Three paralogous clusters of miR-17~92 family microRNAs restrain IL-12mediated immune defense

Xiang Zhang^{1,2,3}, Sinead M. Smith⁴, Xi Wang⁵, Baohong Zhao^{6,7}, Li Wu^{1,2,3}, and Xiaoyu Hu^{1,2,3,*}

Supplementary Figure 1

The miR-17~92 family miRNAs are efficiently deleted in TKO BMDMs.

qPCR analysis of various mature miRNAs (horizontal axes) in *Lyz2*-Cre and *miR-106a~363^{-/-} miR-106b~25^{-/-} miR-17~92*^{flox/flox} *Lyz2*-Cre (TKO) BMDMs; results are presented as relative expression normalized to the control small RNA U6. Data are representative of two independent experiments. Data are presented as mean + SD.

Supplementary Figure 2

The miR-17~92 family miRNA deficient mice exhibit normal macrophage populations.

FACS analysis of macrophage populations in the spleen of *Lyz2*-Cre and TKO mice under homeostatic conditions. Results of one representative experiment out of two performed are shown.

Supplementary Figure 3

miR-17~92 family miRNAs do not regulate *Il12a* and *Il12b* expression under homeostatic condition in macrophages.

RNA-seq analysis showing RNA expression in TKO BMDMs versus those in *Lyz2*-Cre cells without stimulation. RNAs up-regulated in TKO BMDMs were colored red, whereas RNAs down-regulated were colored blue.

Supplementary Figure 4

miR-17~92 family miRNA deficiency does not alter cell populations in *Listeria monocytogenes* infected mice.

FACS analysis of CD4⁺ and CD8⁺ T cells (A), monocytes and neutrophils (B), and macrophages (C) in the spleen of *Lyz2*-Cre and TKO mice infected with 5×10^4 *L. monocytogenes* for 6 days. FACS plots from one representative experiment is shown on the left panels and percentages of each cell population from 9 mice are quantified as mean values in the right panels. Data are pooled from two independent experiments (n = 9 mice per group).

Statistical significance was calculated using Unpaired Student's *t*-test (NS, not significant, P > 0.05).

Supplementary Figure 5

miR-17~92 family miRNA deficiency promotes IFN γ **production in CD4**⁺ **and CD8**⁺ **T cells.** FACS analysis of IFN γ producing CD4⁺ (A) and CD8⁺ (B) T cells in the spleen of *Lyz2*-Cre and TKO mice infected with 5×10⁴ *L. monocytogenes* for 8 days. Results of one representative experiment out of two performed are shown.

miR-17~92 family miRNA deficiency does not alter activation of canonical NF-KB and MAPK signaling pathways.

Immunoblotting analysis of phosphorylated p65, phosphorylated and total Erk, phosphorylated and total p38 in whole-cell lysates of *Lyz2*-Cre and TKO BMDMs treated for the indicated periods with LPS. Data are representative of three independent experiments.

Supplementary Figure 7

PTEN expression is efficiently knocked down by RNA interference.

(A) *Lyz2*-Cre and TKO BMDMs were transfected with control non-targeting or PTEN specific siRNA. 72 h post transfection, cells were stimulated with LPS for 3 h and *Pten* mRNA levels were assessed by qPCR. Results are presented as relative expression normalized to *Gapdh* mRNA.

(B) Immunoblotting analysis of PTEN and p38 (loading control) in whole-cell lysates of TKO BMDMs transfected with siRNAs and stimulated with LPS as in (A). Data are representative of three independent experiments.

Data are presented as mean + SD.

Supplementary	7 Table	1. Primers	used in	this study.
---------------	---------	------------	---------	-------------

Gene	Forward Primer (5'>3')	Reverse Primer (5'>3')			
	Primer sequences for regular qPCR				
Il12a	ACGGGACCAAACCAGCACATT	AAGGCACAGGGTCATCATCAAAGA			
Il12b	AGCACTCCCCATTCCTACTTCTCC	CACCCCTCCTCTGTCTCCTTCAT			
Pten	CATGACAGCCATCATCAAAGA	TCTGCAGGAAATCCCATAGC			
Gapdh	ATCAAGAAGGTGGTGAAGCA	AGACAACCTGGTCCTCAGTGT			
	Primer sequences for small RNA qPCR				
miR-17	CAAAGUGCUUACAGUGCAGGUAGU				
miR-20a	UAAAGUGCUUAUAGUGCAGGUAG				
miR-20b	CAAAGUGCUCAUAGUGCAGGUA				
miR-106a	CAAAGUGCUAACAGUGCAGGUA				
miR-106b	UAAAGUGCUGACAGUGCAGAU				
miR-93	CAAAGUGCUGUUCGUGCAGGUAG				
miR-18a	UAAGGUGCAUCUAGUGCAGAUA				
miR-18b	UAAGGUGCAUCUAGUGCAGUUA				
miR-19a	UGUGCAAAUCUAUGCAAAACUGA				
miR-19b	UGUGCAAAUCCAUGCAAAACUGA				
miR-92	UAUUGCACUUGUCCCGGCCUG				
miR-25	CAUUGCACUUGUCUCGGUCUGA				
miR-363	AAUUGCACGGUAUCCAUCUGUAA				
<i>U6</i>	TGGCCCCTGCGCAAGGATG				
Universal reverse		GCGAGCACAGAATTAATACGACTCAC			
primer					