to the loss of sensitivity of RT-PCR to detect virus with time, contributing to false negative RT-PCR test results for individuals who may be late to present for virus detection tests (5,23).

To assess sensitivity and specificity of the AbC-19 LFIA for its ability to detect SARS-CoV-2 antibody in a laboratory evaluation, we developed a reference standard for SARS-CoV-2 antibodies, which does not rely on a single test as reference. A similar approach was used in a recent seroprevalence study in Iceland, whereby two positive antibody results were required to determine a participant sample as positive for SARS-CoV-2 antibody (21). Our evaluation of performance metrics for the UK-RTC AbC-19 LFIA to detect antibodies for SARS-CoV-2 gave 97.58% sensitivity and 99.59% specificity. In an evaluation of the AbC-19 tests, Mulchandani et al. observed a specificity of 97.9% (97.2%-98.4%) on a cohort of pre-pandemic samples and report a sensitivity of 92.5% (88.8% to 95.1%) for detecting previous infections (based on a previous RT-PCR result) or 84.7% (80.6% to 88.1%) against the Roche Elecsys antibody test, which detects IgM/IgG/IgA SARS-CoV-2 antibodies to the nucleocapsid portion of SARS-CoV-2 (22). In RT-PCR positive individuals from our cohorts, the AbC-19 test showed a similar sensitivity (92.07%, 87.76%- 95.23%, Table S3). However, we demonstrate the drawbacks of this approach given that in 12 of 18 AbC-19 false negatives, none of the four immunoassays used (EuroImmun, Roche, Abbott

or AbC-19) detected antibodies, suggesting either a false RT-PCR result, a failure to produce IgG antibodies or sero-reversion before sample collection in these individuals. Another recent evaluation of the AbC-19 LFIA by Moshe et al. determined a sensitivity of (100% (98.1-100%) on laboratory sera, using a composite reference standard of antibody positive by either Spike protein ELISA or hybrid DABA assay and specificity of 99.8% (98.9-100%) against pre-pandemic samples. However, when AbC-19 performance was analysed on matched finger-prick and serum samples against the same antibody standard, a lower sensitivity was observed (finger-prick 69% (53.8-81.3%), serum 92% (80-97.7%)) (24).

> In our study, strong correlation was observed in quantitative score between results on all immunoassays with the highest observed between EuroImmun and AbC-19 LFIA (Figure S8, S9). This is to be expected, given both the AbC-19 LFIA and EuroImmun ELISA detect IgG antibodies against spike protein. Importantly, for the assessment of immunity to prior natural infection as well as to immunisation, IgG antibodies against SARS-CoV-2 spike protein detected by laboratory-based EuroImmun ELISA and AbC-19 LFIA are known to correlate with neutralizing antibodies, which may confer future immunity (20,25,26). Previous evaluations of sensitivity and specificity reported by Public Health England (PHE), showed a EuroImmun sensitivity of 72% and specificity of 99%, Abbott with sensitivity of 92.7% and specificity of 100% and Roche with sensitivity of 83.9% and specificity of 100% (27-29). The PHE analyses for each of these tests used previous infection (RT-PCR positive status) as a reference standard, the limitations of which are discussed above.

Page 21 of 52

BMJ Open

In the use of characterised 'known positive' and 'known negative' cohorts, one limitation of this study is its potential for spectrum bias, whereby our positive-by-two reference system may artificially raise the threshold for positive sample inclusion, possibly resulting in the overestimation of the sensitivity of any test evaluated (30). However, similar issues have been raised when using previous RT-PCR result or definitive COVID-19 symptoms as inclusion criteria given these will likely skew a cohort towards more severe disease, especially given issues of RT-PCR availability outside of hospital settings during the first wave (5). Importantly, our mixed origin of samples forming the cohort provides a positive cohort for assessing assay sensitivity that includes individuals from the general public, healthcare workers and from convalescent plasma programmes. In the absence of a clear gold standard test, our system relies on no single test (each with their individual shortcomings) and instead takes an average of three. Our analysis of specificity on only pre-pandemic individuals (n=223) shows similar specificity (99.55%) to the larger mixed 'known negative cohort' (n=488, sensitivity 99.59%). We also demonstrate a high level of analytical specificity of the AbC-19 test with no cross-reactivity against a panel of other respiratory viruses, including SARS-CoV-1 NL63 and 229E (Table S4).

Our assessment of the AbC-19 LFIA in a laboratory setting, using characterised cohorts of known SARS-CoV-2 antibody positive and antibody negative plasma, shows good performance metrics for its ability to detect SARS-CoV-2 IgG antibodies following natural infection. We note our use of plasma from venous blood samples, as opposed to a finger prick blood sample as would be used in rapid testing scenarios (24). Additionally, when the AbC-19 LFIA was used on our cohort, a number of the positive results scored low (1/10 using the score card under laboratory conditions,

Figure 3), with a faint test band visible to a trained laboratory scientist but perhaps difficult to identify as positive by individuals performing a single test (Figure S10). This faint line may be reflective of the longer time from infection for the Northern Ireland cohort used. If the AbC-19 LFIA is to be used in clinical settings it is important to determine if all users observe the same results as observed in this laboratory evaluation.

This assessment of the AbC-19 LFIA does not provide data on how this test will perform in a seroprevalence screening scenario, but instead provides metrics for the performance of the test, where presence of SARS-CoV-2 antibodies is of interest, as opposed to previous COVID-19 infection. An important potential use of the AbC-19 LFIA would be in monitoring the immune response to vaccination, with most vaccines utilising SARS-CoV-2 Spike protein antigens (31).

Conclusion

We present a comprehensive analysis of pre-pandemic and two large pandemic cohorts (more than 700 individuals) and in a longitudinal analysis showing that IgG antibodies to SARS-CoV-2 antigens are detectable more than 10 months from positive RT-PCR test. We use antibody positive status as an alternative to RT-PCR positive status as a standard for assessing SARS-CoV-2 antibody assays and show strong performance for the UK-RTC AbC-19 LFIA rapid point of care test in detecting SARS-CoV-2 antibodies. User experience in future studies in the real world is important and may alter the performance characteristics. Also, the effect of operator training will have direct effects upon test performance. We welcome further clinical evaluation of the AbC-19 LFIA in large cohorts of symptomatic and asymptomatic individuals alongside
1 2							
3 4	516	large studies assessing vaccination outcomes in individuals to fully validate its					
5 6	517	implementation across all intended use cases.					
7 8	518						
9 10 11	519	Declarations					
12 13	520	Ethics approval and consent to participate					
14 15 16 17 18 19 20	521	All study participants provided informed consent. This study was approved by Ulster					
	522	University Institutional Ethics committee (REC/20/0043), South Birmingham REC (The					
	523	PANDEMIC Study IRAS Project ID: 286041Ref 20/WM/0184) and adhered to the					
21 22	524	Declaration of Helsinki and Good Clinical Practice.					
23 24	525	Patient and Public Involvement					
25 26 27 28 29 30 31 32 33	526	Patients or the public were not involved in the design, or conduct, or reporting, or					
	527	dissemination plans of our research.					
	528	Consent for publication					
	529	Not applicable.					
35 36	530	Dissemination to participants and related patient and public communities.					
37 38	531	Links to this work will be included on the study website					
39 40	532	(https://www.ulster.ac.uk/coronavirus/research/research-output/pandemic-study) and					
41 42 43	533	participants will be alerted that the work has been published.					
44 45	534	Data sharing					
46 47	535	Data are available on reasonable request to the corresponding author.					
48 49 50	536	Competing interests:					
50 51 52	537	At the time of this study TM and JML acted as advisors to CIGA HealthCare, an					
53 54	538	industrial partner in the UK Rapid Test Consortium. No personal financial reward or					
55 56	539	renumeration was received for this advisory role. At the time of submission of this					
57 58 59 60	540	manuscript TM and JML no longer held these advisory positions.					

BMJ Open

541 All other authors have no potential conflict of interest to report.

Funding:

543 Costs for assays and laboratory expenses only will be paid by UK-RTC as is normal 544 practice (UU-UK-RTC-2020-001). The authors have not been paid or financially 545 benefitted from this study.

The advisory roles within CIGA Healthcare were unpaid temporary roles. This manuscript and associated data within this paper has only been used to build confidence into the overall device design and performance assessment of the UK RTC AbC-19 devices and such work was never commissioned for any government contractual consideration.

 $\frac{6}{2}$ 551 **Authors' contributions:**

TM, JML conceived the study. LR, JM and TM performed all laboratory analyses. LR, SM and KYN analysed data, KB performed all statistical analyses/interpretations and produced figures. NQ, FJ, GW and PS performed all Roche analyses and provided SHSCT cohort samples. MC, KM and SR performed all Abbott analyses and provided Blood Transfusion cohort samples. TM, RP and AN coordinated participant recruitment, consent and sampling. WB and JML developed online consent forms, questionnaires and databases. LR, JM, AK, AA, GEW, DH, SS, CCS performed sample collection and processing. LR and TM wrote the manuscript, with significant contributions from JM, AN and KB. All authors reviewed and approved the final manuscript.

Acknowledgements: We are extremely grateful to all the people of Northern Ireland who took part in this study and gave blood during the pandemic. We are indebted to the phlebotomists- Geraldine Horrigan and Pamela Taylor who conducted the blood

Page 25 of 52

1 2

3 4	566	draw	s whilst ensuring the highest possible level of safety to the participants. We are				
5 6	567	also	grateful to Kingsbridge Private Hospital Group for sponsorship and providing				
7 8 9 10 11	568	ever	ything needed for blood collection including the clinical rooms. We acknowledge				
	569	Dr Tony Byrne for use of his laboratory and Professor Gareth Davison for laborator					
12 13	570	spac	e and equipment during the pandemic within a locked down University.				
14 15	571						
16 17 18	572	Refe	rences				
19 20	573						
21 22	574	1.	World Health Organisation. Rolling updates on coronavirus disease (COVID-				
23 24 25	575		19) [Internet]. 2020 [cited 2020 Aug 11]. Available from:				
25 26 27	576		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-				
28 29	577		they-happen				
30 31	578	2.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and				
32 33 34	579		epidemiology of 2019 novel coronavirus: implications for virus origins and				
35 36	580		receptor binding. Lancet. 2020 Jan 30;395.				
37 38	581	3.	Petherick A. Developing antibody tests for SARS-CoV-2. Lancet [Internet].				
39 40 41	582		2020 Apr 4 [cited 2020 Sep 12];395(10230):1101–2. Available from:				
42 43	583		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30788-				
44 45	584		1/fulltext#.X10EdBi-Ayk.mendeley				
46 47	585	4.	Winichakoon P, Chaiwarith R, Liwsrisakun C, Salee P, Goonn A, Limsukon A,				
48 49 50	586		et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out				
51 52	587		COVID-19. Vol. 58, Journal of Clinical Microbiology. American Society for				
53 54	588		Microbiology; 2020.				
55 56 57	589	5.	Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ				
57 58 59	590		[Internet]. 2020;370. Available from:				
60							

1 2			
3 4	591		https://www.bmj.com/content/370/bmj.m3325
5 6 7	592	6.	Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results:
/ 8 9	593		hidden problems and costs. Lancet Respir Med [Internet]. 2020 Nov 11;
10 11	594		Available from: https://doi.org/10.1016/S2213-2600(20)30453-7
12 13	595	7.	Omata M, Hirotsu Y, Sugiura H, Maejima M, Nagakubo Y, Amemiya K, et al.
14 15	596		The dynamic change of antibody index against Covid-19 is a powerful
16 17 18	597		diagnostic tool for the early phase of the infection and salvage PCR assay
19 20	598		errors. J Microbiol Immunol Infect [Internet]. 2021 Jan 5;S1684-
21 22	599		1182(21)00008-6. Available from: https://pubmed.ncbi.nlm.nih.gov/33593710
23 24 25	600	8.	Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the
23 26 27	601		case for health-care worker screening to prevent hospital transmission. Lancet
28 29	602		(London, England) [Internet]. 2020 May 2 [cited 2020 Sep
30 31	603		12];395(10234):1418–20. Available from:
32 33 34	604		http://www.ncbi.nlm.nih.gov/pubmed/32305073
35 36	605	9.	Petersen LR, Sami S, Vuong N, Pathela P, Weiss D, Morgenthau BM, et al.
37 38	606		Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected
39 40 41	607		persons. Clin Infect Dis [Internet]. 2020 Nov 4; Available from:
42 43	608		https://doi.org/10.1093/cid/ciaa1685
44 45	609	10.	Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and
46 47	610		immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med
48 49 50	611		[Internet]. 2020;26(8):1200-4. Available from: https://doi.org/10.1038/s41591-
51 52	612		020-0965-6
53 54	613	11.	Daniel WW. Biostatistics : a foundation for analysis in the health sciences. 7th
55 56 57	614		Editio. New York: John Wiley & Sons, Ltd; 1999. 720 p.
58 59 60	615	12.	Medicines and Healthcare product Regulatory Agency. Target product profile:

Page 27 of 52

1 2			
3 4	616		antibody tests to help determine if people have immunity to SARS-CoV-2
5 6	617		[Internet]. 2020 [cited 2020 Apr 24]. Available from:
7 8 0	618		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
9 10 11	619		ttachment_data/file/881162/Target_Product_Profile_antibody_tests_to_help_d
12 13	620		etermine_if_people_have_immunity_to_SARS-CoV-2_Version_2.pdf
14 15	621	13.	The R Development Core Team. R: A language and environment for statistical
16 17 19	622		computing. ISBN 3-900051-07-0. 2017.
19 20	623	14.	Wickham H. ggplot2 Elegant Graphics for Data Analysis. Springer. 2016.
21 22	624	15.	Rosadas C, Randell P, Khan M, McClure MO, Tedder RS. Testing for
23 24 25	625		responses to the wrong SARS-CoV-2 antigen? Lancet (London, England)
25 26 27	626		[Internet]. 2020 Sep 5 [cited 2020 Sep 13];396(10252):e23. Available from:
28 29	627		http://www.ncbi.nlm.nih.gov/pubmed/32866429
30 31	628	16.	UK-RTC and Abingdon Health. Charting the course to a post-COVID world.
32 33 34	629		2020.
35 36	630	17.	Mulchandani R, Jones HE, Taylor-Phillips S, Shute J, Perry K, Jamarani S, et
37 38	631		al. Accuracy of UK Rapid Test Consortium (UK-RTC) "AbC-19 Rapid Test" for
39 40	632		detection of previous SARS-CoV-2 infection in key workers: test accuracy
41 42 43	633		study. BMJ [Internet]. 2020 Nov 11;371:m4262. Available from:
44 45	634		http://www.bmj.com/content/371/bmj.m4262.abstract
46 47	635	18.	Wu L-P, Wang N-C, Chang Y-H, Tian X-Y, Na D-Y, Zhang L-Y, et al. Duration
48 49 50	636		of antibody responses after severe acute respiratory syndrome. Emerg Infect
51 52	637		Dis [Internet]. 2007 Oct;13(10):1562–4. Available from:
53 54	638		https://pubmed.ncbi.nlm.nih.gov/18258008
55 56 57	639	19.	Manisty C, Treibel TA, Jensen M, Semper A, Joy G, Gupta RK, et al.
57 58 59	640		Characterising heterogeneity and sero-reversion in antibody responses to mild
00			

BMJ Open

3 4	641		SARS [?] CoV-2 infection: a cohort study using time series analysis and
5 6	642		mechanistic modelling. medRxiv [Internet]. 2020 Jan 1;2020.11.04.20225920.
7 8 0	643		Available from:
9 10 11	644		http://medrxiv.org/content/early/2020/11/06/2020.11.04.20225920.1.abstract
12 13	645	20.	Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological
14 15	646		memory to SARS-CoV-2 assessed for up to 8 months after infection. Science
16 17 18	647		(80-) [Internet]. 2021 Feb 5;371(6529):eabf4063. Available from:
19 20	648		http://science.sciencemag.org/content/371/6529/eabf4063.abstract
21 22	649	21.	Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H,
23 24 25	650		Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N
26 27	651		Engl J Med [Internet]. 2020 Sep 1; Available from:
28 29	652		https://doi.org/10.1056/NEJMoa2026116
30 31 32	653	22.	Mulchandani R, Taylor-Phillips S, Jones H, Ades T, Borrow R, Linley E, et al.
32 33 34	654		Self assessment overestimates historical COVID-19 disease relative to
35 36	655		sensitive serological assays: cross sectional study in UK key workers.
37 38	656		medRxiv [Internet]. 2020 Jan 1;2020.08.19.20178186. Available from:
39 40 41	657		http://medrxiv.org/content/early/2020/08/22/2020.08.19.20178186.abstract
42 43	658	23.	lyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al.
44 45	659		Persistence and decay of human antibody responses to the receptor binding
46 47 48	660		domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol
49 50	661		[Internet]. 2020 Oct 8;5(52):eabe0367. Available from:
51 52	662		http://immunology.sciencemag.org/content/5/52/eabe0367.abstract
53 54	663	24.	Moshe M, Daunt A, Flower B, Simmons B, Brown JC, Frise R, et al. SARS-
55 56 57	664		CoV-2 lateral flow assays for possible use in national covid-19 seroprevalence
58 59 60	665		surveys (React 2): diagnostic accuracy study. BMJ [Internet]. 2021 Mar

Page 29 of 52

BMJ Open

1 2			
3 4	666		2;372:n423. Available from: http://www.bmj.com/content/372/bmj.n423.abstract
5 6	667	25.	lyer AS, Jones FK, Nodoushania A, Kelly M, Becker M, Slater D, et al.
/ 8 0	668		Dynamics and significance of the antibody response to SARS-CoV-2 infection.
10 11	669		medRxiv [Internet]. 2020 Jan 1;2020.07.18.20155374. Available from:
12 13	670		http://medrxiv.org/content/early/2020/07/20/2020.07.18.20155374.abstract
14 15	671	26.	Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang M, et
16 17 19	672		al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in
19 20	673		humans during a fishery vessel outbreak with high attack rate. medRxiv
21 22	674		[Internet]. 2020 Jan 1;2020.08.13.20173161. Available from:
23 24	675		http://medrxiv.org/content/early/2020/08/14/2020.08.13.20173161.abstract
25 26 27	676	27.	Public Health England. Evaluation of the Abbott SARS-CoV-2 IgG for the
28 29	677		detection of anti-SARSCoV-2 antibodies [Internet]. 2020. Available from:
30 31	678		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
32 33 34	679		ttachment_data/file/890566/Evaluation_of_Abbott_SARS_CoV_2_IgG_PHE.pd
35 36	680		f
37 38	681	28.	Public Health England. Evaluation of the Euroimmun Anti-SARS-CoV-2 ELISA
39 40	682		(IgG) serology assay for the detection of anti-SARS-CoV-2 antibodies
41 42 43	683		[Internet]. 2020. Available from:
44 45	684		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
46 47	685		ttachment_data/file/893433/Evaluation_of_Euroimmun_SARS_CoV_2_ELISA_
48 49 50	686		lgG1_pdf
50 51 52	687	29.	Public Health England. Evaluation of Roche Elecsys AntiSARS-CoV-2
53 54	688		serology assay for the detection of anti-SARS-CoV-2 antibodies. 2020.
55 56	689	30.	Hall MK, Kea B, Wang R. Recognising Bias in Studies of Diagnostic Tests Part
57 58 59 60	690		1: Patient Selection. Emerg Med J [Internet]. 2019/07/13. 2019 Jul;36(7):431-

2			
3 4	691		4. Available from: https://pubmed.ncbi.nlm.nih.gov/31302605
5 6	692	31.	Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z.
7 8	693		Immunological considerations for COVID-19 vaccine strategies. Nat Rev
9 10 11	694		Immunol [Internet]. 2020;20(10):615–32. Available from:
12 13	695		https://doi.org/10.1038/s41577-020-00434-6
14 15	696		
16 17			
18 19			
20 21			
22			
23 24			
25 26			
27			
28 29			
30			
31 32			
33			
34 35			
36			
37 38			
39 40			
40 41			
42 43			
44			
45 46			
47			
48 49			
50 51			
52			
53 54			
55			
56 57			
58			
59 60			
50			

Table 1: Antibody level ratios for assays over time

699 Antibody level ratios for assays over time show varying peak levels depending on test.

700 Calculated by first establishing the median per time period, then calculating log2 ratio

for each period versus each respective assay positivity cut-off.

	Ratio median antibody level: assay positivity cut-off										
		Week									
	Pre- 2020	1-2	3-4	5-8	9-12	13-16	18-20	21-24	25-28	29+	
EuroImmun	-2.65	1.33	0.2	0.95	1.32	0.47	0.04	-2.01	-2.26	-2.01	
Roche	-3.64	3.16	3.05	5.20	5.45	4.14	4.42	-3.54	-3.69	-3.61	
Abbott	-5.54	1.64	-0.51	1.12	0.86	0.08	-0.59	-5.13	-5.13	-6.13	
Sample number (n=)	223	20	10	52	90	202	53	11	12	11	

703 Table 2: UK-RTC AbC-19 LFIA performance metrics against known antibody

704 positive and known antibody negative cohorts.

Total Negative	True Negative	False Positive	Total Positive	True Positive	False Negative	Sensitivity % (95 Cl)	Specificity % (95 Cl)		
			Pre-pano	demic (n=22	23)				
223	222	1	n/a	n/a	n/a	n/a	99.55% (97.53% to 99.99%)		
Initially reported cohorts (n=654)									
350	350	0	304	297	7	97.70% (95.31%- 99.07%)	100.00% (98.95%- 100.00%)		
Extended cohorts (n=818)									
488	486	2	330	322	8	97.58% (95.28%- 98.95%)	99.59% (98.53%- 99.95%)		

Figure Legends

Figure 1: Two-way correlation scatter plots comparing a) Eurolmmun b) Abbott and c) Roche immunoassays. Pearson χ^2 test was used to assess correlations. The results for each test were log transformed to ensure results follow a normal distribution. Negative agreement shown as blue dots, red dots show positive agreement for the two immunoassays, whilst black dots show disagreement and grey dots as the EuroImmun borderline results. Vertical lines mark the Abbott test range 0.25-1.4. n=880. The graphs show positive correlations between all immunoassays evaluated, with the fewest disagreement of results between the Log of Roche and the Log of EuroImmun. Fit lines LOESS, with 95% confidence interval shaded.

Figure 2: SARS-CoV-2 antibody levels by (a) Eurolmmun, (b) Roche, and (c) Abbott, relative to weeks since first reported symptoms or positive PCR result (where data available, n=685). RT-PCR positive individuals are denoted by red dots. while individuals with time since symptom data are denoted in black. Dashed lines delineate loge equivalent of positivity threshold (Eurolmmun 1.1, Roche 1.0, Abbott 1.4) for each test, and the negativity threshold for EuroImmun (0.8; borderline result between the two lines). Black bars indicate median, within IQR (interguartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interguartile range).

Figure 3: AbC-19 extended cohort (n=818) correlation to a) EuroImmun b) Roche and c) Abbott scores. Box plots overlaid on scatter plot, comparing AbC-19 TT3 test scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line

2 3 4	731
5 6	732
7 8	732
9	152
10	
12	
13	
14 15	
16	
17 18	
19	
20	
21	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33	
34 35	
36	
37 38	
39	
40 41	
42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55	
56	
57 58	
59	

60

1 of best fit with 95% confidence interval shaded in grey. Black bars indicate median,

732 within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red

733 triangles indicate outliers, based on 1.5* IQR (interquartile range).

to been teriew only

Category

- Both negative
- Both positive
- Disagreement
- Eurolmmun borderline

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S1: Flow of participant plasma samples through cross-sectional study.

All available samples from participants within each cohort, and the included and excluded samples at all stages. Freeze thaw cycles were closely monitored for all sample aliquots. Pre-pandemic samples taken forward for Roche, Abbott and EuroImmun testing were selected based on aliquot volume and availability.

Figure S2: Visual Score card for quantitative interpretation of AbC-19 LFIA test bands. A scale of 0 (not pictured, negative-no test line visible) to 10 (positivestrongest test line). Any LFIA scoring 1 or above was classified as positive.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S3: Venn diagrams demonstrating result overlap between laboratory assays in a) the initial immunoassay cohort (n=880), b) the positive and c) negative cohorts assessed with AbC-19 TT3. Result in each circle overlap in bold, (RT-PCR positive, no RT-PCR positive) denoted in red in brackets below. Where AbC-19 was analysed, (AbC-19 positive, AbC-19 negative) denoted in green.

to beet teries only

Figure S4: Age violin plots overlaid with scatter for samples included in correlation analysis (where age data available) n=880.

The above graphs allow comparison of the distributions and probability density of ages for EuroImmun, Roche and Abbott immunoassays. Wider areas of the violin plot represent high probability density, whilst narrow areas represent low probability density. Horizontal bar indicates median age. The red violin plots represent the negative results, the green violin plot represent the borderline results and the blue/turquoise violin plots represent the positive results.

Figure S5: Age violin plots separated into age groups (where age data available) for samples included in correlation analysis.

The above figure presents graphs for each immunoassay (EuroImmun, Roche and Abbott) with the corresponding age groups <35 years, <45 years, <55 years, <65 years and >= 65 years. The red violin plots represent the negative results, the green violin plot represents the borderline EuroImmun results, and the blue/turquoise violin plots represent the positive results (n=848).

Figure S6: Longitudinal analysis of convalescent plasma donor sequential samples (2-9 samples per individual) by a) EuroImmun ELISA or b) Abbott immunoassay. a) n=101 individuals, grey shading indicates borderline region, upper dotted line indicates positivity threshold (1.1), lower dotted line indicates negativity threshold (0.8) b) n=75 individuals, dotted line indicates positivity threshold (1.4). Dots represent log-transformed quantitative values for each sample, lines connect samples from the same individual.

Figure S7: AbC-19 initially reported cohort n=654 correlation to a) EuroImmun b) Roche and c) Abbott scores. Box plots overlaid on scatter plot, comparing TT3 AbC-19 test scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line of best fit with 95% confidence interval shaded in grey. Black bars indicate median, within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interquartile range).

Figure S8: Correlation matrix between Abbott, Eurolmmun, Roche and initially reported AbC-19 cohort (n=654) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S9: Correlation matrix between Abbott, EuroImmun, Roche and extended AbC-19 cohort (n=818) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S10: NIBSC external reference serology standards and known respiratory virus serology samples.

The scorecard score 0-10 was annotated on test cassette beneath sample ID when agreed by three independent experienced researchers. All LFIAs had a visible control line.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1: Summary specifications for SARS-CoV-2 immunoassays

investigated.

8									· · · · · · · · · · · · · · · · · · ·
9 10nmunoassay 11	Principle	Antigen Target	Assay Time (min)	Antibody Detected	Measurement	Result	Calibration	Evaluation of results	Results
12 13 14 Fyrolmmun FJISA 17 18	Enzyme-linked immunosorbent assay (enzyme-HRP)	S1 domain of the spike protein	120	lgG	Photometric measurement of the color intensity using wavelength of 450 nm and a reference wavelength between 620 nm and 650 nm	OD (Optical density)	One Positive calibrator	OD of clinical sample/OD of calibrator	< 0.8 Negative, ≥ 0.8 to <1.1 Borderline, ≥ 1.1 Positive
20 21 22 23 24 25 26 27 26 27 26 27 26 27 29 30 31 32 33 34 35	Electro- chemiluminescence	Nucleocapsid	18	IgG, IgA and IgM	Application of a voltage to the electrode then induces chemiluminescent emission which is measured by a photomultiplier	RLU (Relative Light Intensity)	One Positive calibrator and one Negative calibrator	The analyzer automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non- reactive as well as in the form of a cut-off index (COI; signal sample/cut- off).	< 1.0 Negative, ≥ 1.0 Positive
36 37 38 340bott 4rchitect 45 42 43 44 45	Chemiluminescent microparticle immunoassay	Nucleocapsid	30	lgG	The resulting chemiluminescent reaction is measured as a relative light unit (RLU).	RLU (Relative Light Intensity)	One Positive calibrator	Results are reported by dividing the sample result by the calibrator result (mean of 3 calibrators). The default result unit for the SARS-CoV-2 IgG assay is Index (S/C).	< 1.4 Negative, ≥ 1.4 Positive
46 47 48 4 973 AbC-19 50 51 52 53	Rapid Point of Care Lateral Flow Immunoassay	Full length Spike protein	20	lgG	The colour intensity of the test line is analysed using the reference score card.	Binary	The presence of a control line indicates the test is valid.	A result is positive if there is both a test line and a control line, whilst a result is negative if only the control line is present.	Using the reference score card; Positive scores ≥1 Negative scores=0

Table S2: Pandemic participant laboratory-based SARS-CoV-2 antibody result.

Breakdown of individual immunoassay results or result by one or more test.

Test	Positive (%)	Borderline (%)	Negative (%)
Abbott	310/657 (47.2%)	n/a	347/657 (62.8%)
Eurolmmun	346/657 (52.7%)	20/657 (3.2%)	291/657 (44.4%)
Roche	380/657 (57.8%)	n/a	277/657 (42.2%)
One or more test	385/657 (58.6%)	3/657 (0.45%)	269/657 (40.9%)

Table S3: Positive RT-PCR samples sensitivity analysis on the AbC-19 LFIA.

RT-PCR Positive	True Positive	False Negative	Sensitivity % (95 Cl)
227	209	18	92.07% (87.76%- 95.23%)
Negative by EI, R and A	Negative by El, R and A	Negative by El, R and A	

Table S4: Analytical specificity analysis on the AbC-19 LFIA LFIAs were assessed using 34 serum samples with known other respiratory viruses, negative results for all suggests analytical specificity for SARS_CoV_2 IgG.

SAMPLE	Number of samples	Number of AbC- 19 Positive results	Number of AbC- 19 Negative results
H5N1 Influenza (NIBSC 7/150)	1	0	1
RSV (NIBSC 16/284)	1	0	1
Influenza B (NIBSC 9/222)	1	0	1
Bordetella Pertussis (NIBSC 89/530)	1	0	1
Influenza A	5	0	5

Influenza B	5	0	5
Respiratory syncytial virus	5	0	5
Haemophilus Influenzae	5	0	5
Seasonal coronavirus NL63	5	0	5
Seasonal coronavirus 229E	5	0	5

Table S5: AbC-19 LFIA results with NIBSC external reference samples

NIBSC standard serology samples were provided with a data sheet indicating the SARS-CoV-2 antibody levels. We measured SARS-CoV-2 antibody levels in these samples and obtained similar results with the EuroImmun IgG ELISA in our laboratory.

NIBSC	AbC-19 LFIA result	Ulster University lab result	NIBSC provided antibody data				
#		Eurolmmun IgG (S1 domain)	Eurolmmun IgG (S1 domain)	Eurolmmun IgA	In- house IgG S1	In- house IgG N	In- house IgG sSpike
20/120	pos (10)	pos (8.39)	pos (8.59)	pos (10.1)	5580	3417	2693
20/122	pos (7)	pos (3.49)	pos (3.47)	pos (1.1)	3202	2425	1488
20/124	pos (1)	pos (1.56)	pos (1.62)	pos (1.84)	1636	3296	118
20/126	pos (1)	neg (0.60)	neg (0.64)	pos (1.63)	1181	995	8
20/128	neg (0)	neg (0.23)	neg (0.21)	neg (0.02)	<50	<50	<50
20/130	pos (8)	pos (6.96)	pos (7.77)	pos (9.74)	5388	17197	2707

Supplementary Methods

Laboratory-based immunoassays

Researchers were blinded to other test results when processing these assays.

EuroImmun Anti-SARS-CoV-2 ELISA-IgG (EuroImmun, El 2606-9601 G) was carried out according to manufacturer's instructions. Optical density (OD) at 450nm and reference OD at 620nm was read on BMG Labtech Fluostar Omega spectrophotometer (BMG Labtech). Ratios were calculated by dividing absorbance of the clinical sample by the absorbance of EuroImmun calibrator, with a score of < 0.8 determined negative, \geq 0.8 to <1.1 borderline and \geq 1.1 positive. For samples provided by NIBTS, EuroImmun IgG assay data was provided to researchers.

Roche Elecsys immunoassay (Roche Diagnostics, kit 09203079190) was carried out according to manufacturer's instructions on the Roche cobas e601 (C6000 line) or e801 (C8000 line) analysers. The analyser automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non-reactive as well as in the form of a cut-off index (COI; signal sample/cut-off). A score of <1.0 is determined negative, while a score \geq 1.0 is positive.

Abbott Architect SARS-CoV-2 immunoassay was carried out according to manufacturer's instructions on the Abbott Architect i2000SR analyser (Abbott, kit 18115FN00, calibrator kit 17412FN00, Control kit 17531FN00). The external control is entered into a Quality Monitor programme and must be within 3 standard deviations of the mean (cumulative; External control NIBSC QCRSARSCoV-2QC1 Lot

BMJ Open

20/B764-01). Results are reported by dividing the sample result by the calibrator result. The result unit for the SARS-CoV-2 IgG assay is Index (Sample/Calibrator). A ratio of < 1.4 is determined negative and \geq 1.4 is determined positive.

Analytical specificity and sensitivity assessment

Four virology samples (H5N1 influenza serology 7/150, RSV serology 16/284, Influenza B 9/222 and Bordetella Pertusis 89/530) were obtained from NIBSC (National Institute for Biological Standards, Herts, UK). An additional 30 serology samples from known virus infections were a kind gift from SugenTech, Soeul, Korea. 15 of these virology samples were obtained from Trina (Trina Bioreactives AG, Switzerland) from 5 different individuals per virus (Influenza A IgG, Influenza B IgG and RSV IgG). A further 15 of these virology samples were obtained from AbBaltris, Kent from 5 different individuals per virus (Haemophilus Influenza IgG, Seasonal Coronavirus NL63 and 229E Seasonal Coronavirus). All these serology samples alongside a panel of 6 external standard research reagents (Table S4; NIBSC; Cat: 20/118 and 20/130) were assessed on the TT3 AbC-19 LFIA to confirm analytical specificity and sensitivity.

Page 53 of 52

Section & Topic	No	Item	#
TITLE OR ABSTRACT	1		
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
	-	(such as sensitivity, specificity, predictive values, or AUC)	-
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	4-5
	4	Study objectives and hypotheses	5-6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	6-7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7
	7	On what basis potentially eligible participants were identified	6/7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	6/7
	9	Whether participants formed a consecutive, random or convenience series	6
Test methods	10a	Index test, in sufficient detail to allow replication	8
	10b	Reference standard, in sufficient detail to allow replication	8
	11	Rationale for choosing the reference standard (if alternatives exist)	5-6
	12a	Definition of and rationale for test positivity cut-offs or result categories	8, supp table 1
		of the index test, distinguishing pre-specified from exploratory	-
	12b	Definition of and rationale for test positivity cut-offs or result categories	Supp methods,
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	Supp methods
	126	Whather divide information and index test results were available	0
	120	to the assessors of the reference standard	0
Δnalvsis	14	Methods for estimating or comparing measures of diagnostic accuracy	8/9
-indiy313	15	How indeterminate index test or reference standard results were handled	11 Sunn Fig1
	16	How missing data on the index test and reference standard were handled	Sunn Fig 1
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	12-14
		Intended sample size and how it was determined	8-9
RESULTS			
Participants	19	Flow of participants, using a diagram	Supp Fig 1
	20	Baseline demographic and clinical characteristics of participants	10
	21a	Distribution of severity of disease in those with the target condition	10
	21b	Distribution of alternative diagnoses in those without the target condition	10
	22	Time interval and any clinical interventions between index test and reference standard	6-7
Test results	23	Cross tabulation of the index test results (or their distribution)	Fig 3, Fig S3, S5-
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	12-13, Table 1
	25	Any adverse events from performing the index test or the reference standard	n/a
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	4, 18-20
	27	Implications for practice, including the intended use and clinical role of the index test	19-20
OTHER			
INFORMATION			
	28	Registration number and name of registry	N/a
	29	Where the full study protocol can be accessed	Ethics approval
			documents

	30 Sources of funding and other support; role of funders	22
)		
1		
2		
4		
5		
6 7		
8		
9 0		
1		
2		
4		
5		
7		
8		
9 0		
1		
2 3		
4		
5		
7		
8		
0		
1		
3		
4		
5		
7		
3		
0		
 >		
3		
4		
6		
7		
o 9		

BMJ Open

BMJ Open

Northern Ireland nationwide serological study for laboratory evaluation of SARS-CoV-2 antibodies: detectable IgG more than 10 months post infection.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048142.R2
Article Type:	Original research
Date Submitted by the Author:	13-May-2021
Complete List of Authors:	Robertson, Louise; Ulster University, Biomedical Sciences Research Institute Moore, Julie; Ulster University - Coleraine Campus, Biomedical Sciences Research Institute Bilghe, Kevin; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Quinn, Nigel; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Jennings, Fergal; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Warnock, Gary; Southern Health and Social Care Trust, Microbiology Laboratory Sharpe, Peter; Southern Health and Social Care Trust, Microbiology Laboratory Clarke, Mark; Northern Ireland Blood Transfusion Service, Belfast City Hospital Maguire, Kathryn; Northern Ireland Blood Transfusion Service, Belfast City Hospital Price, Ruth; Ulster University, Biomedical Sciences Research Institute Burns, William; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Kowalczyk, Amanda; Ulster University, Biomedical Sciences Research Institute Awuah, Agnes; University of Ulster, Biomedical Sciences Research Institute McNamee, Sara; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Wallace, Gayle; Belfast Health and Social Care Trust, Royal Victoria Hospital Sager, Steve; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University, Biomedical Sciences Research Institute McLaughlin, James; Ulster University - Jordanstown Campus,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Nanotechnology and Integrated Bioengineering Centre Moore, Tara; Ulster University, Biomedical Sciences Research Institute
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Immunology (including allergy)
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Diagnosti microbiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Northern Ireland nationwide serological study for laboratory evaluation of SARS-CoV-2 antibodies: detectable lgG more than 10 months post infection. Authors: Louise J. Robertson ¹ , Julie S. Moore ¹ , Kevin Blighe ¹ , Kok Yew Ng ² , Nigel Cuinn ² , Fergal Jennings ³ , Gary Warnock ⁴ , Peter Sharpe ³ , Mark Clarke ⁵ , Kathryn Maguire ⁵ , Sharon Rainey ⁵ , Ruth Price ¹ , William Burns ² , Amanda Kowalczyk ¹ , Agnes Awuah ¹ , Sara McNamee ⁴ , Gayle E Wallace ⁶ , David Hunter ⁶ Steve Sager ¹ , Connie Chao Shem ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ² , Tara Moore ^{18,7} . ¹⁰ Biomedical Sciences Research Institute, Ulster University, Northern Ireland ¹² Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland ¹³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁵ Avellino, 1505 Adams Dr, Menio Park, CA 94025, United States ¹⁶ Joint corresponding authors- Professor Tara Moore <u>tara.moore@ulster.ac.uk</u> ¹⁷ Professor James McLaughlin jad mclaughlin@ulster ac.uk ¹⁸ All ¹⁹ All ¹⁹ All <th>1</th> <th></th> <th></th>	1		
Authors: Louise J. Robertson', Julie S. Moore', Kevin Blighe', Kok Yew Ng ² , Nigel Quinn ² , Fergal Jennings ³ , Gary Warnock ⁴ , Peter Sharpe ³ , Mark Clarke ⁵ , Kathryn Maguire ³ , Sharon Rainey ⁵ , Ruth Price ¹ , William Burns ⁵ , Amanda Kowalczyk ¹ , Agnes Awuth', Sara McNamee ² , Cayle E Wallace ⁶ , David Hunter ⁶ Steve Sager ¹ , Connie Chao Shern ⁷ , M. Andrew Nesbit', James McLaughlin ^{2*} , Tara Moore ^{1&**} . ¹⁰ 'Biomedical Sciences Research Institute, Ulster University, Northern Ireland ¹¹ a'Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹² Frieland ¹³ "Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁴ Freigal ¹⁵ Youtic Jobs Adams Dr, Menio Park, CA 94025, United States ¹⁶ Youtic Orresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk ¹⁷ State	2		
 SARS-CoV-2 antibodies: detectable igG more than 10 months post infection. Authors: Louise J. Robertson¹, Julie S. Moore¹, Kevin Blighe¹, Kok Yew Ng², Nigel Quinn³, Fergal Jennings³, Gary Warnock¹, Peter Sharpe³, Mark Clarke⁵, Kathryn Maguire³, Sharon Rainey³, Ruth Price¹, William Burns², Amanda Kowalczyk¹, Agnes Awuat¹, Sara McNamee², Gayle E Wallace⁶, David Hunter⁶ Steve Sager¹, Connie Chao Shern⁷, M. Andrew Nesbit¹, James McLaughlin², Tara Moore^{18,7}. ¹⁹Biomedical Sciences Research Institute, Ulster University, Northern Ireland ²⁰Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁴⁰Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁴⁰Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 	3	1	Northern Ireland nationwide serological study for laboratory evaluation of
 SARS-LOV-2 antibodies: detectable igu more than 10 months post intection. Authors: Louise J. Robertson¹, Julie S. Moore¹, Kevin Blighe¹, Kok Yew Ng², Nigel Quinn³, Fergal Jennings³, Gary Warnock⁴, Peter Sharpe³, Mark Clarke⁵, Kathryn Maguire⁵, Sharon Rainey⁵, Ruth Price¹, William Burns², Amanda Kowalczyk¹, Agnes Awuah¹, Sara McNamee⁶, Gayle E Wallace⁶, David Hunter⁶ Steve Sager¹, Connie Chao Shem⁷, M. Andrew Nesbit¹, James McLaughlin², Tara Moore^{18,7}. ¹⁰ 'Biomedical Sciences Research Institute, Ulster University, Northern Ireland ¹¹ ²Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern ¹² Ireland ¹³ ³Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁶ 'Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland ¹⁶ 'Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland ¹⁷ 'Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States ¹⁹ 'Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk ¹⁰ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ¹¹ 21 ¹³ 3 ¹³ 3 ¹⁴ 3 ¹⁵ 3 	4	1	ADD Oald O antibadian data stable le O many than 40 menths most infection
3 Authors: Louise J. Robertson ¹ , Julie S. Moore ¹ , Kevin Blighe ¹ , Kok Yew Ng ² , Nigel 4 Quinn ³ , Fergal Jennings ³ , Gary Warnock ⁴ , Peter Sharpe ³ , Mark Clarke ⁵ , Kathryn 6 Maguire ⁶ , Sharon Raine ⁹ , Ruth Price ¹ , William Burns ² , Amanda Kowalczyk ¹ , Agnes 7 Awuah ¹ , Sara McNamee ² , Gayle E Wallace ⁶ , David Hunter ⁶ Steve Sager ¹ , Connie 8 Chao Shem ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ² ', Tara Moore ^{1&7'} . 9 ¹ Biomedical Sciences Research Institute, Ulster University, Northern Ireland 10 'Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland 13 *Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 14 *Northern Ireland Biood Transfusion Service. Beflast City Hospital, Northern Ireland 15 *Northern Ireland Biood Transfusion Service. Beflast City Hospital, Northern Ireland 16 *Northern Ireland Biod Transfusion Service. Beflast City Hospital, Northern Ireland 17 Youit corresponding authors- Professor Tara Moore tara moore@ulster.ac.uk 20 *Joint corresponding authors- Professor Tara Moore tara moore@ulster.ac.uk 21 23 22 30 31 32 32 33 33 34 <td>5</td> <td>2</td> <td>SARS-Cov-2 antibodies: detectable IgG more than 10 months post infection.</td>	5	2	SARS-Cov-2 antibodies: detectable IgG more than 10 months post infection.
Authors: Louise J. Robertson ¹ , Julie S. Moore ¹ , Kevin Blighe ¹ , Kok Yew Ng ² , Nigel Guinn ³ , Fergal Jennings ³ , Gary Warnock ⁴ , Peter Sharpe ³ , Mark Clarke ⁵ , Kathryn Maguire ⁵ , Sharon Rainey ⁵ , Ruth Price ¹ , William Burns ² , Amanda Kowalczyk ¹ , Agnes Awuch ¹ , Sara McNamee ² , Gayle E Wallace ⁶ , David Hunte ⁶ Steve Sager ¹ , Connie Chao Shem ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ² , Tara Moore ^{1&7} . ¹ Biomedical Sciences Research Institute. Ulster University, Northern Ireland ² Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland ³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁴ Wicrobiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁵ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁷ Navellino, 1505 Adams Dr, Menio Park, CA 94025, United States ⁷ Joint corresponding authors- Professor Tara Moore tara moore@ulster.ac.uk ⁷ Orfessor James McLaughlin jad.mclaughlin@ulster.ac.uk ⁷ Jaint ⁸ Ja	6		
Authors: Louise J. Robertson1, Julie S. Moore1, Kevin Blighe1, Kok Yew Ng2, Nigel Guinn3, Fergal Jenning3, Garay Warnock4, Peter Sharpe3, Mark Clarke5, Kathryn Maguire5, Sharon Rainey5, Ruth Price1, William Burns3, Amanda Kowalczyk1, Agnes Awuah1, Sara McNamee2, Gayle E Wallace6, David Hunter5 Steve Sager1, Connie Chao Shern7, M. Andrew Nesbit1, James McLaughlin2, Tara Moore1827. Biomedical Sciences Research Institute, Ulster University, Northern Ireland 'Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland 'Nanotechnology Laboratory, Southern Health and Social Care Trust, Northern Ireland 'Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland 'Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland 'Navellino, 1505 Adams Dr, Menio Park, CA 94025, United States 'Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 'Professor James McLaughlin jad.mclaughlin@ulster.ac.uk 'Za	7	3	
 Fachings, Ediga Jennings, Gary Warnock¹, Peter Sharpe³, Mark Clarke⁵, Kathryn Maguire³, Sharon Rainey⁵, Ruth Price¹, William Burns², Amanda Kowalards, Agnes Awuah¹, Sara McNamee², Gayle Wallace⁶, Davil Hunter⁶ Steve Sager¹, Connie Chao Shem⁷, M. Andrew Nesbit¹, James McLaughlin², Tara Moore^{18,7}. ¹⁹ Biomedical Sciences Research Institute, Ulster University, Northern Ireland ¹⁰ "Royal Biochemistry Laboratory, Southern Health and Social Care Trust, Northern ¹¹ Ireland ¹² "Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹³ "Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ¹⁴ "Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ¹⁵ "Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁶ "Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ¹⁷ Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States ¹⁸ "Joint corresponding authors- Professor Tara Moore tara moore@ulster.ac.uk ¹⁷ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ¹⁸ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ¹⁹ ¹⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	, o	1	Authors: Louise J. Robertson ¹ , Julie S. Moore ¹ , Kevin Blighe ¹ , Kok Yew Ng ² , Nigel
Guillin, Fergal Jerlings*, Garly Varinock*, Viliam Burns?, Amanda Kowalczyk*, Agnes Maguire*, Sharon Rainey*, Ruth Price*, William Burns?, Amanda Kowalczyk*, Agnes Awuah*, Sara McNamee*, Gayle E Wallace*, David Hunter* Steve Sager*, Connie Chao Shern7, M. Andrew Nesbit*, James McLaughlin2*, Tara Moore**7. Biomedical Sciences Research Institute, Ulster University, Northern Ireland Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland Palarotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland *Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland *Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland *Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland *Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland *Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States *Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk Professor James McLaughlin jad.mclaughlin@ulster.ac.uk 23 24 25 26 27 28 29 30 31 32 33 34 34 <td>0</td> <td>- -</td> <td>Quinn³ Formal Jannings³ Com Warnack⁴ Deter Charne³ Mark Clarke⁵ Kethrun</td>	0	- -	Quinn ³ Formal Jannings ³ Com Warnack ⁴ Deter Charne ³ Mark Clarke ⁵ Kethrun
 Magures, Sharon Raineys, Ruth Pricel, William Burnss, Amanda Kowalers, Gayle E Wallaces, Davil Hunters' Steve Sager', Connie Chao Shern⁷, M. Andrew Nesbit¹, James McLaughlin²', Tara Moore^{18,7'}. Biomedical Sciences Research Institute, Ulster University, Northern Ireland 'Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland 'Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 'Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. 'Northern Service, Belfast City Hospital, Northern Ireland. 'Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 'Solution Service, Belfast City Hospital, Northern Ireland. 'Solution Service, Belfast City Hospital, Service, Service, Serv	9	2	Quinn ^s , Fergai Jennings ^o , Gary Warnock ⁺ , Peter Sharpe ^o , Mark Clarke ^o , Kathryn
7 Awuah ¹ , Sara McNamee ² , Gayle E Wallace ⁶ , David Hunter ⁶ Steve Sager ¹ , Connie 8 Chao Shern ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ^{2*} , Tara Moore ^{18,7*} . 9 10 'Biomedical Sciences Research Institute, Ulster University, Northern Ireland 11 'Avanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland 12 'Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 13 *Ocinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 14 Ireland *Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland 16 *Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland 17 'Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland 18 'Avellino, 1505 Adams Dr, Mento Park, CA 94025, United States 19 'Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 20 'Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 21 Professor James McLaughlin jad.mclaughlin@ulster.ac.uk 22 23 23 24 24 25 25 26 26 27	10	6	Maguire [®] , Sharon Rainey [®] , Ruth Price ⁺ , William Burns ² , Amanda Kowalczyk ⁺ , Agnes
12 8 Chao Shem ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ^{2*} , Tara Moore ^{18,7*} . 14 9 15 ¹ Biomedical Sciences Research Institute, Ulster University, Northern Ireland 16 11 17 ² Cinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 16 ⁵ Cinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 16 ⁵ Northern Ireland Biood Transfusion Service, Belfast City Hospital, Northern Ireland 17 ⁶ Coyal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland 18 ⁶ Northern Ireland Biood Transfusion Service, Belfast City Hospital, Northern Ireland 19 [*] Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 20 *Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 21 23 23 24 24 25 25 26 26 27 27 28 28 29 31 31 32 33 33 34 34 35 35 36 36 <td>11</td> <td>7</td> <td>Awuah¹, Sara McNamee², Gayle E Wallace⁶, David Hunter⁶ Steve Sager¹, Connie</td>	11	7	Awuah ¹ , Sara McNamee ² , Gayle E Wallace ⁶ , David Hunter ⁶ Steve Sager ¹ , Connie
 ¹³¹³¹⁴¹⁵¹⁵¹⁶¹⁶¹⁶¹⁶¹⁶¹⁶¹⁶¹⁶¹⁶¹⁶	12	8	Chao Shern ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ^{2*} , Tara Moore ^{1&7*} .
 ¹⁸Biomedical Sciences Research Institute, Ulster University, Northern Ireland ¹⁸Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland ³⁰Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁴⁰Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁶⁰Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶¹Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶²Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶³Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶⁴Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶⁴Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁷Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States ⁸⁴Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk ⁸⁷Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ⁸⁷Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ⁸⁷Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ⁸⁷Professor James McLaughlin jad.mclaughlin@ulster.ac.uk 	13	9	
 Planotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland ¹¹¹² Planotechnology and Integrated Bioengineering Centre, Ulster University, Northern Ireland ¹³¹³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ¹⁵ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ¹⁶ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ¹⁷ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ¹⁸ Proyel Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland ¹⁹ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ¹⁹ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ¹⁹ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁰ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²¹ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²³ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁴ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁵ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁶ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁷ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁸ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁹ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁹ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁹ Professor James McLaughling ²⁰ Professor James McLaughling ²⁰ Professor James McLaughling ²¹ Professor James McLaughling ²² Professor James McLaughling ²³ Professor James McLaughling ²⁴ Professor James McLaughling	14	10	¹ Diamodical Sciences Descereb Institute, Elleter University, Northern Ireland
 ⁴Nanotechnology and Integrated Bioengineering Centre, Uister University, Northern Ireland ³Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁶Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ⁷Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States [*]Joint corresponding authors- Professor Tara Moore <u>tara.moore@ulster.ac.uk</u> [*]Joint corresponding authors- Professor Tara Moore <u>tara.moore@ulster.ac.uk</u> ²⁰ [*]Joint corresponding authors- Professor Tara Moore <u>tara.moore@ulster.ac.uk</u> ²¹ ²² ²³ ²⁴ ²⁵ ²⁶ ³¹ ³² ³³ ³⁴ ³⁵ ³⁵ ³⁵ ³⁶ ³⁶ ³⁶ ³⁶ ³⁶ ³⁷ ³⁸ ³⁹ ³⁹ ³¹ ³¹ ³² ³³ ³⁴ ³⁵ ³⁵ ³⁶ ³⁶ ³⁶ ³⁶ ³⁶ ³⁷ ³⁸ ³⁵ ³⁶ ³⁶ ³⁷ ³⁸ ³⁶ ³⁶ ³⁷ ³⁸ ³⁹ ³¹ ³² ³³ ³⁵ ³⁴ ³⁵ ³⁵ ³⁶ ³⁶ ³⁶ ³⁷ ³⁸ ³⁵ ³⁶ ³⁶ ³⁷ ³⁸ ³⁹ ³⁹ ³¹ ³⁵ ³⁶ ³⁶ ³⁶ ³⁷ ³⁸ ³⁹ ³⁹ ³¹ ³¹ ³² ³³ ³⁴ ³⁵ ³⁵ ³⁶ ³⁶ ³⁷ ³⁸ ³⁹<td>15</td><td>10</td><td>Biomedical Sciences Research Institute, Oister Oniversity, Northern Ireland</td>	15	10	Biomedical Sciences Research Institute, Oister Oniversity, Northern Ireland
17 12 Ireland 13 ³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland 14 Ireland 15 ⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland 16 ⁶ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland 17 ⁶ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. 7 ⁶ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. 7 ⁶ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. 7 ⁶ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. 7 ⁶ Nergeaver Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. 7 ⁴ Nerlino, 1505 Adams Dr, Menlo Park, CA 94025, United States 20 *Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk 21 23 22 23 23 24 24 25 25 27 26 27 27 28 28 29 31 31 32 33 <	16	11	² Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern
 ¹⁸ 13 ³Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁴Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁵Northern Ireland Biood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ⁷Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States [*]Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk [*]Professor James McLaughlinjad.mclaughlin@ulster.ac.uk [*]23 [*]24 [*]25 [*]36 [*]37 [*]36 [*]37 [*]37 [*]38 [*]36 [*]37 [*]37 [*]38 [*]36 [*]37 [*]37 [*]38 [*]36 [*]37 [*]37 [*]38 [*]38 [*]39 [*]39 [*]39 [*]31 [*]32 [*]33 [*]34 [*]35 [*]36 [*]36 [*]37 [*]37 [*]38 [*]36 [*]36 [*]37 [*]37 [*]38 [*]38 [*]39 [*]39 [*]39 [*]31 [*]32 [*]32 [*]33 [*]34 [*]35 [*]36 [*]36 [*]37 [*]37 [*]38 [*]38 [*]39 [*]39 [*]39 [*]39 [*]39 [*]31 	17	12	Ireland
 ¹⁹ Ifeland ¹⁹ ¹⁴ Ireland ¹⁹ ¹⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁶ ¹Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland ⁶ ¹Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland ⁷ ¹Avellino, 1505 Adams Dr, Menio Park, CA 94025, United States [*] ¹Joint corresponding authors- Professor Tara Moore <u>tara.moore@ulster.ac.uk</u> ¹⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	18	13	³ Clinical Biochemistry Laboratory Southern Health and Social Care Trust Northern
 ⁴⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁵⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland ⁶⁷ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ⁷ Aveilino, 1505 Adams Dr, Menlo Park, CA 94025, United States [*] Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk Professor James McLaughlin jad mclaughlin@ulster.ac.uk Professor James McLaughlin jad mclaughlin@ulster.ac.uk ⁷⁷ ⁷⁸ ⁷⁷ ⁷⁸ ⁷⁷ ⁷⁸ ⁷⁷ ⁷⁸ ⁷⁷ ⁷⁸ ⁷⁹ ⁷⁹ ⁷⁰ ⁷¹ ⁷¹ ⁷¹ ⁷¹ ⁷¹ ⁷² ⁷³ ⁷³ ⁷⁴ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁶ ⁷⁶ ⁷⁶ ⁷⁷ ⁷⁶ ⁷⁷ ⁷⁷ ⁷⁸ ⁷⁷ ⁷⁸ ⁷⁷ ⁷⁸ ⁷⁹ ⁷⁹ ⁷⁹ ⁷⁹ ⁷¹ ⁷¹ ⁷¹ ⁷¹ ⁷² ⁷³ ⁷⁴ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁵ ⁷⁶ ⁷⁶ ⁷⁶ ⁷⁷ ⁷⁶ ⁷⁶ ⁷⁶ ⁷⁶ ⁷⁷ ⁷⁸ ⁷⁸ ⁷⁹ ⁷⁹ ⁷⁹ ⁷⁹ ⁷¹ ⁷¹ ⁷¹ ⁷¹ ⁷² ⁷³ ⁷⁴ ⁷⁵ ⁷⁴ ⁷⁵ ⁷⁵ ⁷⁶ ⁷⁶ ⁷⁶ ⁷⁶ ⁷⁷ ⁷⁷ ⁷⁸ ⁷⁸ ⁷⁹ ⁷⁹ ⁷⁹ ⁷⁹ ⁷⁹ ⁷⁹ ⁷¹ ⁷¹ ⁷¹ ⁷¹ ⁷² ⁷⁴ ⁷⁴ ⁷⁴<td>19</td><td>14</td><td>Ireland</td>	19	14	Ireland
 ¹¹ ¹³ ¹³ ¹³ ¹³ ¹³ ¹³ ¹³	20	14	4 Microbiology Loborotom, Couthern Llooth and Cosial Care Truck Northern Indexed
 ⁹Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland. ⁹Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ⁷Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States *Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk Professor James McLaughlin.jad.mclaughlin@ulster.ac.uk 20 *Joint corresponding authors of the second sec	21	15	wicrobiology Laboratory, Southern Health and Social Care Trust, Northern Ireland
 ¹⁷ ⁶Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland. ⁷Avellino, 1505 Adams Dr, Menio Park, CA 94025, United States ⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	22	16	^o Northern Ireland Blood Transtusion Service, Belfast City Hospital, Northern Ireland
 ⁷Avellino, 1505 Adams Dr, Menlo Park, CA 94025, United States [*]Joint corresponding authors. Professor Tara Moore tara.moore@ulster.ac.uk Professor James McLaughlinjad.mclaughlin@ulster.ac.uk 22 23 24 25 26 27 28 29 20 27 28 29 30 31 32 33 34 35 36 36 37 38 39 30 31 32 33 34 35 36 36 37 38 39 30 31 32 33 34 35 36 36 37 38 39 39 30 31 32 33 34 35 34 35 36 36 37 38 39 39 30 31 32 33 34 35 36 36 37 38 39 39 30 31 32 33 34 35 34 35 35 	23	17	⁶ Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland.
 ¹⁹ Joint corresponding authors- Professor Tara Moore <u>tara.moore@ulster.ac.uk</u> ¹⁹ Professor James McLaughlin jad.mclaughlin@ulster.ac.uk ²⁰ 23 ²¹ 23 ²³ 24 ²⁶ 25 ²⁶ 26 ²⁷ 26 ²⁸ 26 ²⁷ 28 ²⁸ 29 ²⁹ 30 ³¹ 31 ³¹ 32 ³³ 33 ³⁴ 31 ³⁵ 32 ³⁵ 33 ³⁶ 34 ³⁶ 35 	24	18	⁷ Avellino 1505 Adams Dr. Menlo Park, CA 94025, United States
 *Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk Professor James McLaughlinjad.mclaughlin@ulster.ac.uk Professor James McLaughlinjad.mclaughlin@ulster.ac.uk Professor James McLaughlin jad.mclaughlin@ulster.ac.uk Professor James McLaughlin@ulster.ac.uk <li< td=""><td>25</td><td>10</td><td></td></li<>	25	10	
20 "Joint corresponding autrors." Professor Tara Moore tara.moore@uister.ac.uk 21 Professor James McLaughlin jad.mclaughlin@ulster.ac.uk 22 23 23 24 24 25 26 27 27 28 28 26 29 27 41 28 42 28 43 29 44 29 45 29 46 31 51 32 53 33 54 33 55 34 56 34 57 35	26	19	theight compared in a without Defense. The Many term many Quileter and
21 Professor James McLaughlin jad.mclaughlin@ulster.ac.uk 22 23 31 23 32 24 33 24 34 24 35 25 36 25 37 26 38 26 39 27 41 28 42 28 43 29 44 29 45 29 46 30 31 31 52 32 33 33 54 33 55 34 56 34 57 35 58 35	27	20	Joint corresponding authors- Professor Lara Moore tara.moore@uister.ac.uk
22 30 31 23 32 24 33 24 35 25 36 25 37 26 38 26 39 27 41 28 42 28 44 29 45 29 46 30 47 30 48 31 50 31 51 32 53 33 54 33 55 34 56 34 57 35 60 1	28	21	Professor James McLaughlin jad.mclaughlin@ulster.ac.uk
23 23 24 25 25 26 37 26 39 27 41 27 42 28 43 29 44 30 45 29 46 30 55 32 55 34 55 34 56 34 57 35 60 8	20	22	
33 23 33 24 35 25 36 25 37 26 39 27 40 27 42 28 44 29 45 29 46 30 47 30 48 31 51 32 53 33 54 33 55 34 56 34 57 35 58 35 60	20		
33 24 33 24 35 25 37 26 39 27 40 27 41 28 42 28 43 29 44 29 45 29 46 30 47 30 48 31 51 32 53 33 54 33 55 34 59 35 60	21	23	
33 24 35 25 36 25 37 26 39 26 39 27 42 28 43 29 44 29 45 29 46 30 47 30 48 31 51 32 53 33 54 33 55 34 59 35 60	22	25	
35 24 36 25 37 26 38 26 39 27 41 28 42 28 44 29 45 29 46 30 47 30 48 31 51 32 53 33 54 33 55 34 56 34 57 35 60 35	5Z 22	- <i>.</i>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 24	24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	25	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36		
38 26 39 27 42 28 44 29 46 30 47 30 48 31 50 31 51 32 53 33 55 34 56 34 59 35 60	37	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	26	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	28	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43	20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	20	
46 30 48 31 50 31 51 32 53 33 54 33 55 34 58 35 60 35	45	29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46		
48 31 50 31 51 32 53 33 55 34 57 35 58 35 60 35	47	30	
49 31 50 32 53 33 54 33 55 34 57 35 58 35 60 35	48		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	31	
51 32 53 33 54 33 55 34 57 35 58 35 60 35	50	51	
52 32 53 33 54 33 55 34 57 34 58 35 60 35	51	22	
53 33 55 34 57 35 58 35 60 35	52	32	
54 33 55 56 56 34 57 58 59 35 60 60	53		
55 34 57 35 58 35 60 35	54	33	
56 34 57 58 59 35 60	55		
57 58 59 60	56	31	
58 59 35 60	57	54	
59 35 60	58	a -	
60	59	35	
	60		
2 3 4	36	Abstract	
-------------------------------------	----	--	
5 6	37	Objective	
7 8 9 10 11 12 13	38	To evaluate the dynamics and longevity of the humoral immune response to SARS-	
	39	CoV-2 infection and assess the performance of professional use of	
	40	the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target	
	41	condition of SARS-CoV-2 spike protein IgG antibodies.	
14	42	Design	
16	43	Nationwide serological study.	
17 18	44	Setting	
19 20	45	Northern Ireland, UK, May 2020- February 2021.	
21	46	Participants	
22 23	47	Plasma samples were collected from a diverse cohort of individuals from the general	
24 25	48	public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood	
26 27	49	donations and research studies (n=223) and through a convalescent plasma	
28	50	program (n=183). Plasma donors (n=101) were followed with sequential samples	
29 30 31 32 33 34	51	over 11 months post symptom onset.	
	52	Main Outcome Measures	
	53	SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-	
35	54	CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2	
36 37	55	ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity,	
38 39 40 41 42	56	estimated using a three-reference standard system to establish a characterised	
	57	panel of 330 positive and 488 negative SARS-CoV-2 lgG samples.	
	58	Results	
43 44	59	We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post	
45 46	60	infection, across a minimum of two laboratory immunoassays. On the known positive	
47	61	cohort, the UK-RTC AbC-19 lateral flow immunoassay showed a sensitivity of 97.58%	
48 49	62	(95.28%-98.95%) and on known negatives, showed specificity of 99.59% (98.53 %-	
50 51	63	99.95%).	
52 53	64	Conclusions	
54	65	Through comprehensive analysis of a cohort of pre-pandemic and pandemic	
55 56	66	individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when	
57 58	67	assessed by EuroImmun ELISA, providing insight to antibody levels at later time points	
59 60	68	post-infection. We show good laboratory validation performance metrics for the AbC-	

BMJ Open

3 ⊿	69	19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-
5	70	based setting.
6 7	71	
8 9 10	72	Strengths and Limitations
11 12	73	• Strength - This paper describes a non-clinical laboratory evaluation and
13 14 15	74	comparison of the ability of three different immunoassays to detect SARS-CoV-
16 17	75	2 antibodies in the same samples, detecting different subtypes of antibodies
18 19	76	against different targets of the viral antigenic repertoire, that does not rely on
20 21 22	77	PCR-positivity as definition of expected test outcome, to provide a panel of
23 24	78	known antibody positive and antibody negative serology for evaluation of newly
25 26	79	developed immunoassays.
27 28 20	80	
29 30 31	81	Strength - This study demonstrates AbC-19 lateral flow point of care detection
32 33	82	of IgG antibodies to the full trimeric spike protein of SARS-CoV-2 virus, the
34 35	83	antibodies made in response to the vaccines used globally, in a large cohort of
30 37 38	84	subjects, more than 10 months post infection, across a broad age range (18-
39 40	85	78 years).
41 42	86	
43 44 45	87	Strength - This study assesses correlation between approved laboratory-based
46 47	88	assays and the AbC-19 lateral flow point of care lateral flow test for the
48 49	89	detection of SARS-CoV-2 antibodies in characterised cohorts of known positive
50 51 52	90	and negative plasma samples in an evaluation conducted according to MHRA
53 54	91	guidelines during a pandemic.
55 56 57 58 59 60	92 93	

3 4	94
5 6	95
7 8 0	96
9 10 11	97
12 13	98
14 15 16	99
16 17 18	100
19 20	101
21 22	102
23 24 25	103
25 26 27	104
28 29	105
30 31	106
32 33 34	107
35 36	108
37 38	109
39 40	110
41 42 43	111
44 45	112
46 47	113
48 49 50	114
50 51 52	115
53 54	116
55 56	117

1 2

> Strength-Longitudinal data detecting IgG antibodies more than 10 months from 94 infection was collected as sequential samples over time through a convalescent plasma donation program.

Limitation- This study was conducted in a standardised setting with very 98 99 experienced users on plasma characterised as positive or negative for the presence of antibodies using a reference standard, alongside one other assay 00 01 which may introduce a possible spectrum bias and may not reflect the true 02 performance metrics of the assay evaluated when translated to real life 03 settings, using finger prick blood samples and in which pre-test probability would impact greatly on positive and negative predictive values. 04

06 Keywords

SARS-CoV-2, COVID-19, immunoassay, LFIA, pandemic, antibody assay 07

60

09 Introduction

The World Health Organization declared a pandemic in March 2020 due to severe 10 11 acute respiratory syndrome coronavirus-2 (SARS-CoV-2), identified late 2019 in Wuhan, China, causing Coronavirus Disease 2019 (COVID-19) disease (1,2). 12

13 A global race ensued to develop diagnostic assays, with the most common being viral 14 RNA detection (RT-qPCR assays), to detect acute infection(3). RT-qPCR assays are 15 labour and reagent intensive, limited by a short temporal window for positive diagnosis, 16 and exhibit potential for false negative results (4). Evidence suggests sensitivity of RTqPCR can be as low as 70% (5). False positive rates between 0.8- 4.0% have been 117 57 58 118 reported in the UK and are dependent on the Ct values accepted as indicating 59

Page 7 of 52

BMJ Open

infection, the number of SARS-CoV-2 genes analysed, and the proportion of asymptomatic individuals tested (6,7). Lockdown measures and "flattening the curve" strategies in the UK meant many infected individuals were instructed to self-isolate and were not offered a diagnostic RT-qPCR, with much of the testing limited to patients admitted to hospital, who perhaps reflect a more severely infected cohort. Consequently, a potentially large number of cases were unconfirmed or undetected (8).

The ability to accurately detect SARS-CoV-2 specific antibodies, which develop after an immune response is evoked, is vital for building biobanks of convalescent sera for treatment, monitoring immune response to infection alongside surveillance studies and assessing responses to vaccination programmes.

Commercial serology immunoassays are mostly laboratory-based and measure IgG antibody levels in plasma or serum. Alternatively, lateral flow immunoassays (LFIAs), require a finger prick blood sample and can be used at point-of-care (POC) or in the home; particularly important in the context of lockdown enforcement during the pandemic. A limited number of laboratory-based chemiluminescence immunoassays are approved for use in the UK including the Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM against the SARS-CoV-2 Nucleocapsid antigenic region (Roche Diagnostics, Basel, Switzerland) and the Abbott SARS-CoV-2 IgG assay against the same antigenic region (Abbott Diagnostics, Abbott Park, IL, USA).

139 The complexities of the humoral immune response to SARS-CoV-2 is a much 140 debated topic. In a US study, approximately one in 16 individuals lacked detectable
 140 debated topic. In a US study, approximately one in 16 individuals lacked detectable

141 IgG antibodies up to 90 days post symptom onset, despite previous RT-PCR

142 confirmed infection (9). Patients who remain asymptomatic may mount a humoral

143 immune response which is short-lived, with detectable levels of antibody falling

rapidly (10). This, alongside the lack of RT-PCR test availability across the UK has
hindered development of well characterised gold standard serology test for IgG
antibodies to SARS-CoV-2.

Herein, we describe the use of Roche and Abbott commercial immunoassays, as well as the EuroImmun Anti-SARS-CoV-2 ELISA-IgG against the S1 domain of the spike (antigenic) protein of SARS-CoV-2 (EuroImmun UK, London, UK) to characterise pre-pandemic and pandemic COVID-19 blood samples (n=880) from within Northern Ireland and report on longevity of IgG antibodies detected. Furthermore, we follow IgG antibody levels in convalescent plasma donors (n=101 individuals) for up to 11 months. Currently, there is no gold standard assay for comparison, therefore we aimed to establish a reference based on a positive COVID-19 antibody status. We present results of a laboratory evaluation of the UK-RTC AbC-19 with a target condition of antibodies against a cohort of 330 known IgG antibody positive samples according to this 'positive by two' system and 488 negative samples (223 pre-pandemic assumed negative and 265 known negative) for IgG to SARS-CoV-2.

160	Methods	
161		
162	Participant samples	

The flow of participant samples is summarised in Figure S1. A small cohort (n=19) of anonymised plasma samples were obtained from a partner USA laboratory for initial protocol development only. All participants provided informed consent. An online recruitment strategy was employed, with the study advertised through internal Ulster University email, website and social media. A BBC Newsline feature providing the pandemic study email address also prompted interest from the general population. Page 9 of 52

BMJ Open

The first 800 respondents who expressed interest were provided with an online patient information sheet, consent form and health questionnaire and invited to register to attend a clinic. Participants were eligible for the study if they were over 18 years of age. Exclusion criteria included anyone with a blood disorder or contraindication to giving a blood sample, or anyone currently exhibiting symptoms of COVID-19. To enrich the cohort for samples potentially positive for SARS-CoV-2 IgG antibody, further participants were invited if they had previously tested PCR positive or had the distinctive symptom of loss of taste and smell. Blood sampling clinics were held at locations around Northern Ireland between May and July 2020 resulting in collection of 263 10ml EDTA plasma samples from 263 separate study participants. Additional anonymised plasma samples were obtained from Southern Health and Social Care Trust (SHSCT) Healthcare workers (n=195), and Northern Ireland Blood Transfusion Service (NIBTS, n=184) through convalescent plasma programs. NIBTS convalescent plasma samples continued to be collected throughout 2020-early 2021, with a total of n=897 from n=676 individuals, including n=183 samples from the cross-sectional cohort. Individuals from this program with a positive RT-PCR result and EuroImmun starting value >6 were sequentially sampled over a period of up to 46 weeks resulting in a cohort of n=101 individuals, n=296 samples (including n=47 individuals from the cross-sectional cohort).

Pre-pandemic samples (prior to June 2019, n=136) were obtained from Ulster
University ethics committee approved studies with ongoing consent and from NIBTS
(n= 200, more than 3 years old). Plasma samples were used at no more than 3 freezethaw cycles for all analyses reported within this manuscript.

Clinical information

Basic demographic information and data with regard to probable or definite prior infection with SARS-CoV-2 was obtained from PANDEMIC study participants through the secure online questionnaire requiring responses about positive RT-PCR result and/or time from symptom onset. Anonymised participant samples from USA, SHSCT and NIBTS were provided with age, gender and time since PCR-positive, where a previous test had been carried out.

Laboratory-based immunoassays

Details of laboratory immunoassays are summarised in supplementary methods and Table S1.

UK-RTC AbC-19 LFIA

All analyses were performed on UK-RTC AbC-19 Technical Transfer 3 (TT3) devices at Ulster University according to manufacturer's instructions (details in Table S1). Assays were performed as cohorts, with samples in batches of 10, with one researcher adding 2.5µL of plasma to the assay and a second adding 100µL of buffer immediately following sample addition. After 20 minutes, the strength of each resulting test line was scored from 0-10 according to a visual score card (scored by 3 researchers; Figure S2). A score ≥ 1 was positive. Details of samples used for analysis for detection of antibodies are available in Supplementary methods.

Statistical analysis

As per Daniel (11) a minimum sample size based on prevalence can be calculated

using the following formula: $n = \frac{Z^2 P(1-P)}{d^2}$, where n = sample size, Z = Z statistic for a

BMJ Open

chosen level of confidence, P = estimated prevalence, and d = precision. Assuming a prevalence of SARS-CoV-2 of 10% and a precision of 5%, we estimate that the required sample size at 99% confidence (Z = 2.58) to be 240 individuals. If the true prevalence is lower, 5%, the estimated required sample size given a precision of 2.5% is 506 individuals. A minimum sample size of 200 known positives and 200 known negatives is given within MHRA guidelines for SARS-CoV-2 LFIA antibody immunoassays(12).

Statistical analysis was conducted in in R v 4.0.2(13). To assess discordance between test results, data was first filtered to include individuals with an Abbott test result in the range ≥ 0.25 & ≤ 1.4 , with a 2 x 2 contingency table produced that comprised all possible combinations of [concordant|discordant] test results [within|outside of] this range. A p-value was derived via a Pearson χ^2 test after 2000 p-value simulations via the stats package.

AbC-19 LFIA performance analyses were performed using MedCalc online (MedCalc Software, Ostend, Belgium). ROC analysis was performed via the pROC package. To compare test result (Positive|Negative) to age, a binary logistic regression model was produced with test result as outcome – a p-value was then derived via χ^2 ANOVA. To compare time against test result (encoded continuously), a linear regression was performed. We calculated median per time-period and then converted these to log [base 2] ratios against the positivity cut-off for each assay. All plots were generated via ggplot2 or custom functions using base R(14).

- 52 240
- **Results**

We analysed samples from a mixed cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations

and research studies (n=223) and through a convalescent plasma program (n=183). Antibody levels in plasma from these 880 individuals were assessed using the three SARS-CoV-2 immunoassays; EuroImmun IgG, Roche Elecsys IgG/IgM/IgA and Abbott Architect IgG (Table S1, Figure S3). This included a cohort of 223 pre-pandemic plasma samples collected and stored during 2017 to end of May 2019 to determine assay specificity. Of the 657 participants whose samples were collected during the pandemic, 267 (40.64%) previously tested RT-PCR positive with a range of 7-173 days since diagnosis. A total of 225 participants gave time since self-reported COVID-19 symptoms, with a range of 5-233 days from symptom onset, whilst 195 had no symptom or PCR data available. Samples collected in 2020 (n=657) ranged from 19-78 years of age with a median (IQR) of 43 years (±22), and n=454 were female and n=200 male (n=3, not disclosed). Pre-pandemic samples (n=223) ranged from 20-87 years of age with median (IQR) of 50 years (±20) and consisted of n=88 female and n=135 male.

Laboratory based antibody immunoassays

A positive result for antibody on one or more of the three laboratory immunoassays was recorded for 385/657 (58.6%) participants who provided a sample during the pandemic. By EuroImmun ELISA, 346 were positive, 20 borderline and 291 were negative. The Roche assay detected 380 positive and 277 negative, whilst Abbott determined 310 positive and 347 negative (Table S2, Figure S3). The median age across all age groups combined was lower for participants testing positive across each of the immunoassays (median [sd] for positive versus negative, respectively: EuroImmun, 41 [13.16] vs 48 [12.95]; Roche, 42 [13.08] vs 48 [13.00]; Abbott, 41 [13.18] vs 47 [13.09]). (Figure S4, p<0.0001). When segregated by age group, however, differences were less apparent in certain groups (Figure S5). Excluding the

BMJ Open

2	
3	
4	
5 6	
7	
8	ź
9	
10	1
11 12	
12 13	1
14	
15	1
16	
17 10	1
10 19	
20	ź
21	
22	2
23 24	
24 25	2
26	
27	1
28	
29	1
30 31	,
32	4
33	
34	1
35 36	
30 37	,
38	1
39	
40	
41 42	2
42 43	
44	1
45	
46	1
4/ /8	
49	2
50	
51	2
52	
53 54	2
54 55	
56	-
57	,
58	4
59 60	,
00	4

pre-pandemic cohort, this gap reduced but remained statistically significant EuroImmun, 41 [13.18] vs 45 [12.49]; Roche, 42 [13.15] vs 45 [12.49]; Abbott, 41 [13.26] vs 44 [12.63]) (p<0.01) (median [sd] for positive versus negative). Of note, out of 267 individuals with a previous positive RT-PCR result for SARS-CoV-2 viral RNA, 14 (5.2%, Figure S3a) did not show detectable antibodies by any of the three immunoassays, with no association found with age, gender or time between test and blood draw (data not shown).

The three commercial laboratory immunoassays provide a ratio value that increases with IgG antibody titre. When correlation between these values is assessed, good overall agreement is observed between the three immunoassays (Figure 1, Figure S5). As highlighted by Rosadas *et al.*, we also see significant disagreement in the Abbott 0.25-1.4 range when compared to EuroImmun and Roche (Figure 1a,b; chisquare p-values: EuroImmun vs Abbott, p<0.001; Roche vs Abbott, p<0.001)(15).

282

283 Duration of humoral response to SARS-CoV-2

In a cross-sectional analysis of antibodies over time, we found IgG antibodies could 284 285 still be detected in individuals (excluding pre-pandemic) across all three 286 immunoassays used up to week 20 (day 140) (Figure 2). We note a statistically significant decrease in signal with respect to time across each assay (p-value 287 [estimate slope]): EuroImmun, p=0.028[-0.823]; Roche, p=0.002 [-0.125]; Abbott, 288 289 p<0.0001 [-3.673]. These remained statistically significant after adjustment for age. 290 Antibody levels (expressed as a ratio of median result per timepoint divided by 291 positivity cut off; Table 1) peaked at Week 1-2 for EuroImmun (1.33) and Abbott 292 (1.64), though reached highest levels at Week 8-12 when measured by Roche 293 (5.45). By week 21-24, median score for all tests had dropped below the positivity

Page 14 of 52

cut off, though a small number of samples remained above the positive cut off atthese later timepoints (Figure 2).

Samples from the NIBTS convalescent plasma program continued to be collected throughout 2020-early 2021. A total of n= 897 samples from n=676 individuals were collected, 744/883 tested by EuroImmun were positive (>1.1, with values range of 0.051-34.361), 556/749 tested by Abbott were positive (>1.4, with values ranging from 0.01-8.85). Individuals with a positive RT-PCR result and a EuroImmun result >6 were sequentially sampled (with median 3, range 2-9 samples per individual) and analysed by both EuroImmun (n=101 individuals), and Abbott immunoassays (n=75 individuals). Median age (IQR) for this cohort is 51 years (±21) with a range from 18-70 years and n=27 female, n=74 male. Longitudinal analysis shows persistence of detectable IgG antibodies until up to 302 days (43 weeks) by Abbott immunoassay (at which point this assay was discontinued at NIBTS) and 323 days (46 weeks) by EuroImmun ELISA, with a gradual decline over time (Figure S6). None of the individuals who were initially positive by Euroimmun SARS-CoV-2 S1 IgG assay dropped to below the EuroImmun positivity threshold (>1.1) over the course of the follow-up while 26 who were initially positive by Abbott SARS-CoV-2 NP IgG fell below the Abbott threshold (>1.4).

45 312

313 UK-RTC AbC-19

314 Using the commercial immunoassays described we established a well characterised
 315 serology sample set of 'known positive' and 'known negative' for IgG antibodies to
 316 SARS-CoV-2 to evaluate performance metrics for the UK-RTC AbC-19 Rapid LFIA.
 317 AbC-19 detects IgG antibodies against the spike protein antigen, so we therefore

 $_{60}^{59}$ 318 required all samples to be positive by the EuroImmun SARS-CoV-2 IgG ELISA, which

Page 15 of 52

BMJ Open

likewise detects antibodies against the S1 domain (16). To develop this characterised cohort, samples were also required to be positive by a second immunoassay (Roche or Abbott). To analyse specificity of the AbC-19 LFIA for detection of SARS-CoV-2 IgG antibody, we assessed 350 plasma samples from participants classed as 'known negative for SARS-CoV-2 IgG antibody' on the AbC-19 LFIA. All samples were from individuals confirmed to be negative across all three laboratory assays (Roche, EuroImmun, Abbott). Using these positive n=304 and negative n=350 antibody cohorts, we determined a sensitivity for detecting SARS-CoV-2 IgG antibody of 97.70% (95% CI; 95.31%-99.07%) and specificity of 100% (98.95%-100.00%) for the AbC-19 LFIA (Table 2). Given a recent report of lower specificity in the AbC-19 LFIA (17) and the possibility of introducing sample bias, we revised our inclusion criteria for the negative cohort. For the pre-pandemic cohort, we included samples from all 223 individuals, regardless of results on other laboratory immunoassays. When this assumed negative pre-pandemic cohort was used for laboratory evaluation for target condition of antibodies, we observed a specificity of 99.55% (97.53% to 99.99%, Table 2). We expanded the negative cohort to include all samples that matched our criteria (samples collected during the pandemic to be negative by all three laboratory assays and all pre-pandemic samples regardless of other immunoassay results). The specificity observed on this extended negative cohort of 488 samples was 99.59% (98.53% to 99.95%, Table 2). For sensitivity analysis on a positive cohort (samples positive by EuroImmun and one other test), we were able to analyse all samples previously untested due to limited testing capacity and tested a positive cohort of 330 samples giving a sensitivity of 97.58% (95.28% to 98.95%, Table 2). When we sorted samples analysed in both negative (n=488) and positive cohorts (n=330) by

RT-PCR status and assessed AbC-19 LFIA sensitivity by including only those that were RT-PCR positive (n=227), the test showed a sensitivity of 92.07% (87.76%-95.23%, Table S3). However, of the n=18 RT-PCR positive individuals negative for IgG antibodies by AbC-19, n=12 showed no detectable antibodies by all three laboratory assays (EuroImmun, Roche or Abbott), suggesting that antibodies are not present in those samples.

When used as intended by the public, the AbC-19 LFIA provides binary positive/negative results. However, when assessing LFIA in the laboratory, each test line was scored against a scorecard by three independent researchers (0 negative, 1-10 positive; Figure S2). When compared to quantitative outputs from the Abbott, EuroImmun and Roche assays, the AbC-19 LFIA shows good correlation (Abbott r=0.84 [p<0.001]; Eurolmmun r=0.86 [p<0.001]; Roche r=0.82 [p<0.001]; Figure 3, Figure S7-Figure S9).

Analytical specificity and sensitivity of AbC-19 LFIA

We observed no cross-reactivity across samples with known H5N1 influenza, Respiratory syncytial virus, Influenza A, Influenza B, Bordetella Pertussis, Haemophilus Influenzae, Seasonal coronavirus NL63 and 229E on the AbC-19 LFIA (n=34 samples, n=8 distinct respiratory viruses; Table S4). Against a panel of external reference SARS-CoV-2 serology samples, the AbC-19 LFIA detected antibodies with scores commensurate to the EuroImmun ELISA scores (Figure S10, Table S5). Discussion

BMJ Open

Serological antibody immunoassays are an important tool in helping combat the SARS-CoV-2 pandemic. The duration of the humoral immune response is of particular importance, to inform an individual's protection following both natural infection and vaccination. Using a large cohort of individuals across a wide age range (18-78), we assessed antibody levels across up to three laboratory immunoassays perform a cross-sectional and longitudinal analysis over time. Our results show strong correlation between all three immunoassays, with shortcomings in the Abbott system output 0.25-1.4 range, as described previously, suggesting an overestimated positive cut-off (Figure 1) (15).

Longitudinal studies on SARS-CoV-1 convalescent patients suggests that detectable IgG can still be present as long as 2 years after infection (18). There are conflicting reports of the longevity of the humoral response to SARS-CoV-2 infection which differ in the make-up of the cohort studied, the assays used, and the length of time since symptom onset. The longevity of IgG antibodies to both spike and nucleocapsid protein more than 10 months after RT PCR positive status (and beyond in a small number of samples, Figure 2, Figure S6) is consistent with that observed in other recent studies(19–21). In this study, samples were collected through a convalescent plasma program (Figure S6), with individuals selected for sequential plasma donation based on an initial high EuroImmun assay score. In contrast to the time series analysis of healthcare workers recruited prospectively by Manisty et al., we observed no cases where Euroimmun ELISA-measured anti-Spike antibody levels fell below threshold, whilst a large number of Abbott measured anti-Nucleocapsid antibody levels dropped below the positivity threshold (34.7% 26/75). However, this may be an overestimate given the shortcomings of the Abbott assay

described above (Figure 1) (22). In a similar longitudinal study of 51 symptomatic participants, Dan *et al.* estimated that half-life $(t_{1/2})$ for IgG-Spike (103 days) was longer than that for IgG-Nucleocapsid (68 days), although with a considerable overlap of 95% confidence intervals (23).

In our more diverse cross-sectional cohort, we also note a statistically significant decline over time but levels remain detectable at 140 days (Figure 2). We note that IgG levels reach their peak (Roche ratio 5.45 times threshold cut-off) as late as Week 8-12 from first symptoms or a viral RNA RT-PCR positive result, though this may be an artefact of lower number of participants at earlier timepoints (Table 1). Robust antibody responses are produced in our cohorts across a wide age range (18-78 years old, Figure 2, Figure S6). We detect a slightly but significantly lower median age of participants testing positive (Figure S4); however, this is likely be due to cohort characteristics and not a true reflection of the population or indication of test performance.

A difficulty faced in validation of antibody diagnostic assays has been access to samples with known SARS-CoV-2 antibody status. As previously described, there is no clear gold standard reference against which to assess SARS-CoV-2 immunoassays. A positive RT-PCR test has been used previously to indicate previous (COVID-19) SARS-CoV-2 infection, though this approach is limited by a high rate of false negatives and positives in RT-PCR testing, failure in some cases to develop IgG antibodies (sero-silence or lack of antibody against the same antigenic component of the virus as the immunoassay uses as a capture antigen) and the lack of RT-PCR testing availability early in the pandemic (3,5,24). SARS-CoV-2 IgG antibodies were undetectable in 14 of 267 (5.2%) of previously RT-PCR SARS-CoV-2 viral RNA Page 19 of 52

BMJ Open

positive participants in this study. It is unclear if this is due to insufficient/absent antibody production in these individuals at the time the sample was taken, or due to a false positive PCR result which may occur in the UK at a rate between 0.8-4.0% (6). Self-assessment of symptoms for COVID-19 (disease) is a poor indicator of previous infection, even amongst healthcare workers (25). Additionally, the kinetics of a SARS-CoV-2 virus infection contributes to the loss of sensitivity of RT-PCR to detect virus with time, contributing to false negative RT-PCR test results for individuals who may be late to present for virus detection tests (5,26).

To assess sensitivity and specificity of the AbC-19 LFIA for its ability to detect SARS-CoV-2 antibody in a laboratory evaluation, we developed a reference standard for SARS-CoV-2 antibodies, which does not rely on a single test as reference. A similar approach was used in a recent seroprevalence study in Iceland, whereby two positive antibody results were required to determine a participant sample as positive for SARS-CoV-2 antibody (24). Our evaluation of performance metrics for the UK-RTC AbC-19 LFIA to detect antibodies for SARS-CoV-2 gave 97.58% sensitivity and 99.59% specificity. In an evaluation of the AbC-19 tests, Mulchandani et al. observed a specificity of 97.9% (97.2%-98.4%) on a cohort of pre-pandemic samples and report a sensitivity of 92.5% (88.8% to 95.1%) for detecting previous infections (based on a previous RT-PCR result) or 84.7% (80.6% to 88.1%) against the Roche Elecsys antibody test, which detects IgM/IgG/IgA SARS-CoV-2 antibodies to the nucleocapsid portion of SARS-CoV-2 (25). In RT-PCR positive individuals from our cohorts, the AbC-19 test showed a similar sensitivity (92.07%, 87.76%- 95.23%, Table S3). However, we demonstrate the drawbacks of this approach given that in 12 of 18 AbC-19 false negatives, none of the four immunoassays used (EuroImmun, Roche, Abbott

or AbC-19) detected antibodies, suggesting either a false RT-PCR result, a failure to produce IgG antibodies or sero-reversion before sample collection in these individuals. Another recent evaluation of the AbC-19 LFIA by Moshe et al. determined a sensitivity of (100% (98.1-100%) on laboratory sera, using a composite reference standard of antibody positive by either Spike protein ELISA or hybrid DABA assay and specificity of 99.8% (98.9-100%) against pre-pandemic samples. However, when AbC-19 performance was analysed on matched finger-prick and serum samples against the same antibody standard, a lower sensitivity was observed (finger-prick 69% (53.8-81.3%), serum 92% (80-97.7%)) (27).

> In our study, strong correlation was observed in quantitative score between results on all immunoassays with the highest observed between EuroImmun and AbC-19 LFIA (Figure S8, S9). This is to be expected, given both the AbC-19 LFIA and EuroImmun ELISA detect IgG antibodies against spike protein. Importantly, for the assessment of immunity to prior natural infection as well as to immunisation, IgG antibodies against SARS-CoV-2 spike protein detected by laboratory-based EuroImmun ELISA and AbC-19 LFIA are known to correlate with neutralizing antibodies, which may confer future immunity (23,28,29). Previous evaluations of sensitivity and specificity reported by Public Health England (PHE), showed a EuroImmun sensitivity of 72% and specificity of 99%, Abbott with sensitivity of 92.7% and specificity of 100% and Roche with sensitivity of 83.9% and specificity of 100% (30-32). The PHE analyses for each of these tests used previous infection (RT-PCR positive status) as a reference standard, the limitations of which are discussed above.

Page 21 of 52

BMJ Open

In the use of characterised 'known positive' and 'known negative' cohorts, one limitation of this study is its potential for spectrum bias, whereby our positive-by-two reference system may artificially raise the threshold for positive sample inclusion, possibly resulting in the overestimation of the sensitivity of any test evaluated (33). However, similar issues have been raised when using previous RT-PCR result or definitive COVID-19 symptoms as inclusion criteria given these will likely skew a cohort towards more severe disease, especially given issues of RT-PCR availability outside of hospital settings during the first wave (5). Importantly, our mixed origin of samples forming the cohort provides a positive cohort for assessing assay sensitivity that includes individuals from the general public, healthcare workers and from convalescent plasma programmes. In the absence of a clear gold standard test, our system relies on no single test (each with their individual shortcomings) and instead takes an average of three. Our analysis of specificity on only pre-pandemic individuals (n=223) shows similar specificity (99.55%) to the larger mixed 'known negative cohort' (n=488, sensitivity 99.59%). We also demonstrate a high level of analytical specificity of the AbC-19 test with no cross-reactivity against a panel of other respiratory viruses, including SARS-CoV-1 NL63 and 229E (Table S4).

485 Our assessment of the AbC-19 LFIA in a laboratory setting, using characterised
486 cohorts of known SARS-CoV-2 antibody positive and antibody negative plasma,
487 shows good performance metrics for its ability to detect SARS-CoV-2 IgG antibodies
488 following natural infection. We note our use of plasma from venous blood samples, as
489 opposed to a finger prick blood sample as would be used in rapid testing scenarios
490 (27). Additionally, when the AbC-19 LFIA was used on our cohort, a number of the
491 positive results scored low (1/10 using the score card under laboratory conditions,

Figure 3), with a faint test band visible to a trained laboratory scientist but perhaps difficult to identify as positive by individuals performing a single test (Figure S10). This faint line may be reflective of the longer time from infection for the Northern Ireland cohort used. If the AbC-19 LFIA is to be used in clinical settings it is important to determine if all users observe the same results as observed in this laboratory evaluation.

This assessment of the AbC-19 LFIA does not provide data on how this test will perform in a seroprevalence screening scenario, but instead provides metrics for the performance of the test, where presence of SARS-CoV-2 antibodies is of interest, as opposed to previous COVID-19 infection. An important potential use of the AbC-19 LFIA would be in monitoring the immune response to vaccination, with most vaccines utilising SARS-CoV-2 Spike protein antigens (34).

Conclusion

We present a comprehensive analysis of pre-pandemic and two large pandemic cohorts (more than 700 individuals) and in a longitudinal analysis showing that IgG antibodies to SARS-CoV-2 antigens are detectable more than 10 months from positive RT-PCR test. We use antibody positive status as an alternative to RT-PCR positive status as a standard for assessing SARS-CoV-2 antibody assays and show strong performance for the UK-RTC AbC-19 LFIA rapid point of care test in detecting SARS-CoV-2 antibodies. User experience in future studies in the real world is important and may alter the performance characteristics. Also, the effect of operator training will have direct effects upon test performance. We welcome further clinical evaluation of the AbC-19 LFIA in large cohorts of symptomatic and asymptomatic individuals alongside

1 2							
3 4	517	large studies assessing vaccination outcomes in individuals to fully validate its					
5 6	518	implementation across all intended use cases.					
7 8	519						
9 10 11	520	Declarations					
12 13	521	Ethics approval and consent to participate					
14 15	522	All study participants provided informed consent. This study was approved by Ulster					
16 17	523	University Institutional Ethics committee (REC/20/0043), South Birmingham REC (The					
18 19 20	524	PANDEMIC Study IRAS Project ID: 286041Ref 20/WM/0184) and adhered to the					
21 22 23 24 25 26 27 28 29	525	Declaration of Helsinki and Good Clinical Practice.					
	526	Patient and Public Involvement					
	527	Patients or the public were not involved in the design, or conduct, or reporting, or					
	528	dissemination plans of our research.					
30 31	529	Consent for publication					
32 33 24	530	Not applicable.					
34 35 36 37 38 39 40	531	Dissemination to participants and related patient and public communities.					
	532	Links to this work will be included on the study website					
	533	(https://www.ulster.ac.uk/coronavirus/research/research-output/pandemic-study) and					
41 42 43	534	participants will be alerted that the work has been published.					
44 45	535	Data sharing					
46 47	536	Data are available on reasonable request to the corresponding author.					
48 49 50	537	Competing interests:					
50 51 52	538	At the time of this study TM and JML acted as advisors to CIGA HealthCare, an					
53 54	539	industrial partner in the UK Rapid Test Consortium. No personal financial reward or					
55 56	540	renumeration was received for this advisory role. At the time of submission of this					
57 58 59 60	541	manuscript TM and JML no longer held these advisory positions.					

542 All other authors have no potential conflict of interest to report.

Funding:

544 Costs for assays and laboratory expenses only will be paid by UK-RTC as is normal 545 practice (UU-UK-RTC-2020-001). The authors have not been paid or financially 546 benefitted from this study.

The advisory roles within CIGA Healthcare were unpaid temporary roles. This manuscript and associated data within this paper has only been used to build confidence into the overall device design and performance assessment of the UK RTC AbC-19 devices and such work was never commissioned for any government contractual consideration.

⁶ 552 **Authors' contributions:**

TM, JML conceived the study. LR, JM and TM performed all laboratory analyses. LR, SM and KYN analysed data, KB performed all statistical analyses/interpretations and produced figures. NQ, FJ, GW and PS performed all Roche analyses and provided SHSCT cohort samples. MC, KM and SR performed all Abbott analyses and provided Blood Transfusion cohort samples. TM, RP and AN coordinated participant recruitment, consent and sampling. WB and JML developed online consent forms, questionnaires and databases. LR, JM, AK, AA, GEW, DH, SS, CCS performed sample collection and processing. LR and TM wrote the manuscript, with significant contributions from JM, AN and KB. All authors reviewed and approved the final manuscript.

Acknowledgements: We are extremely grateful to all the people of Northern Ireland who took part in this study and gave blood during the pandemic. We are indebted to the phlebotomists- Geraldine Horrigan and Pamela Taylor who conducted the blood Page 25 of 52

1

BMJ Open

2			
2 3 4	567	draw	s whilst ensuring the highest possible level of safety to the participants. We are
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	568	also	grateful to Kingsbridge Private Hospital Group for sponsorship and providing
	569	ever	ything needed for blood collection including the clinical rooms. We acknowledge
	570	Dr T	ony Byrne for use of his laboratory and Professor Gareth Davison for laboratory
	571	spac	e and equipment during the pandemic within a locked down University.
	572		
	573	Refe	erences
	574		
21 22	575	1.	World Health Organisation. Rolling updates on coronavirus disease (COVID-
23 24 25	576		19) [Internet]. 2020 [cited 2020 Aug 11]. Available from:
25 26 27 28 29 30 31 32 33 34 35 36	577		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-
	578		they-happen
	579	2.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
	580		epidemiology of 2019 novel coronavirus: implications for virus origins and
	581		receptor binding. Lancet. 2020 Jan 30;395.
37 38	582	3.	Petherick A. Developing antibody tests for SARS-CoV-2. Lancet [Internet].
39 40 41	583		2020 Apr 4 [cited 2020 Sep 12];395(10230):1101–2. Available from:
41 42 43	584		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30788-
44 45	585		1/fulltext#.X10EdBi-Ayk.mendeley
46 47	586	4.	Winichakoon P, Chaiwarith R, Liwsrisakun C, Salee P, Goonn A, Limsukon A,
48 49 50	587		et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out
51 52	588		COVID-19. Vol. 58, Journal of Clinical Microbiology. American Society for
53 54	589		Microbiology; 2020.
55 56 57	590	5.	Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ
57 58 59	591		[Internet]. 2020;370. Available from:
60			

2 3 4	592		https://www.bmj.com/content/370/bmj.m3325
5 6	593	6.	Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results:
7 8	594		hidden problems and costs. Lancet Respir Med [Internet]. 2020 Nov 11;
9 10 11	595		Available from: https://doi.org/10.1016/S2213-2600(20)30453-7
12 13	596	7.	Omata M, Hirotsu Y, Sugiura H, Maejima M, Nagakubo Y, Amemiya K, et al.
14 15 16 17 18	597		The dynamic change of antibody index against Covid-19 is a powerful
	598		diagnostic tool for the early phase of the infection and salvage PCR assay
19 20	599		errors. J Microbiol Immunol Infect [Internet]. 2021 Jan 5;S1684-
21 22	600		1182(21)00008-6. Available from: https://pubmed.ncbi.nlm.nih.gov/33593710
23 24 25	601	8.	Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the
26 27	602		case for health-care worker screening to prevent hospital transmission. Lancet
28 29	603		(London, England) [Internet]. 2020 May 2 [cited 2020 Sep
30 31 32	604		12];395(10234):1418–20. Available from:
32 33 34	605		http://www.ncbi.nlm.nih.gov/pubmed/32305073
35 36	606	9.	Petersen LR, Sami S, Vuong N, Pathela P, Weiss D, Morgenthau BM, et al.
37 38	607		Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected
39 40 41	608		persons. Clin Infect Dis [Internet]. 2020 Nov 4; Available from:
42 43	609		https://doi.org/10.1093/cid/ciaa1685
44 45	610	10.	Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and
46 47 48	611		immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med
49 50	612		[Internet]. 2020;26(8):1200-4. Available from: https://doi.org/10.1038/s41591-
51 52	613		020-0965-6
53 54 55	614	11.	Daniel WW. Biostatistics : a foundation for analysis in the health sciences. 7th
56 57	615		Editio. New York: John Wiley & Sons, Ltd; 1999. 720 p.
58 59 60	616	12.	Medicines and Healthcare product Regulatory Agency. Target product profile:

Page 27 of 52

BMJ Open

617		antibody tests to help determine if people have immunity to SARS-CoV-2
618		[Internet]. 2020 [cited 2020 Apr 24]. Available from:
619		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
620		ttachment_data/file/881162/Target_Product_Profile_antibody_tests_to_help_d
621		etermine_if_people_have_immunity_to_SARS-CoV-2_Version_2.pdf
622	13.	The R Development Core Team. R: A language and environment for statistical
623		computing. ISBN 3-900051-07-0. 2017.
624	14.	Wickham H. ggplot2 Elegant Graphics for Data Analysis. Springer. 2016.
625	15.	Rosadas C, Randell P, Khan M, McClure MO, Tedder RS. Testing for
626		responses to the wrong SARS-CoV-2 antigen? Lancet (London, England)
627		[Internet]. 2020 Sep 5 [cited 2020 Sep 13];396(10252):e23. Available from:
628		http://www.ncbi.nlm.nih.gov/pubmed/32866429
629	16.	UK-RTC and Abingdon Health. Charting the course to a post-COVID world.
630		2020.
631	17.	Mulchandani R, Jones HE, Taylor-Phillips S, Shute J, Perry K, Jamarani S, et
632		al. Accuracy of UK Rapid Test Consortium (UK-RTC) "AbC-19 Rapid Test" for
633		detection of previous SARS-CoV-2 infection in key workers: test accuracy
634		study. BMJ [Internet]. 2020 Nov 11;371:m4262. Available from:
635		http://www.bmj.com/content/371/bmj.m4262.abstract
636	18.	Wu L-P, Wang N-C, Chang Y-H, Tian X-Y, Na D-Y, Zhang L-Y, et al. Duration
637		of antibody responses after severe acute respiratory syndrome. Emerg Infect
638		Dis [Internet]. 2007 Oct;13(10):1562–4. Available from:
639		https://pubmed.ncbi.nlm.nih.gov/18258008
640	19.	Vanshylla K, Di Cristanziano V, Kleipass F, Dewald F, Schommers P,
641		Gieselmann L, et al. Kinetics and correlates of the neutralizing antibody
	 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 	61761861962062162162213.62362414.62562662762862916.63063117.63263363463563618.63764019.

1

Page 28 of 52

2 3 4	642		response to SARS-CoV-2 infection in humans. Cell Host Microbe [Internet].
5 6	643		2021; Available from:
7 8	644		https://www.sciencedirect.com/science/article/pii/S1931312821001918
9 10 11	645	20.	Petersen MS, Hansen CB, Kristiansen MF, Fjallsbak JP, Larsen S, Hansen JL,
12 13	646		et al. SARS-CoV-2 natural antibody response persists up to 12 months in a
14 15	647		nationwide study from the Faroe Islands. medRxiv [Internet]. 2021 Jan
16 17 18	648		1;2021.04.19.21255720. Available from:
19 20	649		http://medrxiv.org/content/early/2021/04/22/2021.04.19.21255720.abstract
21 22	650	21.	Li C, Yu D, Wu X, Liang H, Zhou Z, Xie Y, et al. Twelve-month specific IgG
23 24 25	651		response to SARS-CoV-2 receptor-binding domain among COVID-19
25 26 27	652		convalescent plasma donors in Wuhan. bioRxiv [Internet]. 2021 Jan
28 29	653		1;2021.04.05.437224. Available from:
30 31 32	654		http://biorxiv.org/content/early/2021/04/05/2021.04.05.437224.abstract
32 33 34	655	22.	Manisty C, Treibel TA, Jensen M, Semper A, Joy G, Gupta RK, et al.
35 36	656		Characterising heterogeneity and sero-reversion in antibody responses to mild
37 38	657		SARS? CoV-2 infection: a cohort study using time series analysis and
39 40 41	658		mechanistic modelling. medRxiv [Internet]. 2020 Jan 1;2020.11.04.20225920.
42 43	659		Available from:
44 45	660		http://medrxiv.org/content/early/2020/11/06/2020.11.04.20225920.1.abstract
46 47 48	661	23.	Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological
49 50	662		memory to SARS-CoV-2 assessed for up to 8 months after infection. Science
51 52	663		(80-) [Internet]. 2021 Feb 5;371(6529):eabf4063. Available from:
53 54 55	664		http://science.sciencemag.org/content/371/6529/eabf4063.abstract
55 56 57	665	24.	Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H,
58 59 60	666		Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N

Page 29 of 52

BMJ Open

1 2			
3 4	667		Engl J Med [Internet]. 2020 Sep 1; Available from:
5 6	668		https://doi.org/10.1056/NEJMoa2026116
7 8	669	25.	Mulchandani R, Taylor-Phillips S, Jones H, Ades T, Borrow R, Linley E, et al.
9 10 11	670		Self assessment overestimates historical COVID-19 disease relative to
12 13	671		sensitive serological assays: cross sectional study in UK key workers.
14 15	672		medRxiv [Internet]. 2020 Jan 1;2020.08.19.20178186. Available from:
16 17 18	673		http://medrxiv.org/content/early/2020/08/22/2020.08.19.20178186.abstract
19 20	674	26.	lyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al.
21 22	675		Persistence and decay of human antibody responses to the receptor binding
23 24 25	676		domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol
23 26 27	677		[Internet]. 2020 Oct 8;5(52):eabe0367. Available from:
28 29	678		http://immunology.sciencemag.org/content/5/52/eabe0367.abstract
30 31	679	27.	Moshe M, Daunt A, Flower B, Simmons B, Brown JC, Frise R, et al. SARS-
32 33 34	680		CoV-2 lateral flow assays for possible use in national covid-19 seroprevalence
35 36	681		surveys (React 2): diagnostic accuracy study. BMJ [Internet]. 2021 Mar
37 38	682		2;372:n423. Available from: http://www.bmj.com/content/372/bmj.n423.abstract
39 40 41	683	28.	lyer AS, Jones FK, Nodoushania A, Kelly M, Becker M, Slater D, et al.
42 43	684		Dynamics and significance of the antibody response to SARS-CoV-2 infection.
44 45	685		medRxiv [Internet]. 2020 Jan 1;2020.07.18.20155374. Available from:
46 47 49	686		http://medrxiv.org/content/early/2020/07/20/2020.07.18.20155374.abstract
48 49 50	687	29.	Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang M, et
51 52	688		al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in
53 54	689		humans during a fishery vessel outbreak with high attack rate. medRxiv
55 56 57	690		[Internet]. 2020 Jan 1;2020.08.13.20173161. Available from:
58 59 60	691		http://medrxiv.org/content/early/2020/08/14/2020.08.13.20173161.abstract

3 4	692	30.	Public Health England. Evaluation of the Abbott SARS-CoV-2 IgG for the
5 6	693		detection of anti-SARSCoV-2 antibodies [Internet]. 2020. Available from:
7 8 9	694		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
10 11	695		ttachment_data/file/890566/Evaluation_of_Abbott_SARS_CoV_2_IgG_PHE.pd
12 13	696		f
14 15	697	31.	Public Health England. Evaluation of the Euroimmun Anti-SARS-CoV-2 ELISA
16 17 18	698		(IgG) serology assay for the detection of anti-SARS-CoV-2 antibodies
19 20	699		[Internet]. 2020. Available from:
21 22	700		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
23 24 25	701		ttachment_data/file/893433/Evaluation_of_Euroimmun_SARS_CoV_2_ELISA_
26 27	702		lgG_1_pdf
28 29	703	32.	Public Health England. Evaluation of Roche Elecsys AntiSARS-CoV-2
30 31 22	704		serology assay for the detection of anti-SARS-CoV-2 antibodies. 2020.
33 34	705	33.	Hall MK, Kea B, Wang R. Recognising Bias in Studies of Diagnostic Tests Part
35 36	706		1: Patient Selection. Emerg Med J [Internet]. 2019/07/13. 2019 Jul;36(7):431-
37 38	707		4. Available from: https://pubmed.ncbi.nlm.nih.gov/31302605
39 40 41	708	34.	Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z.
42 43	709		Immunological considerations for COVID-19 vaccine strategies. Nat Rev
44 45	710		Immunol [Internet]. 2020;20(10):615–32. Available from:
46 47 48	711		https://doi.org/10.1038/s41577-020-00434-6
49 50	712		
51 52			
53 54			
55 56			
57			
58 50			
60			

Table 1: Antibody level ratios for assays over time

715 Antibody level ratios for assays over time show varying peak levels depending on test.

716 Calculated by first establishing the median per time period, then calculating log2 ratio

717 for each period versus each respective assay positivity cut-off.

	Ratio median antibody level: assay positivity cut-off									
	Week									
	Pre- 2020	1-2	3-4	5-8	9-12	13-16	18-20	21-24	25-28	29+
EuroImmun	-2.65	1.33	0.2	0.95	1.32	0.47	0.04	-2.01	-2.26	-2.01
Roche	-3.64	3.16	3.05	5.20	5.45	4.14	4.42	-3.54	-3.69	-3.61
Abbott	-5.54	1.64	-0.51	1.12	0.86	0.08	-0.59	-5.13	-5.13	-6.13
Sample number (n=)	223	20	10	52	90	202	53	11	12	11

719 Table 2: UK-RTC AbC-19 LFIA performance metrics against known antibody

720 positive and known antibody negative cohorts.

Total Negative	True Negative	False Positive	Total Positive	True Positive	False Negative	Sensitivity % (95 CI)	Specificity % (95 Cl)
Pre-pandemic (n=223)							
223	222	1	n/a	n/a	n/a	n/a	99.55% (97.53% to 99.99%)
Initially reported cohorts (n=654)							
350	350	0	304	297	7	97.70% (95.31%- 99.07%)	100.00% (98.95%- 100.00%)
Extended cohorts (n=818)							
488	486	2	330	322	8	97.58% (95.28%- 98.95%)	99.59% (98.53%- 99.95%)

722 Figure Legends

Figure 1: Two-way correlation scatter plots comparing a) Eurolmmun b) Abbott and c) Roche immunoassays. Pearson χ^2 test was used to assess correlations. The results for each test were log transformed to ensure results follow a normal distribution. Negative agreement shown as blue dots, red dots show positive agreement for the two immunoassays, whilst black dots show disagreement and grey dots as the EuroImmun borderline results. Vertical lines mark the Abbott test range 0.25-1.4. n=880. The graphs show positive correlations between all immunoassays evaluated, with the fewest disagreement of results between the Log of Roche and the Log of EuroImmun. Fit lines LOESS, with 95% confidence interval shaded.

29 733

Figure 2: SARS-CoV-2 antibody levels by (a) Eurolmmun, (b) Roche, and (c) Abbott, relative to weeks since first reported symptoms or positive PCR result (where data available, n=685). RT-PCR positive individuals are denoted by red dots. while individuals with time since symptom data are denoted in black. Dashed lines delineate loge equivalent of positivity threshold (Eurolmmun 1.1, Roche 1.0, Abbott 1.4) for each test, and the negativity threshold for EuroImmun (0.8; borderline result between the two lines). Black bars indicate median, within IQR (interguartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interguartile range).

52 743

Figure 3: AbC-19 extended cohort (n=818) correlation to a) EuroImmun b) Roche
 and c) Abbott scores. Box plots overlaid on scatter plot, comparing AbC-19 TT3 test
 scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line

of best fit with 95% confidence interval shaded in grey. Black bars indicate median,

within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red

to per terien ont

triangles indicate outliers, based on 1.5* IQR (interquartile range).

∠ 3 4	747
- 5 6	748
7 8	749
9 10	, .,
11 12	
13	
15	
10	
10 19	
20 21	
22	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	

Category

- Both negative
- Both positive
- Disagreement
- Eurolmmun borderline

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S1: Flow of participant plasma samples through cross-sectional study.

All available samples from participants within each cohort, and the included and excluded samples at all stages. Freeze thaw cycles were closely monitored for all sample aliquots. Pre-pandemic samples taken forward for Roche, Abbott and EuroImmun testing were selected based on aliquot volume and availability.

Figure S2: Visual Score card for quantitative interpretation of AbC-19 LFIA test bands. A scale of 0 (not pictured, negative-no test line visible) to 10 (positivestrongest test line). Any LFIA scoring 1 or above was classified as positive.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Figure S3: Venn diagrams demonstrating result overlap between laboratory assays in a) the initial immunoassay cohort (n=880), b) the positive and c) negative cohorts assessed with AbC-19 TT3. Result in each circle overlap in bold, (RT-PCR positive, no RT-PCR positive) denoted in red in brackets below. Where AbC-19 was analysed, (AbC-19 positive, AbC-19 negative) denoted in green.

to occurrence on the terms on the one of the terms on the one of t

Figure S4: Age violin plots overlaid with scatter for samples included in correlation analysis (where age data available) n=880.

The above graphs allow comparison of the distributions and probability density of ages for EuroImmun, Roche and Abbott immunoassays. Wider areas of the violin plot represent high probability density, whilst narrow areas represent low probability density. Horizontal bar indicates median age. The red violin plots represent the negative results, the green violin plot represent the borderline results and the blue/turquoise violin plots represent the positive results.

Figure S5: Age violin plots separated into age groups (where age data available) for samples included in correlation analysis.

The above figure presents graphs for each immunoassay (EuroImmun, Roche and Abbott) with the corresponding age groups <35 years, <45 years, <55 years, <65 years and >= 65 years. The red violin plots represent the negative results, the green violin plot represents the borderline EuroImmun results, and the blue/turquoise violin plots represent the positive results (n=848).

Figure S6: Longitudinal analysis of convalescent plasma donor sequential samples (2-9 samples per individual) by a) EuroImmun ELISA or b) Abbott immunoassay. a) n=101 individuals, grey shading indicates borderline region, upper dotted line indicates positivity threshold (1.1), lower dotted line indicates negativity threshold (0.8) b) n=75 individuals, dotted line indicates positivity threshold (1.4). Dots represent log-transformed quantitative values for each sample, lines connect samples from the same individual.

Figure S7: AbC-19 initially reported cohort n=654 correlation to a) EuroImmun b) Roche and c) Abbott scores. Box plots overlaid on scatter plot, comparing TT3 AbC-19 test scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line of best fit with 95% confidence interval shaded in grey. Black bars indicate median, within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interquartile range).

Figure S8: Correlation matrix between Abbott, Eurolmmun, Roche and initially reported AbC-19 cohort (n=654) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S9: Correlation matrix between Abbott, EuroImmun, Roche and extended AbC-19 cohort (n=818) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S10: NIBSC external reference serology standards and known respiratory virus serology samples.

The scorecard score 0-10 was annotated on test cassette beneath sample ID when agreed by three independent experienced researchers. All LFIAs had a visible control line.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1: Summary specifications for SARS-CoV-2 immunoassays

investigated.

8									· · · · · · · · · · · · · · · · · · ·
9 10nmunoassay 11	Principle	Antigen Target	Assay Time (min)	Antibody Detected	Measurement	Result	Calibration	Evaluation of results	Results
12 13 14 Fyrolmmun FJISA 17 18	Enzyme-linked immunosorbent assay (enzyme-HRP)	S1 domain of the spike protein	120	lgG	Photometric measurement of the color intensity using wavelength of 450 nm and a reference wavelength between 620 nm and 650 nm	OD (Optical density)	One Positive calibrator	OD of clinical sample/OD of calibrator	< 0.8 Negative, ≥ 0.8 to <1.1 Borderline, ≥ 1.1 Positive
20 21 22 23 24 25 26 27 26 27 26 27 26 27 29 30 31 32 33 34 35	Electro- chemiluminescence	Nucleocapsid	18	IgG, IgA and IgM	Application of a voltage to the electrode then induces chemiluminescent emission which is measured by a photomultiplier	RLU (Relative Light Intensity)	One Positive calibrator and one Negative calibrator	The analyzer automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non- reactive as well as in the form of a cut-off index (COI; signal sample/cut- off).	< 1.0 Negative, ≥ 1.0 Positive
36 37 38 340bott 4rchitect 45 42 43 44 45	Chemiluminescent microparticle immunoassay	Nucleocapsid	30	lgG	The resulting chemiluminescent reaction is measured as a relative light unit (RLU).	RLU (Relative Light Intensity)	One Positive calibrator	Results are reported by dividing the sample result by the calibrator result (mean of 3 calibrators). The default result unit for the SARS-CoV-2 IgG assay is Index (S/C).	< 1.4 Negative, ≥ 1.4 Positive
46 47 48 4 973 AbC-19 50 51 52 53	Rapid Point of Care Lateral Flow Immunoassay	Full length Spike protein	20	lgG	The colour intensity of the test line is analysed using the reference score card.	Binary	The presence of a control line indicates the test is valid.	A result is positive if there is both a test line and a control line, whilst a result is negative if only the control line is present.	Using the reference score card; Positive scores ≥1 Negative scores=0

Table S2: Pandemic participant laboratory-based SARS-CoV-2 antibody result.

Breakdown of individual immunoassay results or result by one or more test.

Test	Positive (%)	Borderline (%)	Negative (%)
Abbott	310/657 (47.2%)	n/a	347/657 (62.8%)
Eurolmmun	346/657 (52.7%)	20/657 (3.2%)	291/657 (44.4%)
Roche	380/657 (57.8%)	n/a	277/657 (42.2%)
One or more test	385/657 (58.6%)	3/657 (0.45%)	269/657 (40.9%)

Table S3: Positive RT-PCR samples sensitivity analysis on the AbC-19 LFIA.

RT-PCR Positive	True Positive	False Negative	Sensitivity % (95 Cl)
227	209	18	92.07% (87.76%- 95.23%)
Negative by EI, R and A	Negative by El, R and A	Negative by El, R and A	

Table S4: Analytical specificity analysis on the AbC-19 LFIA LFIAs were assessed using 34 serum samples with known other respiratory viruses, negative results for all suggests analytical specificity for SARS_CoV_2 IgG.

SAMPLE	Number of samples	Number of AbC- 19 Positive results	Number of AbC- 19 Negative results
H5N1 Influenza (NIBSC 7/150)	1	0	1
RSV (NIBSC 16/284)	1	0	1
Influenza B (NIBSC 9/222)	1	0	1
Bordetella Pertussis (NIBSC 89/530)	1	0	1
Influenza A	5	0	5

Influenza B	5	0	5
Respiratory syncytial virus	5	0	5
Haemophilus Influenzae	5	0	5
Seasonal coronavirus NL63	5	0	5
Seasonal coronavirus 229E	5	0	5

Table S5: AbC-19 LFIA results with NIBSC external reference samples

NIBSC standard serology samples were provided with a data sheet indicating the SARS-CoV-2 antibody levels. We measured SARS-CoV-2 antibody levels in these samples and obtained similar results with the EuroImmun IgG ELISA in our laboratory.

NIBSC	AbC-19 LFIA result	Ulster University lab result	NIBSC provided antibody data				
#		Eurolmmun IgG (S1 domain)	Eurolmmun IgG (S1 domain)	Eurolmmun IgA	In- house IgG S1	In- house IgG N	In- house IgG sSpike
20/120	pos (10)	pos (8.39)	pos (8.59)	pos (10.1)	5580	3417	2693
20/122	pos (7)	pos (3.49)	pos (3.47)	pos (1.1)	3202	2425	1488
20/124	pos (1)	pos (1.56)	pos (1.62)	pos (1.84)	1636	3296	118
20/126	pos (1)	neg (0.60)	neg (0.64)	pos (1.63)	1181	995	8
20/128	neg (0)	neg (0.23)	neg (0.21)	neg (0.02)	<50	<50	<50
20/130	pos (8)	pos (6.96)	pos (7.77)	pos (9.74)	5388	17197	2707

Supplementary Methods

Laboratory-based immunoassays

Researchers were blinded to other test results when processing these assays.

EuroImmun Anti-SARS-CoV-2 ELISA-IgG (EuroImmun, El 2606-9601 G) was carried out according to manufacturer's instructions. Optical density (OD) at 450nm and reference OD at 620nm was read on BMG Labtech Fluostar Omega spectrophotometer (BMG Labtech). Ratios were calculated by dividing absorbance of the clinical sample by the absorbance of EuroImmun calibrator, with a score of < 0.8 determined negative, \geq 0.8 to <1.1 borderline and \geq 1.1 positive. For samples provided by NIBTS, EuroImmun IgG assay data was provided to researchers.

Roche Elecsys immunoassay (Roche Diagnostics, kit 09203079190) was carried out according to manufacturer's instructions on the Roche cobas e601 (C6000 line) or e801 (C8000 line) analysers. The analyser automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non-reactive as well as in the form of a cut-off index (COI; signal sample/cut-off). A score of <1.0 is determined negative, while a score \geq 1.0 is positive.

Abbott Architect SARS-CoV-2 immunoassay was carried out according to manufacturer's instructions on the Abbott Architect i2000SR analyser (Abbott, kit 18115FN00, calibrator kit 17412FN00, Control kit 17531FN00). The external control is entered into a Quality Monitor programme and must be within 3 standard deviations of the mean (cumulative; External control NIBSC QCRSARSCoV-2QC1 Lot

20/B764-01). Results are reported by dividing the sample result by the calibrator result. The result unit for the SARS-CoV-2 IgG assay is Index (Sample/Calibrator). A ratio of < 1.4 is determined negative and \geq 1.4 is determined positive.

Analytical specificity and sensitivity assessment

Four virology samples (H5N1 influenza serology 7/150, RSV serology 16/284, Influenza B 9/222 and Bordetella Pertusis 89/530) were obtained from NIBSC (National Institute for Biological Standards, Herts, UK). An additional 30 serology samples from known virus infections were a kind gift from SugenTech, Soeul, Korea. 15 of these virology samples were obtained from Trina (Trina Bioreactives AG, Switzerland) from 5 different individuals per virus (Influenza A IgG, Influenza B IgG and RSV IgG). A further 15 of these virology samples were obtained from AbBaltris, Kent from 5 different individuals per virus (Haemophilus Influenza IgG, Seasonal Coronavirus NL63 and 229E Seasonal Coronavirus). All these serology samples alongside a panel of 6 external standard research reagents (Table S4; NIBSC; Cat: 20/118 and 20/130) were assessed on the TT3 AbC-19 LFIA to confirm analytical specificity and sensitivity.

Page 53 of 52

Section & Topic	No	Item	#
TITLE OR ABSTRACT	1		
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
	-	(such as sensitivity, specificity, predictive values, or AUC)	-
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	4-5
	4	Study objectives and hypotheses	5-6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	6-7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7
	7	On what basis potentially eligible participants were identified	6/7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	6/7
	9	Whether participants formed a consecutive, random or convenience series	6
Test methods	10a	Index test, in sufficient detail to allow replication	8
	10b	Reference standard, in sufficient detail to allow replication	8
	11	Rationale for choosing the reference standard (if alternatives exist)	5-6
	12a	Definition of and rationale for test positivity cut-offs or result categories	8, supp table 1
		of the index test, distinguishing pre-specified from exploratory	-
	12b	Definition of and rationale for test positivity cut-offs or result categories	Supp methods,
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	Supp methods
	126	Whather divide information and index test results were available	0
	120	to the assessors of the reference standard	0
Δnalvsis	14	Methods for estimating or comparing measures of diagnostic accuracy	8/9
niuiysis	15	How indeterminate index test or reference standard results were handled	11 Sunn Fig1
	16	How missing data on the index test and reference standard were handled	Sunn Fig 1
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	12-14
		Intended sample size and how it was determined	8-9
RESULTS			
Participants	19	Flow of participants, using a diagram	Supp Fig 1
	20	Baseline demographic and clinical characteristics of participants	10
	21a	Distribution of severity of disease in those with the target condition	10
	21b	Distribution of alternative diagnoses in those without the target condition	10
	22	Time interval and any clinical interventions between index test and reference standard	6-7
Test results	23	Cross tabulation of the index test results (or their distribution)	Fig 3, Fig S3, S5-
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	12-13, Table 1
	25	Any adverse events from performing the index test or the reference standard	n/a
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and generalisability	4, 18-20
	27	Implications for practice, including the intended use and clinical role of the index test	19-20
OTHER			
INFORMATION			
	28	Registration number and name of registry	N/a
	29	Where the full study protocol can be accessed	Ethics approval
			documents

	30 Sources of funding and other support; role of funders	22
)		
1		
2		
4		
5		
6 7		
8		
9 0		
1		
2 3		
4		
5		
7		
8		
9 0		
1		
2 3		
4		
5 6		
7		
8		
0		
1		
3		
4		
5		
7		
s)		
0		
1 2		
3		
4 5		
5		
7		
o 9		

BMJ Open

Evaluation of the IgG antibody response to SARS CoV-2 infection and performance of a lateral flow immunoassay: cross-sectional and longitudinal analysis over 11 months

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048142.R3
Article Type:	Original research
Date Submitted by the Author:	26-May-2021
Complete List of Authors:	Robertson, Louise; Ulster University, Biomedical Sciences Research Institute Moore, Julie; Ulster University - Coleraine Campus, Biomedical Sciences Research Institute Bilghe, Kevin; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Quinn, Nigel; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Jennings, Fergal; Southern Health and Social Care Trust, Clinical Biochemistry Laboratory Warnock, Gary; Southern Health and Social Care Trust, Microbiology Laboratory Sharpe, Peter; Southern Health and Social Care Trust, Microbiology Laboratory Clarke, Mark; Northern Ireland Blood Transfusion Service, Belfast City Hospital Maguire, Kathryn; Northern Ireland Blood Transfusion Service, Belfast City Hospital Price, Ruth; Ulster University, Biomedical Sciences Research Institute Burns, William; Ulster University, Biomedical Sciences Research Institute Burns, William; Ulster University, Biomedical Sciences Research Institute Awuah, Agnes; University of Ulster, Biomedical Sciences Research Institute Awuah, Agnes; Ulster University - Jordanstown Campus, Nanotechnology and Integrated Bioengineering Centre Wallace, Gayle; Belfast Health and Social Care Trust, Royal Victoria Hospital Sager, Steve; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University, Biomedical Sciences Research Institute Chao Shern, Connie; Avellino Labs USA Nesbit, M. Andrew; Ulster University - Jordanstown Campus,

	Nanotechnology and Integrated Bioengineering Centre Moore, Tara; Ulster University, Biomedical Sciences Research Institute
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Immunology (including allergy)
Keywords:	COVID-19, Molecular diagnostics < INFECTIOUS DISEASES, Diagnosti microbiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1		
2		
3	1	Evaluation of the IgG antibody response to SARS CoV-2 infection and
4	2	performance of a lateral flow immunoassay: cross-sectional and longitudinal
5	2	performance of a fateral now infiniturioassay. cross-sectional and fongitudinal
6	3	analysis over 11 months
7	4	
8	5	Authors: Louise J. Robertson ¹ , Julie S. Moore ¹ , Kevin Bliahe ¹ , Kok Yew Na ² , Nigel
9	6	Ouinn ³ Fergal Jannings ³ Gary Warnock ⁴ Pater Sharne ³ Mark Clarke ⁵ Kathryn
10	0	Manufas Obaran Daina 5 Duth Drias 1 Million Duras ² Arganda Kawalan 1 Argan
10	/	Maguire ³ , Sharon Rainey ³ , Ruth Price ¹ , William Burns ² , Amanda Kowalczyk ¹ , Agnes
11	8	Awuah ¹ , Sara McNamee ² , Gayle E Wallace ⁶ , David Hunter ⁶ Steve Sager ¹ , Connie
12	9	Chao Shern ⁷ , M. Andrew Nesbit ¹ , James McLaughlin ^{2*} , Tara Moore ^{1&7*} .
13	10	
14	10	¹ Dispendicel Osianaaa Dessereb Institute, Illater I Iniversity, Newberg, Irsland
15	11	Biomedical Sciences Research Institute, Oister University, Northern Ireland
16	12	² Nanotechnology and Integrated Bioengineering Centre, Ulster University, Northern
17	13	Ireland
18	14	³ Clinical Biochemistry Laboratory, Southern Health and Social Care Trust, Northern
19	15	Ireland
20	15	
21	16	⁴ Microbiology Laboratory, Southern Health and Social Care Trust, Northern Ireland
22	17	⁵ Northern Ireland Blood Transfusion Service, Belfast City Hospital, Northern Ireland
22	18	⁶ Roval Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland
23	10	7 Avelling, 1505 Adama Dr. Manla Dark, CA 04025, United States
24	19	Avenino, 1505 Adams Dr, Menio Park, CA 94025, United States
25	20	
26	21	*Joint corresponding authors- Professor Tara Moore tara.moore@ulster.ac.uk
27	22	Professor James McLaughlin iad.mclaughlin@ulster.ac.uk
28	22	
29	23	
30		
31	24	
32		
33	25	
34	23	
35		
36	26	
37		
38	27	
30		
40	20	
40	28	
41		
42	29	
43		
44	30	
45	50	
46		
47	31	
48		
49	37	
50	52	
51		
52	33	
53		
54	34	
5-1 55	51	
56	25	
50	33	
57		
20	36	
22		
00		

2 3	27	
9 4	31	ADSTRACT
5 6	38	Objective
7 8	39	To evaluate the dynamics and longevity of the humoral immune response to SARS-
9	40	CoV-2 infection and assess the performance of professional use of
10 11	41	the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target
12 13	42	condition of SARS-CoV-2 spike protein IgG antibodies.
14 15	43	Design
16	44	Nationwide serological study.
17 18	45	Setting
19 20	46	Northern Ireland, UK, May 2020- February 2021.
21	47	Participants
22 23	48	Plasma samples were collected from a diverse cohort of individuals from the general
24 25	49	public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood
26 27	50	donations and research studies (n=223) and through a convalescent plasma
28	51	program (n=183). Plasma donors (n=101) were followed with sequential samples
29 30	52	over 11 months post symptom onset.
31 32	53	Main Outcome Measures
33	54	SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-
34 35	55	CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2
36 37	56	ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity,
38 39	57	estimated using a three-reference standard system to establish a characterised
40	58	panel of 330 positive and 488 negative SARS-CoV-2 lgG samples.
41 42	59	Results
43 44	60	We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post
45 46	61	infection, across a minimum of two laboratory immunoassays. On the known positive
47	62	cohort, the UK-RTC AbC-19 lateral flow immunoassay showed a sensitivity of 97.58%
48 49	63	(95.28%-98.95%) and on known negatives, showed specificity of 99.59% (98.53 %-
50 51	64	99.95%).
52	65	Conclusions
55 54	66	Through comprehensive analysis of a cohort of pre-pandemic and pandemic
55 56	67	individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when
57 58	68	assessed by EuroImmun ELISA, providing insight to antibody levels at later time points
59 60	69	post-infection. We show good laboratory validation performance metrics for the AbC-

BMJ Open

3 4	70	19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-	
5	71	based setting.	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	72		
	73	Strengths and Limitations	
	74	• Strength - This paper describes a non-clinical laboratory evaluation and	
	75	comparison of the ability of three different immunoassays to detect SARS-CoV-	
	76	2 antibodies in the same samples, detecting different subtypes of antibodies	
	77	against different targets of the viral antigenic repertoire, that does not rely on	
	78	PCR-positivity as definition of expected test outcome, to provide a panel of	
	79	known antibody positive and antibody negative serology for evaluation of newly	
25 26	80	developed immunoassays.	
27 28	81		
29 30 31 32 33 34 35	82	• Strength - This study demonstrates AbC-19 lateral flow point of care detection	
	83	of IgG antibodies to the full trimeric spike protein of SARS-CoV-2 virus, the	
	84	antibodies made in response to the vaccines used globally, in a large cohort of	
36 37 38	85	subjects, more than 10 months post infection, across a broad age range (18-	
39 40	86	78 years).	
41 42	87		
43 44	88	Strength - This study assesses correlation between approved laboratory-based	
46 47	89	assays and the AbC-19 lateral flow point of care lateral flow test for the	
48 49 50 51 52 53 54 55 56	90	detection of SARS-CoV-2 antibodies in characterised cohorts of known positive	
	91	and negative plasma samples in an evaluation conducted according to MHRA	
	92	guidelines during a pandemic.	
	93 94		
57 58	<i>,</i> ,		
59 60			

3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
22
20
24
25
26
27
28
29
30
50 21
51
32
33
34
35
36
37
20
20
39
40
41
42
43
44
15
45 46
40
4/
48
49
50
51
52
52
55
54
55
56
57

106

1 2

98

Strength-Longitudinal data detecting IgG antibodies more than 10 months from 95 96 infection was collected as sequential samples over time through a convalescent 97 plasma donation program.

Limitation- This study was conducted in a standardised setting with very 99 100 experienced users on plasma characterised as positive or negative for the 101 presence of antibodies using a reference standard, alongside one other assay 102 which may introduce a possible spectrum bias and may not reflect the true 103 performance metrics of the assay evaluated when translated to real life 104 settings, using finger prick blood samples and in which pre-test probability would impact greatly on positive and negative predictive values. 105

107 Keywords

SARS-CoV-2, COVID-19, immunoassay, LFIA, pandemic, antibody assay 108

109

60

110 Introduction

111 The World Health Organization declared a pandemic in March 2020 due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), identified late 2019 in 112 Wuhan, China, causing Coronavirus Disease 2019 (COVID-19) disease (1,2). 113

114 A global race ensued to develop diagnostic assays, with the most common being viral 115 RNA detection (RT-qPCR assays), to detect acute infection(3). RT-qPCR assays are 116 labour and reagent intensive, limited by a short temporal window for positive diagnosis, 117 and exhibit potential for false negative results (4). Evidence suggests sensitivity of RTqPCR can be as low as 70% (5). False positive rates between 0.8- 4.0% have been 118 58 119 reported in the UK and are dependent on the Ct values accepted as indicating 59

Page 7 of 52

 BMJ Open

infection, the number of SARS-CoV-2 genes analysed, and the proportion of asymptomatic individuals tested (6,7). Lockdown measures and "flattening the curve" strategies in the UK meant many infected individuals were instructed to self-isolate and were not offered a diagnostic RT-qPCR, with much of the testing limited to patients admitted to hospital, who perhaps reflect a more severely infected cohort. Consequently, a potentially large number of cases were unconfirmed or undetected (8).

The ability to accurately detect SARS-CoV-2 specific antibodies, which develop after an immune response is evoked, is vital for building biobanks of convalescent sera for treatment, monitoring immune response to infection alongside surveillance studies and assessing responses to vaccination programmes.

Commercial serology immunoassays are mostly laboratory-based and measure IgG antibody levels in plasma or serum. Alternatively, lateral flow immunoassays (LFIAs), require a finger prick blood sample and can be used at point-of-care (POC) or in the home; particularly important in the context of lockdown enforcement during the pandemic. A limited number of laboratory-based chemiluminescence immunoassays are approved for use in the UK including the Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM against the SARS-CoV-2 Nucleocapsid antigenic region (Roche Diagnostics, Basel, Switzerland) and the Abbott SARS-CoV-2 IgG assay against the same antigenic region (Abbott Diagnostics, Abbott Park, IL, USA).

140 The complexities of the humoral immune response to SARS-CoV-2 is a much-

³ 141 debated topic. In a US study, approximately one in 16 individuals lacked detectable

142 IgG antibodies up to 90 days post symptom onset, despite previous RT-PCR

143 confirmed infection (9). Patients who remain asymptomatic may mount a humoral

144 immune response which is short-lived, with detectable levels of antibody falling

rapidly (10). This, alongside the lack of RT-PCR test availability across the UK has
hindered development of well characterised gold standard serology test for IgG
antibodies to SARS-CoV-2.

Herein, we describe the use of Roche and Abbott commercial immunoassays, as well as the EuroImmun Anti-SARS-CoV-2 ELISA-IgG against the S1 domain of the spike (antigenic) protein of SARS-CoV-2 (EuroImmun UK, London, UK) to characterise pre-pandemic and pandemic COVID-19 blood samples (n=880) from within Northern Ireland and report on longevity of IgG antibodies detected. Furthermore, we follow IgG antibody levels in convalescent plasma donors (n=101 individuals) for up to 11 months. Currently, there is no gold standard assay for comparison, therefore we aimed to establish a reference based on a positive COVID-19 antibody status. We present results of a laboratory evaluation of the UK-RTC AbC-19 with a target condition of antibodies against a cohort of 330 known IgG antibody positive samples according to this 'positive by two' system and 488 negative samples (223 pre-pandemic assumed negative and 265 known negative) for IgG to SARS-CoV-2.

161	Methods	
162		
163	Participant samples	

The flow of participant samples is summarised in Figure S1. A small cohort (n=19) of anonymised plasma samples were obtained from a partner USA laboratory for initial protocol development only. All participants provided informed consent. An online recruitment strategy was employed, with the study advertised through internal Ulster University email, website and social media. A BBC Newsline feature providing the pandemic study email address also prompted interest from the general population. Page 9 of 52

BMJ Open

The first 800 respondents who expressed interest were provided with an online patient information sheet, consent form and health questionnaire and invited to register to attend a clinic. Participants were eligible for the study if they were over 18 years of age. Exclusion criteria included anyone with a blood disorder or contraindication to giving a blood sample, or anyone currently exhibiting symptoms of COVID-19. To enrich the cohort for samples potentially positive for SARS-CoV-2 IgG antibody, further participants were invited if they had previously tested PCR positive or had the distinctive symptom of loss of taste and smell. Blood sampling clinics were held at locations around Northern Ireland between May and July 2020 resulting in collection of 263 10ml EDTA plasma samples from 263 separate study participants. Additional anonymised plasma samples were obtained from Southern Health and Social Care Trust (SHSCT) Healthcare workers (n=195), and Northern Ireland Blood Transfusion Service (NIBTS, n=184) through convalescent plasma programs. NIBTS convalescent plasma samples continued to be collected throughout 2020-early 2021, with a total of n=897 from n=676 individuals, including n=183 samples from the cross-sectional cohort. Individuals from this program with a positive RT-PCR result and EuroImmun starting value >6 were sequentially sampled over a period of up to 46 weeks resulting in a cohort of n=101 individuals, n=296 samples (including n=47 individuals from the cross-sectional cohort).

Pre-pandemic samples (prior to June 2019, n=136) were obtained from Ulster
University ethics committee approved studies with ongoing consent and from NIBTS
(n= 200, more than 3 years old). Plasma samples were used at no more than 3 freezethaw cycles for all analyses reported within this manuscript.

195 Clinical information

Basic demographic information and data with regard to probable or definite prior infection with SARS-CoV-2 was obtained from PANDEMIC study participants through the secure online questionnaire requiring responses about positive RT-PCR result and/or time from symptom onset. Anonymised participant samples from USA, SHSCT and NIBTS were provided with age, gender and time since PCR-positive, where a previous test had been carried out.

203 Laboratory-based immunoassays

204 Details of laboratory immunoassays are summarised in supplementary methods and205 Table S1.

207 UK-RTC AbC-19 LFIA

All analyses were performed on UK-RTC AbC-19 Technical Transfer 3 (TT3) devices at Ulster University according to manufacturer's instructions (details in Table S1). Assays were performed as cohorts, with samples in batches of 10, with one researcher adding 2.5µL of plasma to the assay and a second adding 100µL of buffer immediately following sample addition. After 20 minutes, the strength of each resulting test line was scored from 0-10 according to a visual score card (scored by 3 researchers; Figure S2). A score ≥ 1 was positive. Details of samples used for analysis for detection of antibodies are available in Supplementary methods.

217 Statistical analysis

As per Daniel (11) a minimum sample size based on prevalence can be calculated

^o 219 using the following formula: $n = \frac{Z^2 P(1-P)}{d^2}$, where n = sample size, Z = Z statistic for a

BMJ Open

chosen level of confidence, P = estimated prevalence, and d = precision. Assuming
a prevalence of SARS-CoV-2 of 10% and a precision of 5%, we estimate that the
required sample size at 99% confidence (Z = 2.58) to be 240 individuals. If the true
prevalence is lower, 5%, the estimated required sample size given a precision of
2.5% is 506 individuals. A minimum sample size of 200 known positives and 200
known negatives is given within MHRA guidelines for SARS-CoV-2 LFIA antibody
immunoassays(12).

Statistical analysis was conducted in in R v 4.0.2(13). To assess discordance between test results, data was first filtered to include individuals with an Abbott test result in the range ≥ 0.25 & ≤ 1.4 , with a 2 x 2 contingency table produced that comprised all possible combinations of [concordant|discordant] test results [within|outside of] this range. A p-value was derived via a Pearson χ^2 test after 2000 p-value simulations via the stats package.

AbC-19 LFIA performance analyses were performed using MedCalc online (MedCalc Software, Ostend, Belgium). ROC analysis was performed via the pROC package. To compare test result (Positive|Negative) to age, a binary logistic regression model was produced with test result as outcome – a p-value was then derived via χ^2 ANOVA. To compare time against test result (encoded continuously), a linear regression was performed. We calculated median per time-period and then converted these to log [base 2] ratios against the positivity cut-off for each assay. All plots were generated via ggplot2 or custom functions using base R(14).

- - **Results**

We analysed samples from a mixed cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations

and research studies (n=223) and through a convalescent plasma program (n=183). Antibody levels in plasma from these 880 individuals were assessed using the three SARS-CoV-2 immunoassays; EuroImmun IgG, Roche Elecsys IgG/IgM/IgA and Abbott Architect IgG (Table S1, Figure S3). This included a cohort of 223 pre-pandemic plasma samples collected and stored during 2017 to end of May 2019 to determine assay specificity. Of the 657 participants whose samples were collected during the pandemic, 267 (40.64%) previously tested RT-PCR positive with a range of 7-173 days since diagnosis. A total of 225 participants gave time since self-reported COVID-19 symptoms, with a range of 5-233 days from symptom onset, whilst 195 had no symptom or PCR data available. Samples collected in 2020 (n=657) ranged from 19-78 years of age with a median (IQR) of 43 years (±22), and n=454 were female and n=200 male (n=3, not disclosed). Pre-pandemic samples (n=223) ranged from 20-87 years of age with median (IQR) of 50 years (±20) and consisted of n=88 female and n=135 male.

36 259

Laboratory based antibody immunoassays

A positive result for antibody on one or more of the three laboratory immunoassays was recorded for 385/657 (58.6%) participants who provided a sample during the pandemic. By EuroImmun ELISA, 346 were positive, 20 borderline and 291 were negative. The Roche assay detected 380 positive and 277 negative, whilst Abbott determined 310 positive and 347 negative (Table S2, Figure S3). The median age across all age groups combined was lower for participants testing positive across each of the immunoassays (median [sd] for positive versus negative, respectively: EuroImmun, 41 [13.16] vs 48 [12.95]; Roche, 42 [13.08] vs 48 [13.00]; Abbott, 41 [13.18] vs 47 [13.09]). (Figure S4, p<0.0001). When segregated by age group, however, differences were less apparent in certain groups (Figure S5). Excluding the

BMJ Open

pre-pandemic cohort, this gap reduced but remained statistically significant Eurolmmun, 41 [13.18] vs 45 [12.49]; Roche, 42 [13.15] vs 45 [12.49]; Abbott, 41 [13.26] vs 44 [12.63]) (p<0.01) (median [sd] for positive versus negative). Of note, out of 267 individuals with a previous positive RT-PCR result for SARS-CoV-2 viral RNA, 14 (5.2%, Figure S3a) did not show detectable antibodies by any of the three immunoassays, with no association found with age, gender or time between test and blood draw (data not shown).

The three commercial laboratory immunoassays provide a ratio value that increases with IgG antibody titre. When correlation between these values is assessed, good overall agreement is observed between the three immunoassays (Figure 1a-c, Figure S5). As highlighted by Rosadas *et al.*, we also see significant disagreement in the Abbott 0.25-1.4 range when compared to EuroImmun and Roche (Figure 1a,b; chi-square p-values: EuroImmun vs Abbott, p<0.001; Roche vs Abbott, p<0.001)(15).

Duration of humoral response to SARS-CoV-2

In a cross-sectional analysis of antibodies over time, we found IgG antibodies could still be detected in individuals (excluding pre-pandemic) across all three immunoassays used up to week 20 (day 140) (Figure 2). We note a statistically significant decrease in signal with respect to time across each assay (p-value [estimate slope]): EuroImmun, p=0.028[-0.823]; Roche, p=0.002 [-0.125]; Abbott, p<0.0001 [-3.673]. These remained statistically significant after adjustment for age. Antibody levels (expressed as a ratio of median result per timepoint divided by positivity cut off; Table 1) peaked at Week 1-2 for EuroImmun (1.33) and Abbott (1.64), though reached highest levels at Week 8-12 when measured by Roche (5.45). By week 21-24, median score for all tests had dropped below the positivity

Page 14 of 52

cut off, though a small number of samples remained above the positive cut off atthese later timepoints (Figure 2).

Samples from the NIBTS convalescent plasma program continued to be collected throughout 2020-early 2021. A total of n= 897 samples from n=676 individuals were collected, 744/883 tested by EuroImmun were positive (>1.1, with values range of 0.051-34.361), 556/749 tested by Abbott were positive (>1.4, with values ranging from 0.01-8.85). Individuals with a positive RT-PCR result and a EuroImmun result >6 were sequentially sampled (with median 3, range 2-9 samples per individual) and analysed by both EuroImmun (n=101 individuals), and Abbott immunoassays (n=75 individuals). Median age (IQR) for this cohort is 51 years (±21) with a range from 18-70 years and n=27 female, n=74 male. Longitudinal analysis shows persistence of detectable IgG antibodies until up to 302 days (43 weeks) by Abbott immunoassay (at which point this assay was discontinued at NIBTS) and 323 days (46 weeks) by EuroImmun ELISA, with a gradual decline over time (Figure S6). None of the individuals who were initially positive by Euroimmun SARS-CoV-2 S1 IgG assay dropped to below the EuroImmun positivity threshold (>1.1) over the course of the follow-up while 26 who were initially positive by Abbott SARS-CoV-2 NP IgG fell below the Abbott threshold (>1.4).

45 313

7 314 UK-RTC AbC-19

315 Using the commercial immunoassays described we established a well characterised
 316 serology sample set of 'known positive' and 'known negative' for IgG antibodies to
 317 SARS-CoV-2 to evaluate performance metrics for the UK-RTC AbC-19 Rapid LFIA.

AbC-19 detects IgG antibodies against the spike protein antigen, so we therefore
 318 AbC-19 detects IgG antibodies against the spike protein antigen, so we therefore
 319 required all samples to be positive by the EuroImmun SARS-CoV-2 IgG ELISA, which

Page 15 of 52

BMJ Open

likewise detects antibodies against the S1 domain (16). To develop this characterised cohort, samples were also required to be positive by a second immunoassay (Roche or Abbott). To analyse specificity of the AbC-19 LFIA for detection of SARS-CoV-2 IgG antibody, we assessed 350 plasma samples from participants classed as 'known negative for SARS-CoV-2 IgG antibody' on the AbC-19 LFIA. All samples were from individuals confirmed to be negative across all three laboratory assays (Roche, EuroImmun, Abbott). Using these positive n=304 and negative n=350 antibody cohorts, we determined a sensitivity for detecting SARS-CoV-2 IgG antibody of 97.70% (95% CI; 95.31%-99.07%) and specificity of 100% (98.95%-100.00%) for the AbC-19 LFIA (Table 2). Given a recent report of lower specificity in the AbC-19 LFIA (17) and the possibility of introducing sample bias, we revised our inclusion criteria for the negative cohort. For the pre-pandemic cohort, we included samples from all 223 individuals, regardless of results on other laboratory immunoassays. When this assumed negative pre-pandemic cohort was used for laboratory evaluation for target condition of antibodies, we observed a specificity of 99.55% (97.53% to 99.99%, Table 2). We expanded the negative cohort to include all samples that matched our criteria (samples collected during the pandemic to be negative by all three laboratory assays and all pre-pandemic samples regardless of other immunoassay results). The specificity observed on this extended negative cohort of 488 samples was 99.59% (98.53% to 99.95%, Table 2). For sensitivity analysis on a positive cohort (samples positive by EuroImmun and one other test), we were able to analyse all samples previously untested due to limited testing capacity and tested a positive cohort of 330 samples giving a sensitivity of 97.58% (95.28% to 98.95%, Table 2). When we sorted samples analysed in both negative (n=488) and positive cohorts (n=330) by

RT-PCR status and assessed AbC-19 LFIA sensitivity by including only those that were RT-PCR positive (n=227), the test showed a sensitivity of 92.07% (87.76%-95.23%, Table S3, Figure S3b). However, of the n=18 RT-PCR positive individuals negative for IgG antibodies by AbC-19, n=12 showed no detectable antibodies by all three laboratory assays (EuroImmun, Roche or Abbott), suggesting that antibodies are not present in those samples (Figure S3c).

When used as intended by the public, the AbC-19 LFIA provides binary positive/negative results. However, when assessing LFIA in the laboratory, each test line was scored against a scorecard by three independent researchers (0 negative, 1-10 positive; Figure S2). When compared to quantitative outputs from the Abbott, EuroImmun and Roche assays, the AbC-19 LFIA shows good correlation (Abbott r=0.84 [p<0.001]; Eurolmmun r=0.86 [p<0.001]; Roche r=0.82 [p<0.001]; Figure 3, Figure S7-Figure S9).

Analytical specificity and sensitivity of AbC-19 LFIA

We observed no cross-reactivity across samples with known H5N1 influenza, Respiratory syncytial virus, Influenza A, Influenza B, Bordetella Pertussis, Haemophilus Influenzae, Seasonal coronavirus NL63 and 229E on the AbC-19 LFIA (n=34 samples, n=8 distinct respiratory viruses; Table S4). Against a panel of external reference SARS-CoV-2 serology samples, the AbC-19 LFIA detected antibodies with scores commensurate to the EuroImmun ELISA scores (Figure S10, Table S5). Discussion

BMJ Open

2 3 4	369
5 6	370
7 8 0	371
9 10 11	372
12 13	373
14 15	374
16 17 18	375
19 20	376
21 22	377
23 24 25	378
25 26 27	379
28 29	380
30 31	381
32 33 24	382
34 35 36	383
37 38	384
39 40	385
41 42 43	386
44 45	387
46 47	388
48 49 50	389
50 51 52	390
53 54	391
55 56 57	392
57 58	393

369 Serological antibody immunoassays are an important tool in helping combat the 370 SARS-CoV-2 pandemic. The duration of the humoral immune response is of 371 particular importance, to inform an individual's protection following both natural 372 infection and vaccination. Using a large cohort of individuals across a wide age range (18-78 years), we assessed antibody levels across up to three laboratory 373 374 immunoassays perform a cross-sectional and longitudinal analysis over time. Our 375 results show strong correlation between all three immunoassays, with shortcomings 376 in the Abbott system output 0.25-1.4 range, as described previously, suggesting an 377 overestimated positive cut-off (Figure 1) (15).

379 Longitudinal studies on SARS-CoV-1 convalescent patients suggests that detectable 380 IgG can still be present as long as 2 years after infection (18). There are conflicting 381 reports of the longevity of the humoral response to SARS-CoV-2 infection which 382 differ in the make-up of the cohort studied, the assays used, and the length of time 383 since symptom onset. The longevity of IgG antibodies to both spike and 384 nucleocapsid protein more than 10 months after RT PCR positive status (and 385 beyond in a small number of samples, Figure 2, Figure S6) is consistent with that observed in other recent studies(19–21). In this study, samples were collected 386 387 through a convalescent plasma program (Figure S6), with individuals selected for 388 sequential plasma donation based on an initial high EuroImmun assay score. In 389 contrast to the time series analysis of healthcare workers recruited prospectively by 390 Manisty et al., we observed no cases where Euroimmun ELISA-measured anti-Spike 391 antibody levels fell below threshold, whilst a large number of Abbott measured anti-392 Nucleocapsid antibody levels dropped below the positivity threshold (34.7% 26/75). 393 However, this may be an overestimate given the shortcomings of the Abbott assay 59 60

> described above (Figure 1) (22). In a similar longitudinal study of 51 symptomatic participants, Dan *et al.* estimated that half-life ($t_{1/2}$) for IgG-Spike (103 days) was longer than that for IgG-Nucleocapsid (68 days), although with a considerable overlap of 95% confidence intervals (23).

In our more diverse cross-sectional cohort, we also note a statistically significant decline over time but levels remain detectable at 140 days (Figure 2). We note that lgG levels reach their peak (Roche ratio 5.45 times threshold cut-off) as late as Week 8-12 from first symptoms or a viral RNA RT-PCR positive result, though this may be an artefact of lower number of participants at earlier timepoints (Table 1). Robust antibody responses are produced in our cohorts across a wide age range (18-78 years old, Figure 2, Figure S6). We detect a slightly but significantly lower median age of participants testing positive (Figure S4); however, this is likely be due to cohort characteristics and not a true reflection of the population or indication of test performance.

A difficulty faced in validation of antibody diagnostic assays has been access to samples with known SARS-CoV-2 antibody status. As previously described, there is no clear gold standard reference against which to assess SARS-CoV-2 immunoassays. A positive RT-PCR test has been used previously to indicate previous (COVID-19) SARS-CoV-2 infection, though this approach is limited by a high rate of false negatives and positives in RT-PCR testing, failure in some cases to develop IgG antibodies (sero-silence or lack of antibody against the same antigenic component of the virus as the immunoassay uses as a capture antigen) and the lack of RT-PCR testing availability early in the pandemic (3,5,24). SARS-CoV-2 IgG antibodies were undetectable in 14 of 267 (5.2%) of previously RT-PCR SARS-CoV-2 viral RNA Page 19 of 52

BMJ Open

positive participants in this study. It is unclear if this is due to insufficient/absent antibody production in these individuals at the time the sample was taken, or due to a false positive PCR result which may occur in the UK at a rate between 0.8-4.0% (6). Self-assessment of symptoms for COVID-19 (disease) is a poor indicator of previous infection, even amongst healthcare workers (25). Additionally, the kinetics of a SARS-CoV-2 virus infection contributes to the loss of sensitivity of RT-PCR to detect virus with time, contributing to false negative RT-PCR test results for individuals who may be late to present for virus detection tests (5,26).

To assess sensitivity and specificity of the AbC-19 LFIA for its ability to detect SARS-CoV-2 antibody in a laboratory evaluation, we developed a reference standard for SARS-CoV-2 antibodies, which does not rely on a single test as reference. A similar approach was used in a recent seroprevalence study in Iceland, whereby two positive antibody results were required to determine a participant sample as positive for SARS-CoV-2 antibody (24). Our evaluation of performance metrics for the UK-RTC AbC-19 LFIA to detect antibodies for SARS-CoV-2 gave 97.58% sensitivity and 99.59% specificity. In an evaluation of the AbC-19 tests, Mulchandani et al. observed a specificity of 97.9% (97.2%-98.4%) on a cohort of pre-pandemic samples and report a sensitivity of 92.5% (88.8% to 95.1%) for detecting previous infections (based on a previous RT-PCR result) or 84.7% (80.6% to 88.1%) against the Roche Elecsys antibody test, which detects IgM/IgG/IgA SARS-CoV-2 antibodies to the nucleocapsid portion of SARS-CoV-2 (25). In RT-PCR positive individuals from our cohorts, the AbC-19 test showed a similar sensitivity (92.07%, 87.76%- 95.23%, Table S3). However, we demonstrate the drawbacks of this approach given that in 12 of 18 AbC-19 false negatives, none of the four immunoassays used (EuroImmun, Roche, Abbott

> or AbC-19) detected antibodies, suggesting either a false RT-PCR result, a failure to produce IgG antibodies or sero-reversion before sample collection in these individuals. Another recent evaluation of the AbC-19 LFIA by Moshe et al. determined a sensitivity of (100% (98.1-100%) on laboratory sera, using a composite reference standard of antibody positive by either Spike protein ELISA or hybrid DABA assay and specificity of 99.8% (98.9-100%) against pre-pandemic samples. However, when AbC-19 performance was analysed on matched finger-prick and serum samples against the same antibody standard, a lower sensitivity was observed (finger-prick 69% (53.8-81.3%), serum 92% (80-97.7%)) (27).

In our study, strong correlation was observed in quantitative score between results on all immunoassays with the highest observed between EuroImmun and AbC-19 LFIA (Figure S8, S9). This is to be expected, given both the AbC-19 LFIA and EuroImmun ELISA detect IgG antibodies against spike protein. Importantly, for the assessment of immunity to prior natural infection as well as to immunisation, IgG antibodies against SARS-CoV-2 spike protein detected by laboratory-based EuroImmun ELISA and AbC-19 LFIA are known to correlate with neutralizing antibodies, which may confer future immunity (23,28,29). Previous evaluations of sensitivity and specificity reported by Public Health England (PHE), showed a EuroImmun sensitivity of 72% and specificity of 99%, Abbott with sensitivity of 92.7% and specificity of 100% and Roche with sensitivity of 83.9% and specificity of 100% (30-32). The PHE analyses for each of these tests used previous infection (RT-PCR positive status) as a reference standard, the limitations of which are discussed above.
Page 21 of 52

BMJ Open

In the use of characterised 'known positive' and 'known negative' cohorts, one limitation of this study is its potential for spectrum bias, whereby our positive-by-two reference system may artificially raise the threshold for positive sample inclusion, possibly resulting in the overestimation of the sensitivity of any test evaluated (33). However, similar issues have been raised when using previous RT-PCR result or definitive COVID-19 symptoms as inclusion criteria given these will likely skew a cohort towards more severe disease, especially given issues of RT-PCR availability outside of hospital settings during the first wave (5). Importantly, our mixed origin of samples forming the cohort provides a positive cohort for assessing assay sensitivity that includes individuals from the general public, healthcare workers and from convalescent plasma programmes. In the absence of a clear gold standard test, our system relies on no single test (each with their individual shortcomings) and instead takes an average of three. Our analysis of specificity on only pre-pandemic individuals (n=223) shows similar specificity (99.55%) to the larger mixed 'known negative cohort' (n=488, sensitivity 99.59%). We also demonstrate a high level of analytical specificity of the AbC-19 test with no cross-reactivity against a panel of other respiratory viruses, including SARS-CoV-1 NL63 and 229E (Table S4).

486 Our assessment of the AbC-19 LFIA in a laboratory setting, using characterised
 487 cohorts of known SARS-CoV-2 antibody positive and antibody negative plasma,
 488 shows good performance metrics for its ability to detect SARS-CoV-2 IgG antibodies
 489 following natural infection. We note our use of plasma from venous blood samples, as
 490 opposed to a finger prick blood sample as would be used in rapid testing scenarios
 491 (27). Additionally, when the AbC-19 LFIA was used on our cohort, a number of the
 492 positive results scored low (1/10 using the score card under laboratory conditions,

Figure 3), with a faint test band visible to a trained laboratory scientist but perhaps difficult to identify as positive by individuals performing a single test (Figure S10). This faint line may be reflective of the longer time from infection for the Northern Ireland cohort used. If the AbC-19 LFIA is to be used in clinical settings it is important to determine if all users observe the same results as observed in this laboratory evaluation.

500 This assessment of the AbC-19 LFIA does not provide data on how this test will 501 perform in a seroprevalence screening scenario, but instead provides metrics for the 502 performance of the test, where presence of SARS-CoV-2 antibodies is of interest, as 503 opposed to previous COVID-19 infection. An important potential use of the AbC-19 504 LFIA would be in monitoring the immune response to vaccination, with most vaccines 505 utilising SARS-CoV-2 Spike protein antigens (34).

507 Conclusion

We present a comprehensive analysis of pre-pandemic and two large pandemic cohorts (more than 700 individuals) and in a longitudinal analysis showing that IgG antibodies to SARS-CoV-2 antigens are detectable more than 10 months from positive RT-PCR test. We use antibody positive status as an alternative to RT-PCR positive status as a standard for assessing SARS-CoV-2 antibody assays and show strong performance for the UK-RTC AbC-19 LFIA rapid point of care test in detecting SARS-CoV-2 antibodies. User experience in future studies in the real world is important and may alter the performance characteristics. Also, the effect of operator training will have direct effects upon test performance. We welcome further clinical evaluation of the AbC-19 LFIA in large cohorts of symptomatic and asymptomatic individuals alongside

1 2										
3 4	518	large studies assessing vaccination outcomes in individuals to fully validate its								
5 6	519	implementation across all intended use cases.								
7 8	520									
9 10 11	521	Declarations								
12 13 14 15 16 17	522	Ethics approval and consent to participate								
	523	All study participants provided informed consent. This study was approved by Ulster								
	524	University Institutional Ethics committee (REC/20/0043), South Birmingham REC (The								
19 20	525	PANDEMIC Study IRAS Project ID: 286041Ref 20/WM/0184) and adhered to the								
21 22	526	Declaration of Helsinki and Good Clinical Practice.								
23 24	527	Patient and Public Involvement								
25 26 27 28 29 30 31 32 33	528	Patients or the public were not involved in the design, or conduct, or reporting, or								
	529	dissemination plans of our research.								
	530	Consent for publication								
	531	Not applicable.								
35 36	532	Dissemination to participants and related patient and public communities.								
37 38	533	Links to this work will be included on the study website								
39 40	534	(https://www.ulster.ac.uk/coronavirus/research/research-output/pandemic-study) and								
41 42 43	535	participants will be alerted that the work has been published.								
44 45	536	Data sharing								
46 47	537	Data are available on reasonable request to the corresponding author.								
48 49 50	538	Competing interests:								
50 51 52	539	At the time of this study TM and JML acted as advisors to CIGA HealthCare, an								
53 54	540	industrial partner in the UK Rapid Test Consortium. No personal financial reward or								
55 56	541	renumeration was received for this advisory role. At the time of submission of this								
57 58 59 60	542	manuscript TM and JML no longer held these advisory positions.								

BMJ Open

543 All other authors have no potential conflict of interest to report.

544 Funding:

> 545 Costs for assays and laboratory expenses only will be paid by UK-RTC as is normal 546 practice (UU-UK-RTC-2020-001). The authors have not been paid or financially 547 benefitted from this study.

The advisory roles within CIGA Healthcare were unpaid temporary roles. This manuscript and associated data within this paper has only been used to build confidence into the overall device design and performance assessment of the UK RTC AbC-19 devices and such work was never commissioned for any government contractual consideration.

⁶ 553 **Authors' contributions:**

TM, JML conceived the study. LR, JM and TM performed all laboratory analyses. LR, SM and KYN analysed data, KB performed all statistical analyses/interpretations and produced figures. NQ, FJ, GW and PS performed all Roche analyses and provided SHSCT cohort samples. MC, KM and SR performed all Abbott analyses and provided Blood Transfusion cohort samples. TM, RP and AN coordinated participant recruitment, consent and sampling. WB and JML developed online consent forms, questionnaires and databases. LR, JM, AK, AA, GEW, DH, SS, CCS performed sample collection and processing. LR and TM wrote the manuscript, with significant contributions from JM, AN and KB. All authors reviewed and approved the final manuscript.

Acknowledgements: We are extremely grateful to all the people of Northern Ireland who took part in this study and gave blood during the pandemic. We are indebted to the phlebotomists- Geraldine Horrigan and Pamela Taylor who conducted the blood Page 25 of 52

1 2

3 4	568	draw	s whilst ensuring the highest possible level of safety to the participants. We are				
5 6	569	also	grateful to Kingsbridge Private Hospital Group for sponsorship and providing				
7 8 9 10 11	570	ever	ything needed for blood collection including the clinical rooms. We acknowledge				
	571	Dr Tony Byrne for use of his laboratory and Professor Gareth Davison for laboratory					
12 13	572	spac	e and equipment during the pandemic within a locked down University.				
14 15	573						
16 17 18	574	Refe	rences				
18 19 20	575						
21 22	576	1.	World Health Organisation. Rolling updates on coronavirus disease (COVID-				
23 24 25	577		19) [Internet]. 2020 [cited 2020 Aug 11]. Available from:				
25 26 27	578		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-				
28 29	579		they-happen				
30 31	580	2.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and				
32 33 34	581		epidemiology of 2019 novel coronavirus: implications for virus origins and				
35 36	582		receptor binding. Lancet. 2020 Jan 30;395.				
37 38	583	3.	Petherick A. Developing antibody tests for SARS-CoV-2. Lancet [Internet].				
39 40 41	584		2020 Apr 4 [cited 2020 Sep 12];395(10230):1101–2. Available from:				
41 42 43	585		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30788-				
44 45	586		1/fulltext#.X10EdBi-Ayk.mendeley				
46 47	587	4.	Winichakoon P, Chaiwarith R, Liwsrisakun C, Salee P, Goonn A, Limsukon A,				
48 49 50	588		et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out				
50 51 52	589		COVID-19. Vol. 58, Journal of Clinical Microbiology. American Society for				
53 54	590		Microbiology; 2020.				
55 56	591	5.	Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ				
57 58 59 60	592		[Internet]. 2020;370. Available from:				
00							

1 2 2			
3 4 5	593		https://www.bmj.com/content/370/bmj.m3325
5 6 7	594	6.	Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results:
7 8 9	595		hidden problems and costs. Lancet Respir Med [Internet]. 2020 Nov 11;
10 11	596		Available from: https://doi.org/10.1016/S2213-2600(20)30453-7
12 13	597	7.	Omata M, Hirotsu Y, Sugiura H, Maejima M, Nagakubo Y, Amemiya K, et al.
14 15	598		The dynamic change of antibody index against Covid-19 is a powerful
16 17 18	599		diagnostic tool for the early phase of the infection and salvage PCR assay
19 20	600		errors. J Microbiol Immunol Infect [Internet]. 2021 Jan 5;S1684-
21 22	601		1182(21)00008-6. Available from: https://pubmed.ncbi.nlm.nih.gov/33593710
23 24 25	602	8.	Black JRM, Bailey C, Przewrocka J, Dijkstra KK, Swanton C. COVID-19: the
23 26 27	603		case for health-care worker screening to prevent hospital transmission. Lancet
28 29	604		(London, England) [Internet]. 2020 May 2 [cited 2020 Sep
30 31	605		12];395(10234):1418–20. Available from:
32 33 34	606		http://www.ncbi.nlm.nih.gov/pubmed/32305073
35 36	607	9.	Petersen LR, Sami S, Vuong N, Pathela P, Weiss D, Morgenthau BM, et al.
37 38	608		Lack of antibodies to SARS-CoV-2 in a large cohort of previously infected
39 40 41	609		persons. Clin Infect Dis [Internet]. 2020 Nov 4; Available from:
42 43	610		https://doi.org/10.1093/cid/ciaa1685
44 45	611	10.	Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and
46 47 48	612		immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med
48 49 50	613		[Internet]. 2020;26(8):1200-4. Available from: https://doi.org/10.1038/s41591-
51 52	614		020-0965-6
53 54	615	11.	Daniel WW. Biostatistics : a foundation for analysis in the health sciences. 7th
55 56 57	616		Editio. New York: John Wiley & Sons, Ltd; 1999. 720 p.
58 59 60	617	12.	Medicines and Healthcare product Regulatory Agency. Target product profile:

Page 27 of 52

618		antibody tests to help determine if people have immunity to SARS-CoV-2
619		[Internet]. 2020 [cited 2020 Apr 24]. Available from:
620		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
621		ttachment_data/file/881162/Target_Product_Profile_antibody_tests_to_help_d
622		etermine_if_people_have_immunity_to_SARS-CoV-2_Version_2.pdf
623	13.	The R Development Core Team. R: A language and environment for statistical
624		computing. ISBN 3-900051-07-0. 2017.
625	14.	Wickham H. ggplot2 Elegant Graphics for Data Analysis. Springer. 2016.
626	15.	Rosadas C, Randell P, Khan M, McClure MO, Tedder RS. Testing for
627		responses to the wrong SARS-CoV-2 antigen? Lancet (London, England)
628		[Internet]. 2020 Sep 5 [cited 2020 Sep 13];396(10252):e23. Available from:
629		http://www.ncbi.nlm.nih.gov/pubmed/32866429
630	16.	UK-RTC and Abingdon Health. Charting the course to a post-COVID world.
631		2020.
632	17.	Mulchandani R, Jones HE, Taylor-Phillips S, Shute J, Perry K, Jamarani S, et
633		al. Accuracy of UK Rapid Test Consortium (UK-RTC) "AbC-19 Rapid Test" for
634		detection of previous SARS-CoV-2 infection in key workers: test accuracy
635		study. BMJ [Internet]. 2020 Nov 11;371:m4262. Available from:
636		http://www.bmj.com/content/371/bmj.m4262.abstract
637	18.	Wu L-P, Wang N-C, Chang Y-H, Tian X-Y, Na D-Y, Zhang L-Y, et al. Duration
638		of antibody responses after severe acute respiratory syndrome. Emerg Infect
639		Dis [Internet]. 2007 Oct;13(10):1562–4. Available from:
640		https://pubmed.ncbi.nlm.nih.gov/18258008
641	19.	Vanshylla K, Di Cristanziano V, Kleipass F, Dewald F, Schommers P,
642		Gieselmann L, et al. Kinetics and correlates of the neutralizing antibody
	 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 	61861962062162262313.62462514.62615.62762862963016.63163217.63363463563663718.63863964064119.

BMJ Open

1

Page 28 of 52

2 3 4	643		response to SARS-CoV-2 infection in humans. Cell Host Microbe [Internet].
5 6	644		2021; Available from:
7 8	645		https://www.sciencedirect.com/science/article/pii/S1931312821001918
9 10 11	646	20.	Petersen MS, Hansen CB, Kristiansen MF, Fjallsbak JP, Larsen S, Hansen JL,
12 13	647		et al. SARS-CoV-2 natural antibody response persists up to 12 months in a
14 15	648		nationwide study from the Faroe Islands. medRxiv [Internet]. 2021 Jan
16 17 18	649		1;2021.04.19.21255720. Available from:
19 20	650		http://medrxiv.org/content/early/2021/04/22/2021.04.19.21255720.abstract
21 22	651	21.	Li C, Yu D, Wu X, Liang H, Zhou Z, Xie Y, et al. Twelve-month specific IgG
23 24 25	652		response to SARS-CoV-2 receptor-binding domain among COVID-19
25 26 27	653		convalescent plasma donors in Wuhan. bioRxiv [Internet]. 2021 Jan
28 29	654		1;2021.04.05.437224. Available from:
30 31 22	655		http://biorxiv.org/content/early/2021/04/05/2021.04.05.437224.abstract
32 33 34	656	22.	Manisty C, Treibel TA, Jensen M, Semper A, Joy G, Gupta RK, et al.
35 36	657		Characterising heterogeneity and sero-reversion in antibody responses to mild
37 38	658		SARS? CoV-2 infection: a cohort study using time series analysis and
39 40 41	659		mechanistic modelling. medRxiv [Internet]. 2020 Jan 1;2020.11.04.20225920.
42 43	660		Available from:
44 45	661		http://medrxiv.org/content/early/2020/11/06/2020.11.04.20225920.1.abstract
46 47 48	662	23.	Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological
49 50	663		memory to SARS-CoV-2 assessed for up to 8 months after infection. Science
51 52	664		(80-) [Internet]. 2021 Feb 5;371(6529):eabf4063. Available from:
53 54 55	665		http://science.sciencemag.org/content/371/6529/eabf4063.abstract
56 57	666	24.	Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H,
58 59 60	667		Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N

Page 29 of 52

1 2			
3 4	668		Engl J Med [Internet]. 2020 Sep 1; Available from:
5 6	669		https://doi.org/10.1056/NEJMoa2026116
7 8	670	25.	Mulchandani R, Taylor-Phillips S, Jones H, Ades T, Borrow R, Linley E, et al.
9 10 11	671		Self assessment overestimates historical COVID-19 disease relative to
12 13	672		sensitive serological assays: cross sectional study in UK key workers.
14 15	673		medRxiv [Internet]. 2020 Jan 1;2020.08.19.20178186. Available from:
16 17 19	674		http://medrxiv.org/content/early/2020/08/22/2020.08.19.20178186.abstract
18 19 20	675	26.	lyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, et al.
21 22	676		Persistence and decay of human antibody responses to the receptor binding
23 24	677		domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol
25 26 27	678		[Internet]. 2020 Oct 8;5(52):eabe0367. Available from:
27 28 29	679		http://immunology.sciencemag.org/content/5/52/eabe0367.abstract
30 31	680	27.	Moshe M, Daunt A, Flower B, Simmons B, Brown JC, Frise R, et al. SARS-
32 33 34	681		CoV-2 lateral flow assays for possible use in national covid-19 seroprevalence
35 36	682		surveys (React 2): diagnostic accuracy study. BMJ [Internet]. 2021 Mar
37 38	683		2;372:n423. Available from: http://www.bmj.com/content/372/bmj.n423.abstract
39 40 41	684	28.	lyer AS, Jones FK, Nodoushania A, Kelly M, Becker M, Slater D, et al.
41 42 43	685		Dynamics and significance of the antibody response to SARS-CoV-2 infection.
44 45	686		medRxiv [Internet]. 2020 Jan 1;2020.07.18.20155374. Available from:
46 47	687		http://medrxiv.org/content/early/2020/07/20/2020.07.18.20155374.abstract
48 49 50	688	29.	Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang M, et
50 51 52	689		al. Neutralizing antibodies correlate with protection from SARS-CoV-2 in
53 54	690		humans during a fishery vessel outbreak with high attack rate. medRxiv
55 56 57	691		[Internet]. 2020 Jan 1;2020.08.13.20173161. Available from:
57 58 59 60	692		http://medrxiv.org/content/early/2020/08/14/2020.08.13.20173161.abstract

BMJ Open

3 4	693	30.	Public Health England. Evaluation of the Abbott SARS-CoV-2 IgG for the
5 6	694		detection of anti-SARSCoV-2 antibodies [Internet]. 2020. Available from:
7 8 9	695		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
10 11	696		ttachment_data/file/890566/Evaluation_of_Abbott_SARS_CoV_2_IgG_PHE.pd
12 13	697		f
14 15 16	698	31.	Public Health England. Evaluation of the Euroimmun Anti-SARS-CoV-2 ELISA
16 17 18	699		(IgG) serology assay for the detection of anti-SARS-CoV-2 antibodies
19 20	700		[Internet]. 2020. Available from:
21 22	701		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/a
23 24 25	702		ttachment_data/file/893433/Evaluation_of_Euroimmun_SARS_CoV_2_ELISA_
26 27	703		lgG_1pdf
28 29	704	32.	Public Health England. Evaluation of Roche Elecsys AntiSARS-CoV-2
30 31 32	705		serology assay for the detection of anti-SARS-CoV-2 antibodies. 2020.
33 34	706	33.	Hall MK, Kea B, Wang R. Recognising Bias in Studies of Diagnostic Tests Part
35 36	707		1: Patient Selection. Emerg Med J [Internet]. 2019/07/13. 2019 Jul;36(7):431-
37 38	708		4. Available from: https://pubmed.ncbi.nlm.nih.gov/31302605
39 40 41	709	34.	Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z.
42 43	710		Immunological considerations for COVID-19 vaccine strategies. Nat Rev
44 45	711		Immunol [Internet]. 2020;20(10):615–32. Available from:
46 47 48	712		https://doi.org/10.1038/s41577-020-00434-6
49 50	713		
51 52			
53 54			
55 56			
57			
58			
60			

Table 1: Antibody level ratios for assays over time

716 Antibody level ratios for assays over time show varying peak levels depending on test.

717 Calculated by first establishing the median per time period, then calculating log2 ratio

for each period versus each respective assay positivity cut-off.

	Ratio median antibody level: assay positivity cut-off										
		Week									
	Pre- 2020	1-2	3-4	5-8	9-12	13-16	18-20	21-24	25-28	29+	
EuroImmun	-2.65	1.33	0.2	0.95	1.32	0.47	0.04	-2.01	-2.26	-2.01	
Roche	-3.64	3.16	3.05	5.20	5.45	4.14	4.42	-3.54	-3.69	-3.61	
Abbott	-5.54	1.64	-0.51	1.12	0.86	0.08	-0.59	-5.13	-5.13	-6.13	
Sample number (n=)	223	20	10	52	90	202	53	11	12	11	

720 Table 2: UK-RTC AbC-19 LFIA performance metrics against known antibody

721 positive and known antibody negative cohorts.

Total Negative	True Negative	False Positive	Total Positive	True Positive	False Negative	Sensitivity % (95 Cl)	Specificity % (95 Cl)		
			Pre-pano	demic (n=22	23)				
223	222	1	n/a	n/a	n/a	n/a	99.55% (97.53% to 99.99%)		
Initially reported cohorts (n=654)									
350	350	0	304	297	7	97.70% (95.31%- 99.07%)	100.00% (98.95%- 100.00%)		
Extended cohorts (n=818)									
488	486	2	330	322	8	97.58% (95.28%- 98.95%)	99.59% (98.53%- 99.95%)		

723 Figure Legends

Figure 1: Two-way correlation scatter plots comparing a) Eurolmmun b) Abbott and c) Roche immunoassays. Pearson χ^2 test was used to assess correlations. The results for each test were log transformed to ensure results follow a normal distribution. Negative agreement shown as blue dots, red dots show positive agreement for the two immunoassays, whilst black dots show disagreement and grey dots as the EuroImmun borderline results. Vertical lines mark the Abbott test range 0.25-1.4. n=880. The graphs show positive correlations between all immunoassays evaluated, with the fewest disagreement of results between the Log of Roche and the Log of EuroImmun. Fit lines LOESS, with 95% confidence interval shaded.

Figure 2: SARS-CoV-2 antibody levels by (a) Eurolmmun, (b) Roche, and (c) Abbott, relative to weeks since first reported symptoms or positive PCR result (where data available, n=685). RT-PCR positive individuals are denoted by red dots. while individuals with time since symptom data are denoted in black. Dashed lines delineate loge equivalent of positivity threshold (Eurolmmun 1.1, Roche 1.0, Abbott 1.4) for each test, and the negativity threshold for EuroImmun (0.8; borderline result between the two lines). Black bars indicate median, within IQR (interguartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interguartile range).

52 744

Figure 3: AbC-19 extended cohort (n=818) correlation to a) EuroImmun b) Roche
 and c) Abbott scores. Box plots overlaid on scatter plot, comparing AbC-19 TT3 test
 scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line

of best fit with 95% confidence interval shaded in grey. Black bars indicate median,

within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red

to been teriew only

triangles indicate outliers, based on 1.5* IQR (interquartile range).

2 3 4	748
5 6	749
7 8	750
9 10	
11 12	
13 14	
15 16	
17 18	
19 20 21	
21 22 23	
23 24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47 48	
48 49 50	
50 51 52	
52 53 54	
55 56	
57 58	
59	

Category

- Both negative
- Both positive
- Disagreement
- Eurolmmun borderline

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S1: Flow of participant plasma samples through cross-sectional study.

All available samples from participants within each cohort, and the included and excluded samples at all stages. Freeze thaw cycles were closely monitored for all sample aliquots. Pre-pandemic samples taken forward for Roche, Abbott and EuroImmun testing were selected based on aliquot volume and availability.

Figure S2: Visual Score card for quantitative interpretation of AbC-19 LFIA test bands. A scale of 0 (not pictured, negative-no test line visible) to 10 (positivestrongest test line). Any LFIA scoring 1 or above was classified as positive.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S3: Venn diagrams demonstrating result overlap between laboratory assays in a) the initial immunoassay cohort (n=880), b) the positive and c) negative cohorts assessed with AbC-19 TT3. Result in each circle overlap in bold, (RT-PCR positive, no RT-PCR positive) denoted in red in brackets below. Where AbC-19 was analysed, (AbC-19 positive, AbC-19 negative) denoted in green.

to occurrence on the terms on the one of the terms on the one of t

Figure S4: Age violin plots overlaid with scatter for samples included in correlation analysis (where age data available) n=880.

The above graphs allow comparison of the distributions and probability density of ages for EuroImmun, Roche and Abbott immunoassays. Wider areas of the violin plot represent high probability density, whilst narrow areas represent low probability density. Horizontal bar indicates median age. The red violin plots represent the negative results, the green violin plot represent the borderline results and the blue/turquoise violin plots represent the positive results.

Figure S5: Age violin plots separated into age groups (where age data available) for samples included in correlation analysis.

The above figure presents graphs for each immunoassay (EuroImmun, Roche and Abbott) with the corresponding age groups <35 years, <45 years, <55 years, <65 years and >= 65 years. The red violin plots represent the negative results, the green violin plot represents the borderline EuroImmun results, and the blue/turquoise violin plots represent the positive results (n=848).

Figure S6: Longitudinal analysis of convalescent plasma donor sequential samples (2-9 samples per individual) by a) EuroImmun ELISA or b) Abbott immunoassay. a) n=101 individuals, grey shading indicates borderline region, upper dotted line indicates positivity threshold (1.1), lower dotted line indicates negativity threshold (0.8) b) n=75 individuals, dotted line indicates positivity threshold (1.4). Dots represent log-transformed quantitative values for each sample, lines connect samples from the same individual.

Figure S7: AbC-19 initially reported cohort n=654 correlation to a) EuroImmun b) Roche and c) Abbott scores. Box plots overlaid on scatter plot, comparing TT3 AbC-19 test scores to EuroImmun, Roche and Abbott quantitative antibody values. Red linear line of best fit with 95% confidence interval shaded in grey. Black bars indicate median, within IQR (interquartile range) boxes for EuroImmun/Roche/Abbott value. Red triangles indicate outliers, based on 1.5* IQR (interquartile range).

Figure S8: Correlation matrix between Abbott, Eurolmmun, Roche and initially reported AbC-19 cohort (n=654) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S9: Correlation matrix between Abbott, EuroImmun, Roche and extended AbC-19 cohort (n=818) quantitative output values for SARS-CoV-2 antibody levels. Strong correlations are observed between all immunoassays. The level of significance was set at p<0.05. All immunoassays were significantly correlated p<0.001.

Figure S10: NIBSC external reference serology standards and known respiratory virus serology samples.

The scorecard score 0-10 was annotated on test cassette beneath sample ID when agreed by three independent experienced researchers. All LFIAs had a visible control line.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1: Summary specifications for SARS-CoV-2 immunoassays

investigated.

8									· · · · · · · · · · · · · · · · · · ·
9 10nmunoassay 11	Principle	Antigen Target	Assay Time (min)	Antibody Detected	Measurement	Result	Calibration	Evaluation of results	Results
12 13 14 Fyrolmmun FJISA 17 18	Enzyme-linked immunosorbent assay (enzyme-HRP)	S1 domain of the spike protein	120	lgG	Photometric measurement of the color intensity using wavelength of 450 nm and a reference wavelength between 620 nm and 650 nm	OD (Optical density)	One Positive calibrator	OD of clinical sample/OD of calibrator	< 0.8 Negative, ≥ 0.8 to <1.1 Borderline, ≥ 1.1 Positive
20 21 22 23 24 25 26 27 26 27 26 27 26 27 29 30 31 32 33 34 35	Electro- chemiluminescence	Nucleocapsid	18	IgG, IgA and IgM	Application of a voltage to the electrode then induces chemiluminescent emission which is measured by a photomultiplier	RLU (Relative Light Intensity)	One Positive calibrator and one Negative calibrator	The analyzer automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non- reactive as well as in the form of a cut-off index (COI; signal sample/cut- off).	< 1.0 Negative, ≥ 1.0 Positive
36 37 38 36bbott 4rchitect 45 42 43 44 45	Chemiluminescent microparticle immunoassay	Nucleocapsid	30	lgG	The resulting chemiluminescent reaction is measured as a relative light unit (RLU).	RLU (Relative Light Intensity)	One Positive calibrator	Results are reported by dividing the sample result by the calibrator result (mean of 3 calibrators). The default result unit for the SARS-CoV-2 IgG assay is Index (S/C).	< 1.4 Negative, ≥ 1.4 Positive
46 47 48 4 973 AbC-19 50 51 52 53	Rapid Point of Care Lateral Flow Immunoassay	Full length Spike protein	20	lgG	The colour intensity of the test line is analysed using the reference score card.	Binary	The presence of a control line indicates the test is valid.	A result is positive if there is both a test line and a control line, whilst a result is negative if only the control line is present.	Using the reference score card; Positive scores ≥1 Negative scores=0

Table S2: Pandemic participant laboratory-based SARS-CoV-2 antibody result.

Breakdown of individual immunoassay results or result by one or more test.

Test	Positive (%)	Borderline (%)	Negative (%)
Abbott	310/657 (47.2%)	n/a	347/657 (62.8%)
Eurolmmun	346/657 (52.7%)	20/657 (3.2%)	291/657 (44.4%)
Roche	380/657 (57.8%)	n/a	277/657 (42.2%)
One or more test	385/657 (58.6%)	3/657 (0.45%)	269/657 (40.9%)

Table S3: Positive RT-PCR samples sensitivity analysis on the AbC-19 LFIA.

RT-PCR Positive	True Positive	False Negative	Sensitivity % (95 Cl)
227	209	18	92.07% (87.76%- 95.23%)
Negative by EI, R and A	Negative by El, R and A	Negative by El, R and A	

Table S4: Analytical specificity analysis on the AbC-19 LFIA LFIAs were assessed using 34 serum samples with known other respiratory viruses, negative results for all suggests analytical specificity for SARS_CoV_2 IgG.

SAMPLE	Number of samples	Number of AbC- 19 Positive results	Number of AbC- 19 Negative results
H5N1 Influenza (NIBSC 7/150)	1	0	1
RSV (NIBSC 16/284)	1	0	1
Influenza B (NIBSC 9/222)	1	0	1
Bordetella Pertussis (NIBSC 89/530)	1	0	1
Influenza A	5	0	5

Influenza B	5	0	5
Respiratory syncytial virus	5	0	5
Haemophilus Influenzae	5	0	5
Seasonal coronavirus NL63	5	0	5
Seasonal coronavirus 229E	5	0	5

Table S5: AbC-19 LFIA results with NIBSC external reference samples

NIBSC standard serology samples were provided with a data sheet indicating the SARS-CoV-2 antibody levels. We measured SARS-CoV-2 antibody levels in these samples and obtained similar results with the EuroImmun IgG ELISA in our laboratory.

NIBSC	AbC-19 LFIA result	Ulster University lab result	NIBSC provided antibody data				
#		Eurolmmun IgG (S1 domain)	Eurolmmun IgG (S1 domain)	Eurolmmun IgA	In- house IgG S1	In- house IgG N	In- house IgG sSpike
20/120	pos (10)	pos (8.39)	pos (8.59)	pos (10.1)	5580	3417	2693
20/122	pos (7)	pos (3.49)	pos (3.47)	pos (1.1)	3202	2425	1488
20/124	pos (1)	pos (1.56)	pos (1.62)	pos (1.84)	1636	3296	118
20/126	pos (1)	neg (0.60)	neg (0.64)	pos (1.63)	1181	995	8
20/128	neg (0)	neg (0.23)	neg (0.21)	neg (0.02)	<50	<50	<50
20/130	pos (8)	pos (6.96)	pos (7.77)	pos (9.74)	5388	17197	2707

Supplementary Methods

Laboratory-based immunoassays

Researchers were blinded to other test results when processing these assays.

EuroImmun Anti-SARS-CoV-2 ELISA-IgG (EuroImmun, El 2606-9601 G) was carried out according to manufacturer's instructions. Optical density (OD) at 450nm and reference OD at 620nm was read on BMG Labtech Fluostar Omega spectrophotometer (BMG Labtech). Ratios were calculated by dividing absorbance of the clinical sample by the absorbance of EuroImmun calibrator, with a score of < 0.8 determined negative, \geq 0.8 to <1.1 borderline and \geq 1.1 positive. For samples provided by NIBTS, EuroImmun IgG assay data was provided to researchers.

Roche Elecsys immunoassay (Roche Diagnostics, kit 09203079190) was carried out according to manufacturer's instructions on the Roche cobas e601 (C6000 line) or e801 (C8000 line) analysers. The analyser automatically calculates the cut-off based on the measurement of ACOV2 Cal1 (negative) and ACOV2 Cal2 (positive). The result of a sample is given either as reactive or non-reactive as well as in the form of a cut-off index (COI; signal sample/cut-off). A score of <1.0 is determined negative, while a score \geq 1.0 is positive.

Abbott Architect SARS-CoV-2 immunoassay was carried out according to manufacturer's instructions on the Abbott Architect i2000SR analyser (Abbott, kit 18115FN00, calibrator kit 17412FN00, Control kit 17531FN00). The external control is entered into a Quality Monitor programme and must be within 3 standard deviations of the mean (cumulative; External control NIBSC QCRSARSCoV-2QC1 Lot

BMJ Open

20/B764-01). Results are reported by dividing the sample result by the calibrator result. The result unit for the SARS-CoV-2 IgG assay is Index (Sample/Calibrator). A ratio of < 1.4 is determined negative and \geq 1.4 is determined positive.

Analytical specificity and sensitivity assessment

Four virology samples (H5N1 influenza serology 7/150, RSV serology 16/284, Influenza B 9/222 and Bordetella Pertusis 89/530) were obtained from NIBSC (National Institute for Biological Standards, Herts, UK). An additional 30 serology samples from known virus infections were a kind gift from SugenTech, Soeul, Korea. 15 of these virology samples were obtained from Trina (Trina Bioreactives AG, Switzerland) from 5 different individuals per virus (Influenza A IgG, Influenza B IgG and RSV IgG). A further 15 of these virology samples were obtained from AbBaltris, Kent from 5 different individuals per virus (Haemophilus Influenza IgG, Seasonal Coronavirus NL63 and 229E Seasonal Coronavirus). All these serology samples alongside a panel of 6 external standard research reagents (Table S4; NIBSC; Cat: 20/118 and 20/130) were assessed on the TT3 AbC-19 LFIA to confirm analytical specificity and sensitivity.

Page 53 of 52

Section & Topic	No	Item	#
TITLE OR ABSTRACT	1		
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	2
	-	(such as sensitivity, specificity, predictive values, or AUC)	-
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	2
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	4-5
	4	Study objectives and hypotheses	5-6
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	6-7
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	7
	7	On what basis potentially eligible participants were identified	6/7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	6/7
	9	Whether participants formed a consecutive, random or convenience series	6
Test methods	10a	Index test, in sufficient detail to allow replication	8
	10b	Reference standard, in sufficient detail to allow replication	8
	11	Rationale for choosing the reference standard (if alternatives exist)	5-6
	12a	Definition of and rationale for test positivity cut-offs or result categories	8, supp table 1
		of the index test, distinguishing pre-specified from exploratory	<u></u>
	12b	Definition of and rationale for test positivity cut-offs or result categories	Supp methods,
	40-	of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	Supp methods
	126	Whather slinical information and index test results were available	0
	120	to the assessors of the reference standard	0
Δnalvsis	14	Methods for estimating or comparing measures of diagnostic accuracy	8/9
niuiysis	15	How indeterminate index test or reference standard results were handled	11 Sunn Fig1
	16	How missing data on the index test and reference standard were handled	Sunn Fig 1
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	12-14
	/ 18	Intended sample size and how it was determined	8-9
RESULTS			0,9
Particinants	19	Flow of participants using a diagram	Sunn Fig 1
	20	Baseline demographic and clinical characteristics of participants	10
	 21a	Distribution of severity of disease in those with the target condition	10
	21b	Distribution of alternative diagnoses in those without the target condition	10
	22	Time interval and any clinical interventions between index test and reference standard	6-7
Test results	23	Cross tabulation of the index test results (or their distribution)	Fig 3, Fig S3, S5-
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	12-13, Table 1
	25	Any adverse events from performing the index test or the reference standard	n/a
DISCUSSION			
-	26	Study limitations, including sources of potential bias, statistical uncertainty, and	4, 18-20
		generalisability	
	27	Implications for practice, including the intended use and clinical role of the index test	19-20
OTHER			
INFORMATION			
	28	Registration number and name of registry	N/a
	29	Where the full study protocol can be accessed	Ethics approval
			documents

	30 Sources of funding and other support; role of funders	22
)		
1		
2		
4		
5		
6 7		
8		
9 0		
1		
2		
4		
5		
7		
8		
9 0		
1		
2 3		
4		
5		
7		
8		
0		
1		
3		
4		
5		
7		
3		
0		
1		
3		
4		
6		
7		
o 9		

