Supporting Information for

Original artical

Extensive expanding the chemical diversity of fusidane-type antibiotics using a stochastic combinational strategy

Xiaojun Song^{a,†}, Jianming Lv^{b,†}, Zhiqin Cao^b, Huiyun Huang^b, Guodong Chen^b, Takayoshi Awakawa^c, Dan Hu^{b,*}, Hao Gao^{a,b,*}, Ikuro Abe^{c,*}, Xinsheng Yao^{a,b,*}

^aCollege of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China

^bInstitute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China ^cGraduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

[†]These authors made equal contributions to this work.

*Corresponding authors. Tel./fax: +86 20 8522 1559.

E-mail addresses: tyaoxs@jnu.edu.cn (Xinsheng Yao), abei@mol.f.u-tokyo.ac.jp (Ikuro Abe), tghao@jnu.edu.cn (Hao Gao), thudan@jnu.edu.cn (Dan Hu).

Received 23 September 2020; received in revised form 11 November 2020; accepted 4 December 2020

Table of contents

Supporting Methods	6
Supporting Figures	21
Figure S1 HPLC analysis of metabolites from A. oryzae transformants	21
Figure S2 Fusidane-type antibiotics produced via the stochastic combinational strategy	24
Figure S3 HRESIMS and NMR spectra of 5.	27
Figure S4 HRESIMS and NMR spectra of 6.	31
Figure S5 HRESIMS and NMR spectra of 9.	34
Figure S6 HRESIMS and NMR spectra of 10.	37
Figure S7 HRESIMS and NMR spectra of 11	40
Figure S8 HRESIMS and NMR spectra of 12.	43
Figure S9 HRESIMS and NMR spectra of 13.	46
Figure S10 HRESIMS and NMR spectra of 14.	49
Figure S11 HRESIMS and NMR spectra of 15.	52
Figure S12 HRESIMS and NMR spectra of 17.	55
Figure S13 HRESIMS and NMR spectra of 18.	58

Figure S14 HRESIMS and NMR spectra of 19.	61
Figure S15 HRESIMS and NMR spectra of 20.	64
Figure S16 HRESIMS and NMR spectra of 21.	67
Figure S17 HRESIMS and NMR spectra of 22.	70
Figure S18 HRESIMS and NMR spectra of 23.	73
Figure S19 HRESIMS and NMR spectra of 24.	76
Figure S20 HRESIMS and NMR spectra of 25.	79
Figure S21 HRESIMS and NMR spectra of 26.	82
Figure S22 HRESIMS and NMR spectra of 29.	85
Figure S23 HRESIMS and NMR spectra of 30 .	88
Figure S24 HRESIMS and NMR spectra of 31 .	91
Figure S25 HRESIMS and NMR spectra of 32 .	94
Figure S26 HRESIMS and NMR spectra of 33.	97
Figure S27 HRESIMS and NMR spectra of 34.	.100
Figure S28 HRESIMS and NMR spectra of 35.	.103
Figure S29 HRESIMS and NMR spectra of 36.	.106
Figure S30 HRESIMS and NMR spectra of 37 .	. 109
Figure S31 HRESIMS and NMR spectra of 38.	. 112
Figure S32 HRESIMS and NMR spectra of 39 .	. 115
Figure S33 HRESIMS and NMR spectra of 40.	. 118
Figure S34 HRESIMS and NMR spectra of 41.	.121
Figure S35 HRESIMS and NMR spectra of 42.	.124
Figure S36 HRESIMS and NMR spectra of 43.	.127
Figure S37 HRESIMS and NMR spectra of 44.	.130
Figure S38 HRESIMS and NMR spectra of 45.	.133
Figure S39 HRESIMS and NMR spectra of 46.	.136
Figure S40 HRESIMS and NMR spectra of 47.	. 139
Figure S41 HRESIMS and NMR spectra of 48.	.142
Figure S42 HRESIMS and NMR spectra of 49.	.145
Figure S43 HRESIMS and NMR spectra of 50.	.148
Figure S44 HRESIMS and NMR spectra of 51.	.151
Figure S45 HRESIMS and NMR spectra of 52.	.154
Figure S46 HRESIMS and NMR spectra of 55.	.157
Figure S47 HRESIMS and NMR spectra of 56.	.160
Figure S48 HRESIMS and NMR spectra of 57.	.163
Figure S49 HRESIMS and NMR spectra of 58.	.166
Figure S50 HRESIMS and NMR spectra of 59 .	.169
Figure S51 HRESIMS and NMR spectra of 60.	.172
Figure S52 HRESIMS and NMR spectra of 61.	.175
Figure S53 HRESIMS and NMR spectra of 62.	.178
Figure S54 HRESIMS and NMR spectra of 63.	.182
Figure S55 HRESIMS and NMR spectra of 64.	.185
Figure S56 HRESIMS and NMR spectra of 65.	.188
Figure S57 HRESIMS and NMR spectra of 66 .	.191

Figure S58 HRESIMS and NMR spectra of 67.	194
Figure S59 HRESIMS and NMR spectra of 68.	197
Figure S60 HRESIMS and NMR spectra of 69.	200
Figure S61 HRESIMS and NMR spectra of 81.	203
Figure S62 Linear correlation between calculated ¹³ C NMR chemical shift values of	
34-A/34-B and experimental values of 34.	204
Figure S63 Linear correlation between calculated ¹³ C NMR chemical shift values of	
35-A/35-B and experimental values of 35.	205
Figure S64 Linear correlation between calculated ¹³ C NMR chemical shift values of	
38-A/38-B and experimental values of 38 .	206
Figure S65 Linear correlation between calculated ¹³ C NMR chemical shift values of	
42-A/42-B and experimental values of 42.	207
Figure S66 HPLC analysis for spontaneous 1,4-addition of 37 in Tri-HCl buffer	208
Figure S67 Previously isolated fusidane-type antibiotics during the biosynthetic study of	f
helvolic acid, fusidic acid and cephalosporin P ₁	209
Figure S68 Comparison of anti-S. aureus 209P activity of fusidane-type antibiotics feature	ıred
with 3-keto and 3β -OH.	210
Figure S69 Comparison of anti-S. aureus 209P activity of fusidane-type antibiotics feature	ıred
with 3-keto and 3α -OH.	211
Figure S70 The effect of the C1/C2 double bond on anti-S. aureus 209P activity	212
Figure S71 The detrimental effect of mono-oxidation at C6 or C7 on anti-S. aureus 2091	2
activity	213
Figure S72 The effect of dual-oxidation at C6 and C7 on anti-S. aureus 209P activity	214
Figure S73 The effect of C11a-hydroxylation on anti-S. aureus 209P activity	215
Figure S74 The effect of acetylation of 6-OH on anti-S. aureus 209P activity	216
Figure S75 C1α-hydroxylation has the negative effect on anti-S. aureus 209P activity	217
Figure S76 Analysis of the impurity peak in the feeding experiment using CO6 as the ho	ost.
	218
Supporting Tables	219
Table S1 Eight post-tailoring genes from <i>hel</i> , <i>fus</i> and <i>cep</i> clusters	219
Table S2 All gene combinations and the obtained products	220
Table S3 NMR data for 5 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	221
Table S4 NMR data for 6 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	222
Table S5 NMR data for 9 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	223
Table S6 NMR data for 10 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	224
Table S7 NMR data for 11 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	225
Table S8 NMR data for 12 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	226
Table S9 NMR data for 13 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	227
Table S10 NMR data for 14 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	228
Table S11 NMR data for 15 (¹ H for 400 MHz and ¹³ C for 100 MHz in CDCl ₃)	229
Table S12 NMR data for 17 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	230
Table S13 NMR data for 18 (¹ H for 600 MHz and ¹³ C for 150 MHz in CD ₃ OD)	231
Table S14 NMR data for 19 (¹ H for 600 MHz and ¹³ C for 150 MHz in CD ₃ OD)	232
Table S15 NMR data for 20 (¹ H for 600 MHz and ¹³ C for 150 MHz in CD ₃ OD)	233

Table S16 NMR data for **21** (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......234 Table S17 NMR data for 22 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......235 Table S18 NMR data for 23 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃)......236 Table S19 NMR data for 24 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......237 Table S20 NMR data for 25 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......238 Table S21 NMR data for 26 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃)......239 Table S22 NMR data for 29 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......240 Table S23 NMR data for **30** (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......241 Table S24 NMR data for **31** (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......242 Table S25 NMR data for **32** (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......243 Table S26 NMR data for 33 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......244 Table S27 NMR data for 34 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......245 Table S28 NMR data for 35 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......246 Table S29 NMR data for **36** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......247 Table S30 NMR data for **37** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......248 Table S31 NMR data for **38** (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD)......249 Table S32 NMR data for **39** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......250 Table S33 NMR data for **40** (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD)......251 Table S34 NMR data for **41** (1 H for 400 MHz and 13 C for 100 MHz in CD₃OD)......252 Table S35 NMR data for **42** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......253 Table S36 NMR data for 43 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).....254 Table S37 NMR data for 44 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).....255 Table S38 NMR data for 45 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......256 Table S39 NMR data for 46 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃)......257 Table S40 NMR data for 47 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......258 Table S41 NMR data for 48 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......259 Table S42 NMR data for **49** (1 H for 600 MHz and 13 C for 150 MHz in CD₃OD)......260 Table S43 NMR data for 50 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).....261 Table S44 NMR data for **51** (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃)......262 Table S45 NMR data for **52** (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD)......263 Table S46 NMR data for **55** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......264 Table S47 NMR data for 56 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......265 Table S48 NMR data for 57 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......266 Table S49 NMR data for 58 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD)......267 Table S50 NMR data for **59** (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD)......268 Table S51 NMR data for **60** (1 H for 600 MHz and 13 C for 150 MHz in CDCl₃).....269 Table S52 NMR data for **61** (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).....270 Table S53 NMR data for **62** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).....271 Table S55 NMR data for **64** (1 H for 600 MHz and 13 C for 150 MHz in CD₃OD).....273 Table S56 NMR data for **65** (¹H for 600 MHz and 13 C for 150 MHz in CD₃OD).....274 Table S57 NMR data for **66** (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD)......275 Table S59 NMR data for **68** (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD)......277

Table S60 NMR data for 69 (¹ H for 600 MHz and ¹³ C for 150 MHz in CD ₃ OD)	.278
Table S61 NMR data for 81 (¹ H for 600 MHz and ¹³ C for 150 MHz in CDCl ₃)	.279
Table S62 The Boltzmann distribution for two possible structures (34-A and 34-B) of 34.	.280
Table S63 The Boltzmann distribution for two possible structures (35-A and 35-B) of 35 .	.280
Table S64 The Boltzmann distribution for two possible structures (38-A and 38-B) of 38 .	.281
Table S65 The Boltzmann distribution for two possible structures (42-A and 42-B) of 42.	.281
Table S66 Comparison of the chemical shifts of compounds 38 and 40	
Table S67 R square (R ²) of the linear correlations, mean absolute error (MAE) values and	1
DP4+ probabilities of 34-A/34-B and 42-A/42-B of 34 and 42 , respectively	.283
Table S68 R square (R ²) of the linear correlations, mean absolute error (MAE) values and	1
DP4+ probabilities of 35-A/35-B and 38-A/38-B of 35 and 38 , respectively	.284
Table S69 Comparison of the coupling constants of compounds containing C1-C2 double	3
bond and C3-hydroxyl group	.285
Table S71 Plasmids used in the study	.286
Table S72 Strains used in the study	.287

Supporting Methods

Detailed purification procedure of compounds

Purification of 5

The culture medium extract (1.0 g) from the 5 L culture of AOS1 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 80:20 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (70% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **5** (43.5 mg).

Purification of **6**

The culture medium extract (0.31 g) from the 2 L culture of AOS2 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 80:20 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (80% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **6** (4.3 mg).

Purification of 9–11

The culture medium extract (0.41 g) from the 2 L culture of AOS3 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (90% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **9** (2.1 mg), **10** (1.2 mg) and **11** (5.0 mg).

Purification of 12–15

The culture medium extract (0.6 g) from the 3.5 L culture of AOS4 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 60:40 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (55% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **12** (27.5 mg), **13** (3.6 mg), **14** (8.1 mg) and **15** (15.3 mg).

Purification of 17–22

The culture medium extract (1.03 g) from the 5 L culture of AOS5 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (30:70, 60:40 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (45% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **17** (28.0 mg), **18** (17 mg), **19** (7.0 mg), **20** (98.0 mg), **21** (20.0 mg) and **22** (10.0 mg).

Purification of 23–25

The culture medium extract (0.52 g) from the 2.5 L culture of AOS6 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:75, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative

HPLC (70% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **23** (47.0 mg), **24** (4.0 mg) and **25** (1.5 mg).

Purification of 26

The culture medium extract (0.8 g) from the 3 L culture of AOS7 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (70% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **26** (47.0 mg).

Purification of 29

The culture medium extract (0.55 g) from the 3 L culture of AOS8 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (40:60, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (70% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **29** (14.0 mg).

Purification of **30–34**

The culture medium extract (0.67 g) from 4 L culture of AOS9 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (40:60, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (80% MeOH–H₂O containing 0.1% formic acid, 3 mL/min) to yield **30** (1.8 mg), **31** (12.0 mg), **32** (2.0 mg), **33** (5.0 mg) and **34** (6.4 mg).

Purification of 35–40

The culture medium extract (1.05 g) from the 5 L culture of AOS10 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (40:60, 60:40, 70:30 and 100:0, v/v). Fractions 2 and 3 were further purified by reverse-phase semi-preparative HPLC (42% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **35** (3.1 mg), **36** (7.7 mg), **37** (7.0 mg), **38** (3.0 mg), **39** (1.4 mg) and **40** (25.0 mg).

Purification of 41-43

The culture medium extract (0.83 g) from the 4 L culture of AOS11 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 50:50, 70:30 and 100:0, v/v). Fraction 3 was further purified by reverse-phase semi-preparative HPLC (60% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **41** (2.0 mg), **42** (1.1 mg) and **43** (3.0 mg).

Purification of 44–46

The culture medium extract (0.93 g) from 4 L culture of AOS12 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 55:45, 70:30 and 100:0, v/v). Fraction 3 was further purified by reverse-phase

semi-preparative HPLC (60% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield 44 (3.0 mg), 45 (1.1 mg) and 46 (5.0 mg).

Purification of 47-49

The culture medium extract (0.82 g) from the 3.5 L culture of AOS13 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (37% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **47** (12.0 mg), **48** (38.0 mg) and **49** (11.0 mg).

Purification of **50–52**

The culture medium extract (0.91 g) from the 5 L culture of AOS14 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (45:55, 55:45, 65:35, 75:25 and 100:0, v/v). Fractions 3 and 4 were further purified by reverse-phase semi-preparative HPLC (42% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **50** (6.3 mg), **51** (10.4 mg) and **52** (3.5 mg).

Purification of 55–57

The culture medium extract (0.88 g) from the 5 L culture of AOS15 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (40:60, 60:40, 70:30 and 100:0, v/v). Fraction 3 was further purified by reverse-phase semi-preparative HPLC (40% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **55** (15.3 mg), **56** (13.0 mg) and **57** (6.3 mg).

Purification of 58 and 59

The culture medium extract (0.83 g) from the 5 L culture of AOS16 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (50:50, 60:40, 70:30 and 100:0, v/v). Fractions 2 and 3 were further purified by reverse-phase semi-preparative HPLC (50% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **58** (33.5 mg) and **59** (7.5 mg).

Purification of 60

The culture medium extract (1.0 g) from the 5 L culture of AOS17 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (50:50, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (60% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **60** (80.0 mg).

Purification of 61

The culture medium extract (1.1 g) from the 5 L culture of AOS18 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65,

50:50, 70:30 and 100:0, v/v). Fraction 3 was further purified by reverse-phase semi-preparative HPLC (75% CH₃CN-H₂O containing 0.1% formic acid, 3 mL/min) to yield **61** (35.0 mg).

Purification of 37, 38 and 62

The culture medium extract (1.04 g) from the 4 L culture of AOS19 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (35:65, 50:50, 60:40, 70:30 and 100:0, v/v). Fraction 3 was further purified by reverse-phase semi-preparative HPLC (40% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **37** (7.0 mg), **38** (3.0 mg) and **62** (1.2 mg).

Purification of 63

The culture medium extract (1.04 g) from the 4 L culture of AOS20 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (50:50, 60:40, 70:30, 80:20 and 100:0, v/v). Fraction 4 was further purified by reverse-phase semi-preparative HPLC (60% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **63** (6.0 mg).

Purification of 64-66

The culture medium extract (1.2 g) from the 10 L culture of AOS23 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (50:50, 60:40, 70:30 and 100:0, v/v). Fraction 3 was further purified by reverse-phase semi-preparative HPLC (60% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **64** (3.4 mg), **65** (3.8 mg) and **66** (10.0 mg).

Purification of 67

The culture medium extract (0.89 g) from the 5 L culture of AOS24 was subjected to ODS column chromatography on MPLC and eluted stepwise using MeOH–H₂O gradient (50:50, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (45% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **67** (10.0 mg).

Purification of 68 and 69

The culture medium extract (1.03 g) from 5 L culture of AOS26 was subjected to MPLC on ODS column chromatography and eluted stepwise using MeOH–H₂O gradient (50:50, 70:30 and 100:0, v/v). Fraction 2 was further purified by reverse-phase semi-preparative HPLC (45% CH₃CN–H₂O containing 0.1% formic acid, 3 mL/min) to yield **68** (10.0 mg) and **69** (1.2 mg). *Structural characterization*

Compound 5: white powder; $[\alpha]_{D}^{27}$ +7.80 (*c* 5.67, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 206 nm (4.09); IR (KBr) v_{max} 3437, 2971, 2949, 2871, 1716, 1666, 1440, 1374, 1254, 1019 cm⁻¹;

HRESIMS (positive) m/z 513.3212 [M + H]⁺ (Calcd. for C₃₁H₄₅O₆, 513.3216), see Fig. S3A; NMR spectra, see Fig. S3B–H; NMR data, see Table S3; **5** is identified as 16 β -acetyloxy-11 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid.

Compound **6**: white powder; $[\alpha]_{D}^{22}$ +54.9 (*c* 0.59, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.78); IR (KBr) ν_{max} 3370, 3026, 2970, 2923, 2866, 1711, 1453, 1379, 1265, 1106 cm⁻¹. HRESIMS (positive) *m/z* 439.3209 [M + H – CH₃COOH]⁺ (Calcd. for C₂₉H₄₃O₃, 439.3212), see Fig. S4A; NMR spectra, see Fig. S4B–H; NMR data, see Table S4; **6** is identified as 16 β -acetyloxy-3 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-21-oic acid.

Compound **9**: white powder, $[\alpha]_{D}^{26}$ +56.3 (*c* 0.77, CH₂Cl₂); UV (CH₃OH) λ_{max} (log ε) 205 nm (4.32); IR (KBr) ν_{max} 3503, 2955, 2921, 2852, 1716, 1672, 1554, 1542, 1456, 1374, 1252, 1030 cm⁻¹; HRESIMS (positive) *m/z* 551.2975 [M + Na]⁺ (Calcd. for C₃₁H₄₄O₇Na, 551.2985), see Fig. S5A; NMR spectra, see Fig. S5B–H; NMR data, see Table S5; **9** is identified as 16 β -acetyloxy-6 α ,7 β -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid.

Compound **10**: white powder; $[\alpha]_{D}^{26}$ +42.6 (*c* 0.47, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.75); IR (KBr) v_{max} 3446, 2921, 2853, 1719, 1671, 1454, 1375, 1250, 1028 cm⁻¹; HRESIMS (positive) *m*/*z* 513.3224 [M + H]⁺ (Calcd. for C₃₁H₄₅O₆, 513.3216), see Fig. S6A; NMR spectra, see Fig. S6B–H; NMR data, see Table S6; **10** is identified as 16 β -acetyloxy-6 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid.

Compound **11**: white powder; $[\alpha]_{D}^{26}$ +31.0 (*c* 0.98, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.44); IR (KBr) ν_{max} 3423, 2973, 2938, 2876, 1715, 1669, 1453, 1376, 1254, 1141, 1028 cm⁻¹; HRESIMS (positive) *m*/*z* 513.3211 [M + H]⁺ (Calcd. for C₃₁H₄₅O₆, 513.3216), see Fig. S7A; NMR spectra, see Fig. S7B–H; NMR data, see Table S7; **11** is identified as 16 β -acetyloxy-7 β -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid.

Compound **12**: white powder; $[\alpha]_{D}^{22}$ +56.3 (*c* 1.82, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (3.89); IR (KBr) ν_{max} 3484, 2968, 2941, 2886, 1711, 1454, 1379, 1263, 1182, 1153, 1106, 1031 cm⁻¹; HRESIMS (positive) *m/z* 569.3099 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₈Na, 569.3090), see Fig. S8A; NMR spectra, see Fig. S8B–H; NMR data, see Table S8; **12** is identified as 16 β -acetyloxy-6 α ,7 β ,11 α -trihydroxy-29-norprotosta-17(20)*Z*,24-dien-3-one-21-oic acid.

Compound **13**: white powder; $[\alpha]_D^{23}$ +15.7 (*c* 0.54, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.91); IR (KBr) ν_{max} 3450, 2940, 2876, 1714, 1551, 1447, 1378, 1263, 1184, 1151, 1026 cm⁻¹; HRESIMS (positive) *m/z* 555.3290 [M + Na]⁺ (Calcd. for C₃₁H₄₈O₇Na, 555.3298), see Fig. S9A; NMR spectra, see Fig. S9B–H; NMR data, see Table S9; **13** is identified as

 16β -acetyloxy- 3β , 7β , 11α -trihydroxy-29-norprotosta-17(20)Z,24-dien-21-oic acid.

Compound **14**: white powder; $[\alpha]_{D}^{23}$ +48.6 (*c* 0.37, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (3.97); IR (KBr) v_{max} 3441, 2970, 2939, 2883, 1703, 1649, 1383, 1261, 1019 cm⁻¹; HRESIMS (positive) *m/z* 553.3136 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₇Na, 553.3141), see Fig. S10A; NMR spectra, see Fig. S10B–H; NMR data, see Table S10; **14** is identified as 16 β -acetyloxy-6 α ,11 α -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-3-one-21-oic acid.

Compound **15**: white powder; $[\alpha]_D^{23}$ +22.4 (*c* 0.62, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.88); IR (KBr) ν_{max} 3500, 2966, 2941, 2880, 1703, 1557, 1452, 1378, 1262, 1194, 1150, 1105, 1031 cm⁻¹; HRESIMS (positive) *m/z* 553.3130 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₇Na, 553.3141), see Fig. S11A; NMR spectra, see Fig. S11B–H; NMR data, see Table S11; **15** is identified as 16 β -acetyloxy-7 β ,11 α -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-3-one-21-oic acid.

Compound 17: white powder; $[\alpha]_{D}^{24}$ –38.5 (*c* 0.55, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.90); IR (KBr) ν_{max} 3444, 2980, 2936, 2871, 1712, 1650, 1454, 1440, 1377, 1263, 1182, 1153, 1101, 1033 cm⁻¹; HRESIMS (positive) *m/z* 569.3085 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₈Na, 569.3090), see Fig. S12A; NMR spectra, see Fig. S12B–H; NMR data, see Table S12; 17 is identified as 16 β -acetyloxy-3 β , 6 β , 11 α -trihydroxy-29-norprotosta-17(20)*Z*, 24-dien-7-one-21-oic acid.

Compound **18**: white powder; $[\alpha]_{D}^{25} -10.4$ (*c* 5.08, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.99); IR (KBr) ν_{max} 3451, 2961, 2934, 2869, 1716, 1444, 1377, 1264, 1175, 1137, 1062, 1038 cm⁻¹; HRESIMS (positive) *m*/*z* 555.3280 [M + Na]⁺ (Calcd. for C₃₁H₄₈O₇Na, 555.3298), see Fig. S13A; NMR spectra, see Fig. S13B–H; NMR data, see Table S13; **18** is identified as 16 β -acetyloxy-3 β ,7 α ,11 α -trihydroxy-29-norprotosta-17(20)*Z*,24-dien-21-oic acid.

Compound 19: white powder; $[\alpha]_{D}^{22}$ –24.3 (*c* 0.45, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.86); IR (KBr) ν_{max} 3439, 2952, 2930, 2871, 1707, 1557, 1438, 1425, 1378, 1266, 1188, 1144, 1078, 1054, 1022 cm⁻¹; HRESIMS (positive) *m/z* 553.3141 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₇Na, 553.3141), see Fig. S14A; NMR spectra, see Fig. S14B–H; NMR data, see Table S14; **19** is identified as

Compound **20**: white powder; $[\alpha]_D^{22}$ –29.1 (*c* 0.40, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (3.96); IR (KBr) ν_{max} 3472, 2973, 1697, 1457, 1375, 1263, 1185, 1048, 1107, 1069, 1035 cm⁻¹; HRESIMS (positive) *m*/*z* 567.2930 [M + Na]⁺ (Calcd. for C₃₁H₄₄O₈Na, 567.2934), see Fig. S15A; NMR spectra, see Fig. S15B–H; NMR data, see Table S15; **20** is identified as

 16β -acetyloxy- 3β , 11α -dihydroxy-29-norprotosta-17(20)Z, 24-dien-7-one-21-oic acid.

 16β -acetyloxy- 6β , 11α -dihydroxy-29-norprotosta-17(20)Z, 24-dien-3, 7-dione-21-oic acid.

Compound **21**: white powder; $[\alpha]_{D}^{22} -12.0$ (*c* 1.37, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 206 nm (3.80); IR (KBr) v_{max} 3502, 2969, 2938, 2886, 1703, 1444, 1378, 1260, 1177, 1147, 1066, 1036, 1010 cm⁻¹; HRESIMS (positive) *m/z* 553.3130 [M + Na]⁺, (Calcd. for C₃₁H₄₆O₇Na, 553.3141), see Fig. S16A; NMR spectra, see Fig. S16B–H; NMR data, see Table S16; **21** is identified as 16 β -acetyloxy-7 α ,11 α -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-3-one-21-oic acid.

Compound **22**: white powder; $[\alpha]_{D}^{28}$ –20.7 (*c* 5.08, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 207 nm (3.93); IR (KBr) ν_{max} 3464, 2972, 1708, 1455, 1378, 1258, 1196, 1147, 1071, 1038 cm⁻¹; HRESIMS (positive) *m/z* 551.2984 [M + Na]⁺, (Calcd. for C₃₁H₄₄O₇Na, 551.2985), see Fig. S17A; NMR spectra, see Fig. S17B–H; NMR data, see Table S17; **22** is identified as 16 β -acetyloxy-11 α -hydroxy-29-norprotosta-17(20)*Z*,24-dien-3,7-dione-21-oic acid.

Compound **23**: white powder; $[\alpha]_{D}^{24}$ -50.5 (*c* 0.60, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (3.83); IR (KBr) ν_{max} 3445, 2975, 2938, 2874, 1714, 1467, 1376, 1259, 1158, 1074, 1030, 1000 cm⁻¹; HRESIMS (positive) *m*/*z* 553.3129 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₇Na, 553.3141), see Fig. S18A; NMR spectra, see Fig. S18B–H; NMR data, see Table S18; **23** is identified as 16 β -acetyloxy-3 α ,6 β -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-7-one-21-oic acid.

Compound **24**: white powder; $[\alpha]_{D}^{26}$ –26.5 (*c* 0.17, CH₂Cl₂); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.52); IR (KBr) ν_{max} 3121, 2951, 2870, 1713, 1447, 1399, 1265, 1140 cm⁻¹; HRESIMS (positive) *m/z* 539.3366 [M + Na]⁺, (Calcd. for C₃₁H₄₈O₆Na, 539.3349), see Fig. S19A; NMR spectra, see Fig. S19B–H; NMR data, see Table S19; **24** is identified as 16 β -acetyloxy-3 α ,7 α -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-21-oic acid.

Compound **25**: white powder; $[\alpha]_{D}^{26}$ -30.8 (*c* 0.50, CH₂Cl₂); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.75); IR (KBr) ν_{max} 3404, 2980, 2963, 2934, 2872, 1741, 1700, 1678,1443, 1376, 1245, 1177, 1145, 1028 cm⁻¹; HRESIMS (positive) *m/z* 537.3196 [M + Na]⁺, (Calcd. for C₃₁H₄₆O₆Na, 537.3192), see Fig. S20A; NMR spectra, see Fig. S20B–H; NMR data, see Table S20; **25** is identified as 16 β -acetyloxy-3 α -hydroxy-29-norprotosta-17(20)*Z*,24-dien-7-one-21-oic acid

Compound **26**: white powder; $[\alpha]_{D}^{26}$ –47.1 (*c* 1.25, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.97), 232 nm (3.99); IR (KBr) ν_{max} 3447, 2971, 2928, 2855, 1712, 1666, 1456, 1377, 1257, 1034 cm⁻¹; HRESIMS (positive) *m*/*z* 543.2949 [M + H]⁺ (Calcd. for C₃₁H₄₃O₈, 543.2958), see Fig. S21A; NMR spectra, see Fig. S21B–H; NMR data, see Table S21; **26** is identified as 16 β -acetyloxy-6 β ,11 α -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3,7-dione-21-oic acid.

Compound **29**: white powder; $[\alpha]_{D}^{26}$ –96.0 (*c* 0.32, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.13); IR (KBr) ν_{max} 3550, 3024, 2970, 2955, 2929, 2897, 2871, 1723, 1457, 1376, 1254, 1175, 1152, 1109, 1087, 1059, 1033 cm⁻¹; HRESIMS (positive) *m/z* 497.3270 [M + H – H₂O]⁺ (Calcd. for C₃₁H₄₅O₅, 497.3267), see Fig. S22A; NMR spectra, see Fig. S22B–H; NMR data, see Table S22; **29** is identified as 16 β -acetyloxy-3 α ,11 α -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-21-oic acid.

Compound **30**: white powder; $[\alpha]_D^{26}$ –117.7 (*c* 0.23, CH₂Cl₂); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.88); IR (KBr) ν_{max} 3417, 2959, 2931, 2876, 1712, 1453, 1377, 1258, 1205, 1142, 1035 cm⁻¹; HRESIMS (positive) *m*/*z* 551.2980 [M + Na]⁺ (Calcd. for C₃₁H₄₄O₇Na, 551.2985), see Fig. S23A; NMR spectra, see Fig. S23B–H; NMR data, see Table S23; **30** is identified as 16 β -acetyloxy-3 α ,6 β -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-7-one-21-oic acid.

Compound **31**: white powder; HRESIMS (positive) m/z 513.3204 [M + H]⁺ (Calcd. for C₃₁H₄₅O₆, 513.3216), see Fig. S24A; NMR spectra, see Fig. S24 B–H; NMR data, see Table S24; **31** is identified as 16 β -acetyloxy-7 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid (Maunakeanolic acid A).

Compound **32**: white powder; $[\alpha]_D^{26}$ -36.9 (*c* 0.42, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.95); IR (KBr) v_{max} 3443, 2965, 2932, 2867, 1718, 1451, 1376, 1261, 1036 cm⁻¹; HRESIMS (positive) *m/z* 537.3209 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₆Na, 537.3192), see Fig. S25A; NMR spectra, see Fig. S25B–H; NMR data, see Table S25; **32** is identified as 16 β -acetyloxy-3 α ,7 α -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-21-oic acid.

Compound **33**: white powder; $[\alpha]_{D}^{26}$ +39.2 (*c* 0.53, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.11), 231 nm (4.14); IR (KBr) ν_{max} 3423, 2976, 2929, 2870, 1731, 1704, 1669, 1445, 1400, 1380, 1244, 1190, 1143, 1030 cm⁻¹; HRESIMS (positive) *m*/*z* 533.2862 [M + Na]⁺ (Calcd. for C₃₁H₄₂O₆Na, 533.2879), see Fig. S26A; NMR spectra, see Fig. S26B–H; NMR data, see Table S26; **33** is identified as 16 β -acetyloxy-29-norprotosta-1,17(20)*Z*,24-trien-3,7-dione-21-oic acid.

Compound **34**: white powder; $[\alpha]_{D}^{26}$ –100.1 (*c* 0.13, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.90); IR (KBr) ν_{max} 3396, 2972, 2929, 2870, 1742, 1703, 1454, 1374, 1257, 1146, 1028 cm⁻¹; HRESIMS (positive) *m*/*z* 535.3053 [M + Na]⁺ (Calcd. for C₃₁H₄₄O₆Na, 535.3036), see Fig. S27A; NMR spectra, see Fig. S27B–H; NMR data, see Table S27; **34** is identified as 16 β -acetyloxy-3 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-7-one-21-oic acid.

Compound **35**: white powder; $[\alpha]_{D}^{29}$ +121.7 (*c* 1.0, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm

(4.50); IR (KBr) v_{max} 3353, 2967, 2932, 2873, 1714, 1542, 1456, 1433, 1382, 1267, 1077, 1033, 1017 cm⁻¹; HRESIMS (positive) m/z 545.3113 [M + H – H₂O]⁺, (Calcd. for C₃₁H₄₅O₈, 545.3114), see Fig. S28A; NMR spectra, see Fig. S28B–H; NMR data, see Table S28; **35** is identified as

16β-acetyloxy-1α,6α,7β,11α-tetrahydroxy-29-norprotosta-17(20)*Z*,24-dien-3-one-21-oic acid. Compound **36**: white powder; $[\alpha]_{D}^{29}$ +29.6 (*c* 0.7, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 196 nm (4.88); IR (KBr) ν_{max} 3398, 2969, 2935, 2873, 1713, 1663, 1554, 1442, 1381, 1266, 1028 cm⁻¹; HRESIMS (positive) *m*/*z* 529.3177 [M + H]⁺ (Calcd. for C₃₁H₄₅O₇, 529.3165), see Fig. S29A; NMR spectra, see Fig. S29B–H; NMR data, see Table S29; **36** is identified as 16β-acetyloxy-6α, 11α-dihydroxy-29-norprotosta-1, 17(20)*Z*, 24-trien-3-one-21-oic acid.

Compound **37**: white powder; $[\alpha]_{D}^{29}$ +30.4 (*c* 2.57, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 210 nm (4.02), 227 nm (4.01); IR (KBr) ν_{max} 2967, 2929, 2870, 1715, 1666, 1438, 1376, 1036, 1007; HRESIMS (positive) *m*/*z* 529.3165 [M + H]⁺ (Calcd. for C₃₁H₄₅O₇, 529.3165), see Fig. S30A; NMR spectra, see Fig. S30B–H; NMR data, see Table S30; **37** is identified as 16 β -acetyloxy-7 α ,11 α -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid.

Compound **38**: white powder; $[\alpha]_{D}^{29}$ +75.2 (*c* 0.93, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (3.96); IR (KBr) ν_{max} 3442, 2962, 2929, 2870, 1712, 1546, 1440, 1381, 1265, 1038, 1007; HRESIMS (positive) *m*/*z* 469.2958 [M + H – H₂O – CH₃COOH]⁺ (Calcd. for C₂₉H₄₁O₅, 469.2954), see Fig. S31A; NMR spectra, see Fig. S31B–H; NMR data, see Table S31; **38** is identified as

 16β -acetyloxy- 1α , 7α , 11α -trihydroxy-29-norprotosta-17(20)Z, 24-dien-3-one-21-oic acid.

Compound **39**: white powder; $[\alpha]_{D}^{29}$ –53.4 (*c* 0.47, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.35), 231 nm (4.21); IR (KBr) ν_{max} 3299, 2972, 2919, 2851, 1714, 1671, 1542, 1457, 1436, 1419, 1384, 1264, 1035 cm⁻¹; HRESIMS (positive) *m*/*z* 467.2789 [M + H – CH₃COOH]⁺ (Calcd. for C₂₉H₃₉O₅, 467.2797), see Fig. S32A; NMR spectra, see Fig. S32B–H; NMR data, see Table S32; **39** is identified as 16 β -acetyloxy-11 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-3,7-dione-21-oic acid.

Compound **40**: white powder; $[\alpha]_{D}^{29}$ +13.1 (*c* 1.7, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 206 nm (3.83); IR (KBr) ν_{max} 3485, 2968, 2932, 2870, 1713, 1455, 1379, 1260, 1165, 1029 cm⁻¹; HRESIMS (positive) *m*/*z* 469.2954 [M + H – H₂O – CH₃COOH]⁺ (Calcd. for C₂₉H₄₁O₅, 469.2954), see Fig. S33A; NMR spectra, see Fig. S33B–H; NMR data, see Table S33; **40** is identified as

 16β -acetyloxy- 1α , 7β , 11α -trihydroxy-29-norprotosta-17(20)Z, 24-dien-3-one-21-oic acid.

Compound **41**: white powder; $[\alpha]_{D}^{29}$ –7.9 (*c* 1.13, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203 nm (4.05); IR (KBr) v_{max} 2918, 2874, 2848, 1715, 1596, 1543, 1454, 1383, 1359, 1272, 1032 cm⁻¹; HRESIMS (positive) *m/z* 553.3124 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₇Na, 553.3141), see Fig. S34A; NMR spectra, see Fig. S34B–H; NMR data, see Table S34; **41** is identified as 16 β -acetyloxy-3 α , 6 α , 7 β -trihydroxy-29-norprotosta-1, 17(20)Z, 24-trien-21-oic acid.

Compound **42**: white powder; $[\alpha]_{D}^{27}$ –26.1 (*c* 0.67, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203 nm (4.17); IR (KBr) ν_{max} 3439, 2952, 2933, 2871, 1714, 1649, 1442, 1377, 1268, 1021 cm⁻¹; HRESIMS (positive) *m*/*z* 495.3103 [M + H – H₂O]⁺ (Calcd. for C₃₁H₄₃O₅, 495.3110), see Fig. S35A; NMR spectra, see Fig. S35B–H; NMR data, see Table S35; **42** is identified as 16 β -acetyloxy-3 α -hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-6-one-21-oic acid.

Compound **43**: white powder; $[\alpha]_{D}^{29}$ –8.2 (*c* 1.67, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203 nm (5.05); IR (KBr) ν_{max} 3515, 2942, 2870, 1713, 1450, 1379, 1269, 1026 cm⁻¹; HRESIMS (positive) *m/z* 537.3190 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₆Na, 537.3192), see Fig. S36A; NMR spectra, see Fig. S36B–H; NMR data, see Table S36; **43** is identified as 16 β -acetyloxy-3 α ,7 β -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-21-oic acid.

Compound 44: white powder; $[\alpha]_{D}^{26}$ +9.3 (*c* 1.23, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 206 nm (4.10), 231 nm (4.13); IR (KBr) ν_{max} 3449, 2963, 2933, 2877, 1731, 1675, 1564, 1455, 1376, 1251, 1034 cm⁻¹; HRESIMS (positive) *m/z* 593.3098 [M + Na]⁺ (Calcd. for C₃₃H₄₆O₈Na, 593.3090), see Fig. S37A; NMR spectra, see Fig. S37B–H; NMR data, see Table S37; 44 is identified as 6α , 16β -diacetyloxy- 7β -hydroxy-29-norprotosta-1, 17(20)Z, 24-trien-3-one-21-oic acid.

Compound **45**: white powder; $[\alpha]_{D}^{26}$ +19.9 (*c* 7.3, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.03), 230 nm (3.99); IR (KBr) ν_{max} 3463.5, 2959, 2932, 2876, 1730, 1676, 1454, 1375, 1249, 1141, 1029 cm⁻¹; HRESIMS (positive) *m/z* 593.3080 [M + Na]⁺ (Calcd. for C₃₃H₄₆O₈Na, 593.3090), see Fig. S38A; NMR spectra, see Fig. S38B–H; NMR data, see Table S38; **45** is identified as 7β , 16 β -diacetyloxy-6 α -hydroxy-29-norprotosta-1, 17(20)*Z*, 24-trien-3-one-21-oic acid.

Compound **46**: white powder; $[\alpha]_{D}^{26}$ +35.1 (*c* 0.87, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.31), 229 nm (4.20); IR (KBr) ν_{max} 3418, 2959, 2934, 2870, 1731, 1676, 1454, 1245, 1029 cm⁻¹; HRESIMS (positive) *m*/*z* 577.3149 [M + Na]⁺ (Calcd. for C₃₃H₄₆O₇Na, 577.3141), see Fig. S39A; NMR spectra, see Fig. S39B–H; NMR data, see Table S39; **46** is identified as 7β ,16 β -diacetyloxy-29-norprotosta-1,17(20)*Z*,24-trien-3-one-21-oic acid.

Compound **47**: white powder; $[\alpha]_{D}^{21}$ +19.3 (*c* 0.44, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm

(4.08); IR (KBr) v_{max} 2961, 2934, 2877, 1716, 1653, 1635, 1558, 1454, 1377, 1266, 1179, 1147, 1024 cm⁻¹; HRESIMS (positive) m/z 571.3237 [M+ Na]⁺ (Calcd. for C₃₁H₄₈O₈Na, 571.3247), see Fig. S40A; NMR spectra, see Fig. S40B–H; NMR data, see Table S40; **47** is identified as

 16β -acetyloxy- 3α , 6α , 7β , 11α -tetrahydroxy-29-norprotosta-17(20)Z, 24-dien-21-oic acid.

Compound **48**: white powder; $[\alpha]_{D}^{21}$ +10.3 (*c* 0.28, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.94); IR (KBr) ν_{max} 3454, 2971, 2935, 2879, 1718, 1446, 1380, 1260, 1145, 1060, 1022 cm⁻¹; HRESIMS (positive) *m*/*z* 533.3484 [M + H]⁺ (Calcd. for C₃₁H₄₉O₇, 533.3478), see Fig. S41A; NMR spectra, see Fig. S41B–H; NMR data, see Table S41; **48** is identified as 16 β -acetyloxy-3 α , 6 α , 11 α -trihydroxy-29-norprotosta-17(20)*Z*, 24-dien-21-oic acid.

Compound **49**: white powder, $[\alpha]_{D}^{21}$ 14.7 (*c* 0.19, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 (3.54); IR (KBr) v_{max} 3446, 2952, 2929, 2874, 1716, 1654, 1558, 1541, 1457, 1377, 1267, 1144, 1105, 1025, 973 cm⁻¹; HRESIMS (positive) *m/z* 533.3497 [M + H]⁺ (Calcd. for C₃₁H₄₉O₇, 533.3478), see Fig. S42A; NMR spectra, see Fig. S42B–H; NMR data, see Table S42, **49** is identified as

 16β -Acetyloxy- 3α , 7β , 11α -trihydroxy-29-norprotosta-17(20)Z,24-dien-21-oic acid.

Compound **50**: white powder; $[\alpha]_{D}^{21}$ +20.9 (*c* 0.63, CH₂Cl₂); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.09); IR (KBr) v_{max} 3501, 2968, 2938, 2886, 1715, 1453, 1376, 1256, 1146, 1107, 1032 cm⁻¹; HRESIMS (positive) *m/z* 611.3185 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₉Na, 611.3196), see Fig. S43A; NMR spectra, see Fig. S43B–H; NMR data, see Table S43; **50** is identified as 7 β ,16 β -diacetyloxy-6 α ,11 α -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-3-one-21-oic acid.

Compound **51**: white powder; $[\alpha]_{D}^{21}$ +65.2 (*c* 0.45, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (4.27); IR (KBr) v_{max} 3484, 2969, 2943, 2886, 1713, 1456, 1440, 1377, 1257, 1032 cm⁻¹; HRESIMS (positive) *m*/*z* 611.3174 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₉Na, 611.3196), see Fig. S44A; NMR spectra, see Fig. S44B–H; NMR data, see Table S44; **51** is identified as 6α , 16 β -diacetyloxy-7 β , 11 α -dihydroxy-29-norprotosta-17(20)*Z*, 24-dien-3-one-21-oic acid.

Compound **52**: white powder; $[\alpha]_{D}^{21}$ +40.6 (*c* 0.42, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 201 nm (3.99); IR (KBr) ν_{max} 3525, 2957, 2938, 2883, 1715, 1457, 1377, 1253, 1142, 1028 cm⁻¹; HRESIMS (positive) *m*/*z* 595.3248 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₈Na, 595.3247), see Fig. S45A; NMR spectra, see Fig. S45B–H; NMR data, see Table S45; **52** is identified as 6α , 16β -diacetyloxy-11 α -hydroxy-29-norprotosta-17(20)*Z*, 24-dien-3-one-21-oic acid.

Compound 55: white powder; HRESIMS (positive) m/z 569.3071 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₈Na, 569.3090), see Fig. S46A; NMR spectra, see Fig. S46B–H; NMR data, see

TableS46;55isidentifiedas 16β -acetyloxy- 3α , 6β , 11α -trihydroxy-29-norprotosta-17(20)Z, 24-dien-7-one-21-oic acid (CASRegistry Number:779980-64-2).

Compound **56**: white powder; HRESIMS (positive) m/z 533.3490 [M + H]⁺ (Calcd. for C₃₁H₄₉O₇, 533.3478), see Fig. S47A; NMR spectra, see Fig. S47B–H; NMR data, see Table S47; **56** is identified as 16 β -acetyloxy-3 α ,7 α ,11 α -trihydroxy-29-norprotosta-17(20)Z,24-dien-21-oic acid (CAS Registry Number: 35805-38-0).

Compound 57: white powder; HRESIMS (positive) m/z 531.3325 [M + H]⁺ (Calcd. for C₃₁H₄₇O₇, 531.3322), see Fig. S48A; NMR spectra, see Fig. S48B–H; NMR data, see Table S48; 57 is identified as 16 β -acetyloxy-3 α ,11 α -dihydroxy-29-norprotosta-17(20)*Z*,24-dien-7-one-21-oic acid (CAS Registry Number: 764590-42-3).

Compound **58**: white powder; $[\alpha]_{D}^{26}$ –66.3 (*c* 2.67, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.65); IR (KBr) ν_{max} 3445, 2950, 2930, 2870, 1718, 1652, 1455, 1442, 1375, 1261, 1233, 1154, 1032 cm⁻¹; HRESIMS (positive) *m/z* 609.3043 [M + Na]⁺ (Calcd. for C₃₃H₄₆O₉Na, 609.3040), see Fig. S49A; NMR spectra, see Fig. S49B–H; NMR data, see Table S49; **58** is identified as

 6β , 16β -diacetyloxy- 11α -hydroxy-29-norprotosta-17(20)Z, 24-dien-3, 7-dione-21-oic acid.

Compound **59**: white powder, $[\alpha]_{D}^{26}$ –85.6 (*c* 0.92, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.07); IR (KBr) ν_{max} 3502, 2975, 2935, 2864, 1746, 1713, 1459, 1438, 1375, 1224, 1150, 1060, 1028 cm⁻¹; HRESIMS (positive) *m/z* 611.3185 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₉Na, 611.3196), see Fig. S50A; NMR spectra, see Fig. S50B–H; NMR data, see Table S50; **59** is identified as

6β,16β-diacetyloxy-3β,11α-dihydroxy-29-norprotosta-17(20)Z,24-dien-7-one-21-oic acid. Compound **60**: white powder; $[\alpha]_{D}^{25}$ -74.7 (*c* 1.33, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (3.95); IR (KBr) ν_{max} 3395, 2952, 2924, 2852, 1750, 1716, 1652, 1458, 1376, 1255, 1226, 1021 cm⁻¹; HRESIMS (positive) *m/z* 595.3240 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₈Na, 595.3247), see Fig. S51A; NMR spectra, see Fig. S51B–H; NMR data, see Table S51; **60** is identified as 6 β ,16 β -diacetyloxy-3 α -hydroxy-29-norprotosta-17(20)*Z*,24-dien-7-one-21-oic acid.

Compound **61**: white powder; $[\alpha]_{D}^{27}$ –89.0 (*c* 2.33,CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.07), 231 nm (4.08); IR (KBr) ν_{max} 3546, 3468, 2977, 2941, 2883, 1752, 1725, 1699, 1663, 1457, 1374, 1252, 1214, 1033 cm⁻¹; HRESIMS (positive) *m/z* 585.3038 [M + H]⁺ (Calcd. for

17

C₃₃H₄₅O₉, 585.3064), see Fig. S52A; NMR spectra, see Fig. S52B–H; NMR data, see Table S52; **61** is identified as 6β , 16β -diacetyloxy-11 α -hydroxy-29-norprotosta-1, 17(20)Z, 24-trien-3, 7-dione-21-oic acid.

Compound **62**: white powder; $[\alpha]_{D}^{25}$ –41.3 (*c* 0.40, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 201 nm (3.98); IR (KBr) ν_{max} 3315, 2964, 2929, 2879, 1711, 1593, 1456, 1433, 1382, 1266, 1034 cm⁻¹; HRESIMS (positive) *m/z* 567.2936 [M + Na]⁺ (Calcd. for C₃₁H₄₄O₈Na, 567.2934), see Fig. S53A; NMR spectra, see Fig. S53B–H; NMR data, see Table S53; **62** is identified as 16 β -acetyloxy-3 α ,6 β ,11 α -trihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-7-one-21-oic acid. Compound **63**: white powder; $[\alpha]_{D}^{21}$ –148.3 (*c* 0.47, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203

nm (4.06); IR (KBr) v_{max} 32970, 2925, 2882, 1751, 1712, 1454, 1374, 1226, 1036 cm⁻¹; HRESIMS (positive) m/z 571.3270 [M + H]⁺ (Calcd. for C₃₃H₄₇O₈, 571.3271), see Fig. S54A; NMR spectra, see Figs. S54B–K and S61; NMR data, see Table S54; **63** is identified as 6β , 16β -diacetyloxy- 3α -hydroxy-29-norprotosta-1, 17(20)Z, 24-trien-7-one-21-oic acid.

Compound **64**: white powder; $[\alpha]_{D}^{21}$ –21.7 (*c* 1.27, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203 nm (4.00); IR (KBr) v_{max} 3419, 2962, 2932, 2873, 1721, 1652, 1438, 1377, 1256, 1026 cm⁻¹; HRESIMS (positive) *m*/*z* 513.3210 [M + H – CH₃COOH]⁺ (Calcd. for C₃₁H₄₅O₆, 513.3216), see Fig. S55A; NMR spectra, see Fig. S55B–H; NMR data, see Table S55; **64** is identified as 7 β ,16 β -diacetyloxy-3 α ,6 α -dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-21-oic acid.

Compound **65**: white powder; $[\alpha]_{D}^{27}$ +18.0 (*c* 2.13, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203 nm (4.08); IR (KBr) ν_{max} 3412, 2960, 2939, 2871, 1731, 1652, 1439, 1375, 1251, 1019 cm⁻¹; HRESIMS (positive) *m/z* 579.3308 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₇Na, 579.3298), see Fig. S56A; NMR spectra, see Fig. S56B–H; NMR data, see Table S56; **65** is identified as 6α , 16 β -diacetyloxy-3 α -hydroxy-29-norprotosta-1, 17(20)*Z*, 24-trien-21-oic acid.

Compound **66**: white powder; $[\alpha]_{D}^{21}$ +41.2 (*c* 1.13, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 205 nm (4.07), 231 nm (4.12); IR (KBr) v_{max} 3444, 2977, 2936, 2873, 1734, 1674, 1439, 1375, 1250, 1025 cm⁻¹; HRESIMS (positive) *m*/*z* 555.3330 [M + H]⁺ (Calcd. for C₃₃H₄₇O₇, 555.3322), see Fig. S57A; NMR spectra, see Fig. S57B–H; NMR data, see Table S57; **66** is identified as 6α , 16β -diacetyloxy-29-norprotosta-1, 17(20)Z, 24-trien-3-one-3-one-21-oic acid.

Compound 67: white powder; $[\alpha]_{D}^{29}+27.6$ (*c* 3.8, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 206 nm (4.10); IR (KBr) ν_{max} 3485, 2952, 2936, 2885, 1719, 1441, 1378, 1261, 1141, 1025 cm⁻¹; HRESIMS (positive) *m/z* 597.3405 [M + Na]⁺ (Calcd. for C₃₃H₅₀O₈Na, 597.3403), see Fig. S58A; NMR spectra, see Fig. S58B–H; NMR data, see Table S58; 67 is identified as $6\alpha, 16\beta$ -diacetyloxy- $3\alpha, 11\alpha$ -dihydroxy-29-norprotosta-17(20)Z,24-dien-21-oic acid.

Compound **68**: white powder; $[a]_{D}^{26}$ –92.9 (*c* 0.38, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.02); IR (KBr) ν_{max} 3482, 2958, 2935, 2883, 1719, 1440, 1376, 1230, 1144, 1066, 1023 cm⁻¹; HRESIMS (positive) *m/z* 611.3179 [M + Na]⁺ (Calcd. for C₃₃H₄₈O₉Na, 611.3196), see Fig. S59A; NMR spectra, see Fig. S59B–H; NMR data, see Table S59; **68** is identified as 6β ,16β-diacetyloxy-3α,11α-dihydroxy-29-norprotosta-17(20)*Z*,24-dien-7-one-21-oic acid. Compound **69**: white powder; $[a]_{D}^{26}$ –58.0 (*c* 0.8, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 203 nm (4.08); IR (KBr) ν_{max} 3413, 2960, 2929, 2879, 1717, 1648, 1436, 1383, 1263, 1232, 1057, 1019 cm⁻¹; HRESIMS (positive) *m/z* 609.3029 [M + Na]⁺ (Calcd. for C₃₃H₄₆O₉Na, 609.3040), see Fig. S60A; NMR spectra, see Fig. S60B–H; NMR data, see Table S60; **69** is identified as 6β ,16β-diacetyloxy-3α,11α-dihydroxy-29-norprotosta-1,17(20)*Z*,24-trien-7-one-21-oic acid. Compound **81**: white powder; $[a]_{D}^{28}$ +63.0 (*c* 4.3, CH₃OH); UV (CH₃OH) λ_{max} (log ε) 204 nm (4.10); IR (KBr) ν_{max} 3451.0, 3023, 2959, 2933, 2870, 1717, 1648, 1591, 1443, 1374, 1261, 1029, 1006 cm⁻¹; HRESIMS (positive) *m/z* 521.3245 [M + Na]⁺ (Calcd. for C₃₁H₄₆O₅Na, 521.3243), see Fig. S61A; NMR spectra, see Fig. S61B–H; NMR data, see Table S61; **81** is identified as 16*β*-acetyloxy-3*β*-hydroxy-29-norprotosta-1,17(20)*Z*,24-trien-21-oic acid.

Absolute configuration determination of 35, 38 and 40

As the relative configuration of C-1 of 35, 38 and 40 cannot be determined via ROESY analysis, quantum chemical calculation of NMR shifts was employed. The flexible side chain of fusidane-type antibiotics can lead to more conformations, which has less impact on NMR shifts. Therefore, 35 was simplified as (1*S**,4*S**,5*S**,6*R**,7*R**,8*S**,9*S**,10*S**,11*R**,13*R**,14*S**,16*S**)-**35**-A and (1R*,4S*,5S*,6R*,7R*,8S*,9S*,10S*,11R*,13R*,14S*,16S*)-**35-B** (Fig. S63). The molecules of 35-A and 35-B were converted into SIMILES codes before their initial 3D structure were generated with CORINA version 3.4. Conformer databases were generated in CONFLEX version 7.0 using the MMFF94s force-field, with an energy window for acceptable conformers (ewindow) of 5 kcal/mol above the ground state, a maximum number of conformations per molecule (maxconfs) of 100, and an RMSD cutoff (rmsd) of 0.5 Å. Then each conformer of the acceptable conformers was optimized with the HF/6-31G(d) method in Gaussian09. Further optimization at the B3LYP/6-31G(d) level determined the dihedral angles. The optimized conformers (Table S63) were used for ¹³C NMR shifts calculation, which was performed with Gaussian09 (mPW1PW91/6-31+G(d,p)). The solvent effect was taken into account by the polarizable-conductor calculation model (PCM, CD₃OD as the solvent). Computed chemical shifts were scaled empirically according to $\delta_{corr.} = \delta_{calcd.} \times slope$

+ intercept, where $\delta_{calcd.}$ is the calculated chemical shift, and slope and intercept are the slope and intercept resulting from a regression calculation on a plot of $\delta_{calcd.}$ against $\delta_{exptl.}^{1}$. The comparison was judged by R square (R²) analysis, mean absolute error (MAE) and DP4+ probability² (Table S68). Finally, the relative configuration of **35** was determined as $1S^*, 4S^*, 5S^*, 6R^*, 7R^*, 8S^*, 9S^*, 10S^*, 11R^*, 13R^*, 14S^*, 16S^*$, and the absolute configuration was assigned as 1S, 4S, 5S, 6R, 7R, 8S, 9S, 10S, 11R, 13R, 14S, 16S. Likewise, the optimized conformers (Table S64) were used for ¹³C NMR shifts calculation, which was performed with Gaussian09 (mPW1PW91/6-311+G(d,p)) for **38**. The absolute configuration of **38** was assigned as 1S, 4S, 5S, 7R, 8S, 9S, 10S, 11R, 13R, 14S, 16S (Fig. S64, Tables S64 and S68). On the basis of comparision of ¹³C chemical shifts between **38** and **40** (Table S66), the relative configuration of **40** was determined, and the absolute configuration of **40** was assigned as 1S, 4S, 5S, 7S, 8S, 9S, 10S, 11R, 13R, 14S, 16S.

Absolute configuration determination of 6, 29, 30, 32, 34, 41-43, 63-65 and 69

For compounds 6, 29, 30, 32, 34, 41-43, 63-65 and 69, the relative configuration of C-3 cannot be determined via NOESY or coupling constants analysis. Therefore, we planned to perform chemical derivatization to obtain analogues bearing 3a-OH/the C1-C2 double bond and 3β -OH/the C1–C2 double bond. We added 7 (10.0 mg) to a stirred solution of NaBH₄ (5.0 mg) in Et₂O (10 mL) in an ice and water bath. Then the mixture was stirred in the dark at room temperature for 24 h. The solvent was removed under reduced pressure, and the residue was further purified by semi-preparative HPLC with isocratic elution of 80% CH₃CN-H₂O to give 6 (0.5 mg) and 81 (4.1 mg). According to ROESY analysis, the relative configuration of 81 was determined as $3S^*, 4S^*, 5S^*, 8S^*, 9S^*, 10S^*, 13R^*, 14S^*, 16S^*$, and the absolute configuration of **81** was assigned as 3S,4S,5S,8S,9S,10S,13R,14S,16S. Therefore, the absolute configuration of 6, the epimer of 81 at C-3, was assigned as 3R,4S,5S,8S,9S,10S,13R,14S,16S. And based on the coupling constants (${}^{3}J_{H-3, H-4} = 4.4$ Hz for 3α -OH, and ${}^{3}J_{H-3, H-4} = 7.9$ Hz for 3β-OH), we determined that 3-OH in compounds 29, 30, 32, 34, 41-43, 63-65 and 69 was α -oriented (Table. S69). Additionally, we also performed quantum chemical calculation of NMR shifts for 34 (CD₃OD as the solvent) and 42 (CDCl₃ as the solvent)^{1,2}, and the optimized conformers (Tables S62 and S65) were used for ¹³C NMR shifts calculation, which was performed with Gaussian09 (mPW1PW91/6-31+G(d,p)). The results indicated that 3-OH in **34** and **42** was indeed α -oriented (Figs. S62 and S65, Table S67).

Supporting Figures

(A) A. oryzae NSAR1; (B) A. oryzae harboring helA, helB1, helB2, helC, helB4 and helD2
(AOS0); (C) AOS0 harboring helE and fusB1 (AOS1); (D) AOS0 harboring helE and fusC1
(AOS2); (E) AOS0 harboring helE and cepB4 (AOS3); (F) AOS0 harboring fusB1 and cepB4
(AOS4); (G) AOS0 harboring helB3 and fusB1 (AOS5); (H) AOS0 harboring helB3 and fusC1
(AOS6); (I) AOS0 harboring helE, fusB1 and helB3 (AOS7); (J) AOS0 harboring helE, fusB1

and *fusC1* (AOS8); (K) AOS0 harboring *helE*, *fusC1* and *helB3* (AOS9); (L) AOS0 harboring *helE*, *fusB1* and *cepB4* (AOS10); (M) AOS0 harboring *helE*, *fusC1* and *cepB4* (AOS11); (N) AOS0 harboring *helE*, *cepB4* and *cepD2* (AOS12); (O) AOS0 harboring *fusB1*, *cepB4* and *fusC1* (AOS13); (P) AOS0 harboring *fusB1*, *cepB4* and *cepD2* (AOS14); (Q) AOS0 harboring *helB3*, *fusB1* and *fusC1* (AOS15); (R)AOS0 harboring *helB3*, *fusB1* and *helD1* (AOS16); (S) AOS0 harboring *helB3*, *fusC1* and *helD1* (AOS17); (T) AOS0 harboring *helE*, *fusB1*, *helB3* and *helD1* (AOS18); (U) AOS0 harboring *helE*, *fusB1*, *helB3* and *fusC1* (AOS18); (U) AOS0 harboring *helE*, *fusB1*, *helB3* and *fusC1* (AOS18); (U) AOS0 harboring *helE*, *fusB1*, *helB3* and *fusC1* (AOS18); (V) AOS0 harboring *helE*, *fusC1*, *helB3* and *helD1* (AOS20); (W) AOS0 harboring *helE*, *fusB1*, *cepB4* and *cepD2* (AOS21); (Y) AOS0 harboring *helE*, *cepB4*, *cepD2* and *fusC1* (AOS23); (Z) AOS0 harboring *fusB1*, *fusC1*, *cepB4* and *cepD2* (AOS24); (AA) AOS0 harboring *fusB1*, *fusC1*, *helB3* and *helD1* (AOS26); (AC) AOS0 harboring *helE*, *fusB1*, *fusC1*, *cepB4* and *cepD2* (AOS24); (AA) AOS0 harboring *fusB1*, *fusC1*, *helB3* and *helD1* (AOS26); (AC) AOS0 harboring *helE*, *fusB1*, *fusC1*, *cepB4* and *cepD2* (AOS24); (AA) AOS0 harboring *fusB1*, *fusC1*, *helB3* and *helD1* (AOS26); (AC) AOS0 harboring *helE*, *fusB1*, *fusC1*, *cepB4* and *cepD2* (AOS24); (AA) AOS0 harboring *fusB1*, *fusC1*, *helB3* and *helD1* (AOS26); (AC) AOS0 harboring *helE*, *fusB1*, *fusC1*, *cepB4* and *cepD2* (AOS24); (AA) AOS0 harboring *fusB1*, *fusC1*, *helB3* and *helD1* (AOS26); (AC) AOS0 harboring *helE*, *fusB1*, *fusC1*, *cepB4* and *cepD2* (AOS24); (AOS27).

Figure S2 Fusidane-type antibiotics produced *via* the stochastic combinational strategy. New compounds are marked in red. And compounds **7**, **8**, **16**, **27**, **28**, **53** and **54** were identified by comparison with standards or mass spectrometry analysis.

A

Figure S3 HRESIMS and NMR spectra of 5.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Monoisotopic Mass, Even Electron Ions 198 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1

52 20190107_57 270 (2.177)

439.3209 -0.3 2.1 -0.7 4.8 8.5 5.5

В

28

A

Figure S4 HRESIMS and NMR spectra of 6.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) NOESY spectrum in CDCl₃ at 600 MHz; (I) ¹H NMR spectrum of 6 obtained *via* chemical derivatization in CDCl₃ at 600 MHz.

Monoisotopic Mass, Even Electron Ions 295 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 53 20190107_58 214 (1.724) 1: TOF MS ES+ 1.64e+004 469.2958 ר100 %-470.2985 471.3070 171.3070 529.3193 551.2975 567.2763 587.2304 480 500 520 540 560 580 600 433.2716 451.2809 0 274.2755 311.1941 334.2730 376.2597 260 280 300 320 340 360 380 400 420 440 460 Minimum: Maximum: -1.5 50.0 5.0 5.0 Calc. Mass mDa 551.2985 -1.0 551.2950 2.5 PPM -1.8 4.5 DBE 9.5 21.5 i-FIT 33.3 32.6 Norm Conf (%) Formula 1.067 34.42 C31 H44 07 Na 0.422 65.58 C40 H39 02 Mass 551.2975

0

200

150

А

100

50

[ppm]

Figure S5 HRESIMS and NMR spectra of 9.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H-¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) NOESY spectrum in CDCl₃ at 600 MHz.A

Figure S6 HRESIMS and NMR spectra of 10.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) NOESY spectrum in CDCl₃ at 600 MHz.

Figure S7 HRESIMS and NMR spectra of 11.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Figure S8 HRESIMS and NMR spectra of 12.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

В

С

Figure S9 HRESIMS and NMR spectra of 13.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) NOESY spectrum in CDCl₃ at 600 MHz.

Figure S10 HRESIMS and NMR spectra of 14.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Figure S11 HRESIMS and NMR spectra of 15.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Figure S12 HRESIMS and NMR spectra of 17.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Figure S13 HRESIMS and NMR spectra of 18.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) NOESY spectrum in CD₃OD at 600 MHz.

A

Figure S14 HRESIMS and NMR spectra of 19.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) NOESY spectrum in CD₃OD at 600 MHz.

Monoisotopic Mass, Even Electron Ions 310 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 45 20190107_50 206 (1.664)

В

A

Figure S15 HRESIMS and NMR spectra of 20.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) NOESY spectrum in CD₃OD at 600 MHz.

A

1: TOF MS ES+ 9.05e+004

[ppm]

[ppm]

7227 3583 4651 E

Figure S16 HRESIMS and NMR spectra of 21.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) NOESY spectrum in CDCl₃ at 600 MHz.

A

68

Figure S17 HRESIMS and NMR spectra of 22.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

40 20190107_44 224 (1.810)

В

Figure S18 HRESIMS and NMR spectra of 23.

Monoisotopic Mass, Even Electron lons 283 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 EC1B3-2-7 2018061120 242 (1.956) 457.3317

1: TOF MS ES+ 2.47e+005

В

С

Figure S19 HRESIMS and NMR spectra of 24.

Monoisotopic Mass, Even Electron lons 270 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 EC1B3-2-6 2018061119 249 (2.008) 455.3161 100-%

1: TOF MS ES+ 3.54e+005

mDa 0.4 -2.0 PPM 0.7 -3.7 i-FIT 124.0 123.3 Calc. Mass 537.3192 537.3216 DBE 8.5 11.5 Norm Conf (%) Formula 1.106 33.07 C31 H46 06 Na 0.402 66.93 C33 H45 06

В

С

А

Figure S20 HRESIMS and NMR spectra of 25.

1.2159

1530 9948

0.9348

0.9420

9425

8 11195 2.6211 4.1156

0440

А

0.5

0.0

Figure S21 HRESIMS and NMR spectra of 26.

Monoisotopic Mass, Even Electron Ions 235 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 EB1-C1-9-3 2018091049 236 (1.900) 437.3061

B

100

50

[ppm]

150

Figure S22 HRESIMS and NMR spectra of 29.

А

Figure S23 HRESIMS and NMR spectra of 30.

Monoisotopic Mass, Even Electron Ions 248 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 29 20190107_33 237 (1.907) 100 100 100

1: TOF MS ES+ 5.17e+004

Figure S24 HRESIMS and NMR spectra of 31.

Monoisotopic Mass, Even Electron lons 270 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 EC183-2-6 2018061119 234 (1.885) 100 455.3164 437.3063 456.3197

1: TOF MS ES+ 7.57e+004

В

Figure S25 HRESIMS and NMR spectra of 32.

1: TOF MS ES+ 1.46e+005 451.2851 ר100 % 452.2880 , 453.2979
 265.6346
 313.2115
 365.2144
 381.2063
 405.2770
 433.2744
 453.3026
 533.2862
 556.3638
 567.2276

 260
 280
 300
 320
 340
 360
 380
 400
 420
 440
 460
 480
 500
 520
 540
 560
 580
 600
0-Minimum: Maximum: -1.5 50.0 5.0 5.0 Calc. Mass mDa 533.2879 -1.7 533.2844 1.8 PPM -3.2 3.4 DBE 10.5 22.5 i-FIT 65.8 67.1 Norm Conf (%) Formula 0.227 79.72 C31 H42 06 Na 1.595 20.28 C40 H37 0 Mass 533.2862

В

С

Figure S26 HRESIMS and NMR spectra of 33.

Figure S27 HRESIMS and NMR spectra of 34.

А

Figure S28 HRESIMS and NMR spectra of 35.

Monoisotopic Mass, Even Electron lons 140 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 EB1-B4-60-5 20190527_11 193 (1.556) 1: TOF MS ES+ 1.53e+005 469.2950 100 -529.3177 % 470.2991 530.3199 471.3033 0 263.1657.274.2758 313.2129 329.2132 383.2213 405.2799 433.2732 451.2859 260 280 300 320 340 360 380 400 420 440 460 531.3248 585.2360 511.3070 531.3248 551.2982 540 560 5 580 600 480 500 520 Minimum: Maximum: -1.5 50.0 5.0 5.0 PPM 2.3 DBE 9.5 i-FIT 327.2 Norm n/a Conf(%) Formula n/a C31 H45 07 Mass 529.3177 Calc. Mass 529.3165 mDa 1.2 В [*1e3] 6685 6120 1.3518 1.3224 1.3224 1.3110 1.2233 0.9592 0.8490 7.8693 7.8522 5.1569 5.1453 5.1346 3.0764 3.0269 3.0087 1.9717 6.8271 6.8131 6.7823 5.7653 6.7526 4201 4168 1197 3.9135 3.9081 3.9081 3.9031 3.8974 3.8926 3.8926 3296 300 V 20 8-0 .4358 1.2938 1.2713 3.9574 3.3241 0000 1.0397 **€**[.0329 0.9608 1.5424 5.6085 3.4845 3.3362 [ppm] 8 С [*1e3] 126.1485 124.5057 9 133.2708 205.5959 163.8690 40.1213 36.8030 30.1097 30.1097 229.2395 225.9019 225.689 225.689 221.6174 17.8890 17.30 15.7730 172.691 48888888888 ĴĴ Y 1200 1000 88 800 40 8 0

А

100

104

[ppm]

50

150

Figure S29 HRESIMS and NMR spectra of 36.

А

Figure S30 HRESIMS and NMR spectra of 37.

A

Figure S31 HRESIMS and NMR spectra of 38.

Figure S32 HRESIMS and NMR spectra of 39.

Monoisotopic Mass, Even Electron Ions 212 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 59 20190107_62 209 (1.687)

1: TOF MS ES+ 1.20e+005 469.2954 100-%• 470.2983 471.3009 274.2734 295.1526 339.1563 376.2589 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -60 280 300 320 340 360 380 433.2732 451.2849 0-400 420 460 440 260 280 Minimum: Maximum: -1.5 50.0 5.0 5.0

116

A

Figure S33 HRESIMS and NMR spectra of 40.

Figure S34 HRESIMS and NMR spectra of 41.

Monoisotopic Mass, Even Electron Ions 243 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-1000 O: 0-200 Na: 0-1 EB4C1-80-3 20190923036 229 (1.848)

В

Figure S35 HRESIMS and NMR spectra of 42.

Figure S36 HRESIMS and NMR spectra of 43.

А

Figure S37 HRESIMS and NMR spectra of 44.

Figure S38 HRESIMS and NMR spectra of 45.

Figure S39 HRESIMS and NMR spectra of 46.

Monoisotopic Mass, Even Electron Ions 313 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 41 20190107_45 191 (1.541)

В

100

[ppm]

50

150

A

Figure S40 HRESIMS and NMR spectra of 47.

Figure S41 HRESIMS and NMR spectra of 48.

Monoisotopic Mass, Even Electron Ions 267 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 B1B4-C1-6-5 2018091043 206 (1.664) 1: TOF MS ES+ 6.41e+005 473.3282 100-% 474.3309 437.3062 455.3167 475.3344 533.3497 550.3752 578.4037 274.2745 409.3108 230.2482 318.3011.329.2246 540 560 580 600 0-200 240 0 380 220 . . . 260 280 300 400 500 320 340 360 440 480 520 460 420 Minimum: Maximum: -1.5 50.0 5.0 5.0 mDa 1.9 PPM 3.6 DBE 7.5 i-FIT 195. 9 Conf(%) Formula n/a C31 H49 07 Mass 533.3497 Calc. Mass 533.3478 Norm n/a

A

Figure S42 HRESIMS and NMR spectra of 49.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

Figure S43 HRESIMS and NMR spectra of 50.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 400 MHz; (C) ¹³C NMR spectrum in CD₃OD at 100 MHz; (D) DEPT 135 spectrum in CD₃OD at 100 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 400 MHz; (F) HSQC spectrum in CD₃OD at 400 MHz; (G) HMBC spectrum in CD₃OD at 400 MHz; (H) ROESY spectrum in CD₃OD at 400 MHz.

Monoisotopic Mass, Even Electron Ions 353 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 43 20190107_48 202 (1.634) 1: TOF MS ES+ 2.02e+005 529.3174 100-% 530.3213 531.3228 511.3065 611.3174 627.2897 668.3130 0-1911 440 460 480 500 520 260 -1.5 50.0 Minimum: Maximum: 5.0 5.0 Calc. Mass 611.3196 611.3161 mDa -2.2 1.3 PPM i-FIT 80.1 84.0 Norm Conf (%) Formula 0.020 98.06 C33 H48 09 Na 3.942 1.94 C42 H43 04 DBE Mass 611.3174 -3.6 2.1 9.5 21.5 В 3 [*1 e6] 5.9084 5.8873 5.1039 5.0872 5.0716 4.6413 4.6179 4.4767 1.3969 1.2576 1.1618 0.9940 0.9777 3.1100 3.0811 3.4637 6692 5913 9565 11 Y N -0 0.9218 2.5570 0000 0.9195 .0552 2.1632 2.1588 2.6045 2.6422 2.6337 2.6337 6200.1 0.9979 [ppm] С 4 [*1e6] 174.0246 171.3484 170.8433 132.6537 130.5978 80.7197 79.8196 74.2015 122.973 20.5923 17.7913 13.6560 150.066 6289 3695 6680 6680 3190 3190 8609 8050 8050 8050 2665 7075 7075 212.797 6.5.6.6.6.6.6.6.6.6.7.7 LL ო N 0

А

100

50

[ppm]

150

Figure S44 HRESIMS and NMR spectra of 51.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Figure S45 HRESIMS and NMR spectra of 52.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 400 MHz; (C) ¹³C NMR spectrum in CD₃OD at 100 MHz; (D) DEPT 135 spectrum in CD₃OD at 100 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 400 MHz; (F) HSQC spectrum in CD₃OD at 400 MHz; (G) HMBC spectrum in CD₃OD at 400 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

Monoisotopic Mass, Even Electron Ions 300 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 37 20190107_41 188 (1.518)

В

А

Figure S46 HRESIMS and NMR spectra of 55.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

A Monoisotopic Mass, Even Electron lons 267 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 B3B1-C1-2-4 2018091047 200 (1.619) 1: TOF MS ES+ 7.02e+005 473.3269 ר100 % 474.3304

n/a

В

-

0

[ppm]

Figure S47 HRESIMS and NMR spectra of 56.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

[ppm]

Figure S48 HRESIMS and NMR spectra of 57.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

Figure S49 HRESIMS and NMR spectra of 58.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 400 MHz; (C) ¹³C NMR spectrum in CD₃OD at 100 MHz; (D) DEPT 135 spectrum in CD₃OD at 100 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 400 MHz; (F) HSQC spectrum in CD₃OD at 400 MHz; (G) HMBC spectrum in CD₃OD at 400 MHz; (H) ROESY spectrum in CD₃OD at 400 MHz.

Monoisotopic Mass, Even Electron lons 353 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1

-1.8 3.9 9.5 21.5

В

Figure S50 HRESIMS and NMR spectra of 59.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 400 MHz; (C) ¹³C NMR spectrum in CD₃OD at 100 MHz; (D) DEPT 135 spectrum in CD₃OD at 100 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 400 MHz; (F) HSQC spectrum in CD₃OD at 400 MHz; (G) HMBC spectrum in CD₃OD at 400 MHz; (H) ROESY spectrum in CD₃OD at 400 MHz.

Figure S51 HRESIMS and NMR spectra of 60.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) ROESY spectrum in CDCl₃ at 600 MHz.

Figure S52 HRESIMS and NMR spectra of 61.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 400 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 100 MHz; (D) DEPT 135 spectrum in CDCl₃ at 100 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 400 MHz; (F) HSQC spectrum in CDCl₃ at 400 MHz; (G) HMBC spectrum in CDCl₃ at 400 MHz; (H) ROESY spectrum in CDCl₃ at 400 MHz.

Figure S53 HRESIMS and NMR spectra of 62.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

Monoisotopic Mass, Even Electron Ions 313 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-1000 O: 0-200 Na: 0-1 EB4C1D2-80-1 20191118042 224 (1.810)

1: TOF MS ES+ 2.28e+005 511.3067 100-%• 512.3099 365.2104 405.2796 433.2735 451.2849 513.3129 571.3270 588.3539 311.2019 329.2137 627.2453 641.2804 620 640 660 m/z 493.2948 0 0 360 300 32 580 600 540 560 340 320 380 400 480 500 560 420 440 460 520 Minimum: Maximum: -1.5 50.0 5.0 5.0 Calc. Mass mDa 571.3271 -0.1 571.3247 2.3 PPM -0.2 4.0 i-FIT 73.4 72.3
 Norm
 Conf (%)
 Formula

 1.369
 25.45
 C33 H47 08

 0.294
 74.55
 C31 H48 08 Na
DBE Mass 10.5 7.5 571.3270 -0.1 2.3

В

A

Figure S54 HRESIMS and NMR spectra of 63.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in pyridine- d_5 at 600 MHz; (C) ¹³C NMR spectrum in pyridine- d_5 at 150 MHz; (D) DEPT 135 spectrum in pyridine- d_5 at 150 MHz; (E) ¹H–¹H COSY spectrum in pyridine- d_5 at 600 MHz; (F) HSQC spectrum in pyridine- d_5 at 600 MHz; (G) HMBC spectrum in pyridine- d_5 at 600 MHz; (H) ROESY spectrum in pyridine- d_5 at 600 MHz; (I) ¹H NMR spectrum in CD₃OD at 400 MHz; (J) ¹³C NMR spectrum in CD₃OD at 100 MHz; (K) DEPT 135 spectrum in CD₃OD at 100 MHz.

Monoisotopic Mass, Even Electron Ions 248 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 EB4D2C1-80-7 20191118045 228 (1.840)

В

183

A

Figure S55 HRESIMS and NMR spectra of 64.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

Monoisotopic Mass, Even Electron Ions 321 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 EB4C102-80-8 20191118043 242 (1.960)

В

А

Figure S56 HRESIMS and NMR spectra of 65.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

Monoisotopic Mass, Even Electron Ions 298 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-200 H: 0-1000 O: 0-200 Na: 0-1 EB4C102-80-6 20191118044 248 (2.001)

В

А

Figure S57 HRESIMS and NMR spectra of 66.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

А

Figure S58 HRESIMS and NMR spectra of 67.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in acetone- d_6 at 400 MHz; (C) ¹³C NMR spectrum in acetone- d_6 at 100 MHz; (D) DEPT 135 spectrum in acetone- d_6 at 100 MHz; (E) ¹H–¹H COSY spectrum in acetone- d_6 at 400 MHz; (F) HSQC spectrum in acetone- d_6 at 400 MHz; (G) HMBC spectrum in acetone- d_6 at 400 MHz; (H) ROESY spectrum in acetone- d_6 at 400 MHz.

Figure S59 HRESIMS and NMR spectra of 68.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 400 MHz; (C) ¹³C NMR spectrum in CD₃OD at 100 MHz; (D) DEPT 135 spectrum in CD₃OD at 100 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 400 MHz; (F) HSQC spectrum in CD₃OD at 400 MHz; (G) HMBC spectrum in CD₃OD at 400 MHz; (H) ROESY spectrum in CD₃OD at 400 MHz.

Monoisotopic Mass, Even Electron lons 339 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

А

.

[ppm]

Figure S60 HRESIMS and NMR spectra of 69.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CD₃OD at 600 MHz; (C) ¹³C NMR spectrum in CD₃OD at 150 MHz; (D) DEPT 135 spectrum in CD₃OD at 150 MHz; (E) ¹H–¹H COSY spectrum in CD₃OD at 600 MHz; (F) HSQC spectrum in CD₃OD at 600 MHz; (G) HMBC spectrum in CD₃OD at 600 MHz; (H) ROESY spectrum in CD₃OD at 600 MHz.

А

Figure S61 HRESIMS and NMR spectra of 81.

(A) HRESIMS spectrum; (B) ¹H NMR spectrum in CDCl₃ at 600 MHz; (C) ¹³C NMR spectrum in CDCl₃ at 150 MHz; (D) DEPT 135 spectrum in CDCl₃ at 150 MHz; (E) ¹H–¹H COSY spectrum in CDCl₃ at 600 MHz; (F) HSQC spectrum in CDCl₃ at 600 MHz; (G) HMBC spectrum in CDCl₃ at 600 MHz; (H) ROESY spectrum in CDCl₃ at 600 MHz.

Figure S62 Linear correlation between calculated ¹³C NMR chemical shift values of **34-A/34-B** and experimental values of **34**.

Based on the R² values, the relative configuration of **34** is assigned as $3R^*, 4S^*, 5S^*, 8S^*, S^*, 10S^*, 13R^*, 14S^*, 16S^*$.

Figure S63 Linear correlation between calculated ¹³C NMR chemical shift values of **35-A/35-B** and experimental values of **35**.

Based on the R^2 values, the relative configuration of **35** is assigned as $1S^*, 4S^*, 5S^*, 6R^*, 7R^*, 8S^*, 9S^*, 10S^*, 11R^*, 13R^*, 14S^*, 16S^*$.

Figure S64 Linear correlation between calculated ¹³C NMR chemical shift values of **38-A/38-B** and experimental values of **38**.

Based on the R^2 values, the relative configuration of **38** is assigned as $1S^*, 4S^*, 5S^*, 7R^*, 8S^*, 9S^*, 10S^*, 11R^*, 13R^*, 14S^*, 16S^*$.

Figure S65 Linear correlation between calculated ¹³C NMR chemical shift values of **42-A/42-B** and experimental values of **42**.

Based on the R^2 values, the relative configuration of **42** is assigned as $3R^*, 4S^*, 5S^*, 8S^*, 9S^*, 10R^*, 13R^*, 14S^*, 16S^*$.

Figure S66 HPLC analysis for spontaneous 1,4-addition of 37 in Tri-HCl buffer.
(A) 37 incubated in 1 mol/L Tris-HCl buffer (pH 8.0); (B) 37 incubated in 1 mol/L Tris-HCl buffer (pH 7.0); (C) 37 incubated in 1 mol/L Tris-HCl buffer (pH 5.0); (D) Compound 37.

Figure S67 Previously isolated fusidane-type antibiotics during the biosynthetic study of helvolic acid, fusidic acid and cephalosporin P_1 .

Figure S68 Comparison of anti-*S. aureus* 209P activity of fusidane-type antibiotics featured with 3-keto and 3β -OH.

Figure S69 Comparison of anti-*S. aureus* 209P activity of fusidane-type antibiotics featured with 3-keto and 3α -OH.

(A) For most fusidane-type antibiotics, 3α -OH has the positive effect on the activity; (B) For a few fusidane-type antibiotics, 3α -OH has the negative effect on the activity.

Figure S70 The effect of the C1/C2 double bond on anti-*S. aureus* 209P activity.(A) For most fusidane-type antibiotics, the C1/C2 double bond has the negative effect; (B)

For a few fusidane-type antibiotics, the C1/C2 double bond has the positive effect.

Figure S71 The detrimental effect of mono-oxidation at C6 or C7 on anti-S. aureus 209P activity.

Figure S72 The effect of dual-oxidation at C6 and C7 on anti-S. aureus 209P activity.

(A) For most fusidane-type antibiotics, the dual-oxidation at C6 and C7 has the negative effect; (B) For a few fusidane-type antibiotics, the dual-oxidation at C6 and C7 has the positive effect.

Figure S73 The effect of C11α-hydroxylation on anti-S. aureus 209P activity.

(A) For a few fusidane-type antibiotics, $C11\alpha$ -hydroxylation has the positive effect; (B) For most fusidane-type antibiotics, $C11\alpha$ -hydroxylation has the negative effect.

Figure S74 The effect of acetylation of 6-OH on anti-S. aureus 209P activity.

(A) Acetylation of 6β -OH has the negative effect; (B) Acetylation of 6α -OH has the positive effect.

Figure S75 C1α-hydroxylation has the negative effect on anti-S. aureus 209P activity.

Figure S76 Analysis of the impurity peak in the feeding experiment using CO6 as the host. (A) The HPLC profile of CO6 incubated with **37**; (B) The positive mass spectrum of the impurity peak labelled with asterisk; (C) The negative mass spectrum of the impurity peak labelled with asterisk.

Supporting Tables

Tailoring gene	Annotated enzyme function
helE	3-Ketosteroid- Δ^1 -dehydrogenase
helB3	Cytochrome P450 monooxygenase
helD1	Acetyl transferase
fusB1	Cytochrome P450 monooxygenase
fusC1	Short chain dehydrogenase/reductase
cepB4	Cytochrome P450 monooxygenase
cepC2	Short chain dehydrogenase/reductase
cepD2	Acetyl transferase

Table S1 Eight post-tailoring genes from *hel*, *fus* and *cep* clusters.

Gene combination	Transformant	Product
Two-gene combination		
helE + fusB1	AOS1	5
helE + fusC1	AOS2	6, 7, 8
helE + cepB4	AOS3	7, 9, 10, 11
fusB1 + cepB4	AOS4	12, 13, 14, 15, 16
fusB1 + helB3	AOS5	17, 18, 19, 20, 21, 22
fusC1 + helB3	AOS6	23, 24, 25
Three-gene combination		
helE + fusB1 + helB3	AOS7	26, 27, 28
helE + fusB1 + fusC1	AOS8	2, 5, 29
helE + fusC1 + helB3	AOS9	24, 25, 27, 30, 31, 32, 33, 34
helE + fusB1 + cepB4	AOS10	9, 11, 35, 36, 37, 38, 39, 40
helE + fusC1 + cepB4	AOS11	9, 11, 41, 42, 43
helE + cepB4 + cepD2	AOS12	7, 11, 44, 45, 46
fusB1 + cepB4 + fusC1	AOS13	15, 47, 48, 49
fusB1 + cepB4 + cepD2	AOS14	50, 51, 52, 53, 54
fusB1 + helB3 + fusC1	AOS15	17, 23, 55, 56, 57
fusB1 + helB3 + helD1	AOS16	18, 19, 21, 58, 59
fusC1 + helB3 + helD1	AOS17	23, 25, 60
Four-gene combination		
<i>helE</i> + <i>fusB1</i> + <i>helB3</i> + <i>helD1</i>	AOS18	1, 26, 27, 61
helE + fusB1 + helB3 + fusC1	AOS19	5, 26, 27, 37, 38, 62
helE + fusC1 + helB3 + helD1	AOS20	24, 25, 27, 30, 31, 33, 63
helE + cepC1 + fusB1 + cepB4	AOS21	16, 75
helE + fusB1 + cepB4 + cepD2	AOS22	5, 44, 53
helE + fusC1 + cepB4 + cepD2	AOS23	64, 65, 66
fusB1 + fusC1 + cepB4 + cepD2	AOS24	3, 15, 46, 67
fusB1 + fusC1 + helB3 + helD1	AOS25	56, 68
Five-gene combination		
helE+fusB1+fusC1+helB3+helD1	AOS26	23, 60, 68, 69
<i>helE+fusB1 + fusC1 + cepB4 + cepD2</i>	AOS27	5, 9, 29

 Table S2 All gene combinations and the obtained products.

Table S3 NMR data for 5 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

_
•
. 1

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H— ¹ H COSY	HMBC	ROESY
1	160.4, CH	7.66, d (10.3)	2	3, 5, 9, 10	11
2	126.6, CH	5.85, d (10.3)	1	4, 10	
3	202.2, C				
4	43.4, CH	2.35	5, 28		19
5	42.8, CH	2.41	4, 6a, 6b	4	28, 30
6	21.0, CH ₂	a: 1.76	5, 6b, 7a, 7b		
		b: 1.33	5, 6a, 7a, 7b		
7	31.8, CH ₂	a: 1.77	6a, 6b, 7b		
		b: 1.24	6a, 6b, 7a		
8	38.8, C				
9	49.2, CH	1.70, br s	11	1, 10, 11, 19, 30	18, 19
10	39.1, C				
11	67.5, CH	4.50, br s	9, 12a, 12b	9, 10, 13	1, 19
12	35.5, CH ₂	a: 2.37	11, 12b, 13	11, 14	
		b: 2.00	11, 12a, 13	13	
13	44.0, CH	3.04, br d (11.5)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	48.7, C				
15	39.1, CH ₂	a: 2.17	15b, 16	14, 18	13
		b: 1.33	15a, 16	13, 14, 16, 17	
16	74.3, CH	5.89, br d (8.5)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	150.3, C				
18	17.8, CH ₃	0.94, s		8, 13, 14, 15	9
19	26.7, CH ₃	1.21, s		1, 5, 9, 10	4, 9, 11
20	130.0, C				
21	174.5, C				
22	28.8, CH ₂	2.45	23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.17	22, 23b, 24	24, 25	
		b: 2.08	22, 23a, 24	24, 25	
24	122.8, CH	5.09, br t (7.0)	23a, 23b, 26, 27	22, 23, 26, 27	22, 26
25	132.8, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.59, br s	24	24, 25, 26	
28	12.5, CH ₃	1.12, d (6.6)	4	3, 4, 5	5
30	23.5, CH ₃	1.28, s		7, 8, 9, 14	5, 13
16- <u>C</u> OCH ₃	170.5, C				
16-CO <u>C</u> H ₃	20.5, CH ₃	1.96, s		16- <u>C</u> OCH ₃	

Table S4 NMR data for 6 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

r	
٦	
•	

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	NOESY	$\delta_{\rm H} (J {\rm in} {\rm Hz})^{\rm b}$
1	141.1, CH	6.15, d (9.8)	2	3, 5, 9, 10	11a, 19	6.15, d (10.0)
2	126.9, CH	5.61, br d (9.8)	1, 3	3, 4, 10		5.62, dd (10.0, 4.3)
3	68.8, CH	3.94, br s	2,4	1, 2, 5	28	3.94, t (4.4)
4	33.1, CH	1.95	3, 5, 28	5, 10, 28	19	1.97
5	38.3, CH	1.83, br t (11.9)	4, 6a, 6b	1, 3, 4, 10, 19	28, 30	1.83, td (11.6, 1.9)
6	19.1, CH ₂	a: 1.60	5, 6b, 7a, 7b	5, 10	28	a: 1.61
		b: 1.11	5, 6a, 7a, 7b	4, 5, 7, 10		b: 1.12
7	33.5, CH ₂	a: 1.91	6a, 6b, 7b	5, 6, 14, 30		a: 1.92
		b: 1.24	6a, 6b, 7a	6, 8, 9, 30		b: 1.25
8	38.6, C					
9	44.2, CH	1.55, br d (13.3)	11a, 11b	1, 10, 11, 19, 30	18, 19	1.56, dd (12.9, 3.1)
10	38.3, C					
11	24.8, CH ₂	a: 1.72	9, 11b, 12a, 12b	10	1, 19	a: 1.73
		b: 1.35	9, 11a, 12a, 12b	9	30	b: 1.36
12	26.2, CH ₂	a: 2.28, br d (11.1)	11a, 11b, 12b, 13	9, 14		a: 2.29
		b: 1.68	11a, 11b, 12a, 13	11, 13		b: 1.69
13	49.0, CH	2.54	12a, 12b	12, 14, 17, 18	30	2.55
14	48.5, C					
15	39.2, CH ₂	a: 2.04	15b, 16	8, 14, 18		a: 2.05
		b: 1.30	15a, 16	13, 14, 16, 17, 18		b: 1.30
16	74.2, CH	5.84, br d (7.6)	15a, 15b	14, 17, 20, 16-CO <u>C</u> H ₃		5.84, br d (8.3)
17	150.4, C					
18	18.3, CH ₃	0.94, s		8, 13, 14, 15	9	0.95, s
19	26.2, CH ₃	0.94, s		1, 5, 9, 10	1, 4, 9, 11a	0.95, s
20	129.6, C					
21	173.8, C					
22	28.6, CH ₂	a: 2.51	22b, 23a, 23b	17, 20, 21, 23, 24	24	a: 2.53
		b: 2.43	22a, 23a, 23b	17, 20, 21, 23, 24	24	b: 2.44
23	28.3, CH ₂	a: 2.12	22a, 22b, 23b, 24	20, 22, 24, 25		a: 2.13
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25		b: 2.07
24	123.0, CH	5.09, br s	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26	5.11, t (7.1)
25	132.6, C					
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24	1.68, br s
27	17.7, CH ₃	1.59, br s	24	24, 25, 26		1.61, br s
28	14.2, CH ₃	0.98, d (6.0)	4	3, 4, 5	3, 5, 6a	0.98, d (6.8)
30	21.7, CH ₃	1.01, s		7, 8, 9, 14	5, 13, 11b	1.02, s
16- <u>C</u> OCH ₃	170.6, C					
16-CO <u>C</u> H ₃	20.6, CH3	1.96, s		16- <u>C</u> OCH ₃		1.98, s

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

The ¹H NMR data of 6 obtained via chemical derivatization were measured at low concentrations of the compound in CDCl₃.

Table S5 NMR data for 9 (1 H for 600 MHz and 13 C for 150 MHz in CDCl₃).

9

Position	$\delta_{\rm C}$, type	$\delta_{ m H}(J { m in Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	157.4, CH	7.28, d (10.1)	2	3, 5, 9, 10, 19	11a, 11b
2	127.9, CH	5.85, d (10.1)	1	4, 10	
3	203.2, C				
4	42.5, CH	2.73, dq (12.0, 6.7)	5, 28	3, 5, 6, 10, 28	6, 19
5	49.2, CH	1.96	4, 6	1, 4, 6, 7, 10, 19, 28	7, 28, 30
6	74.2, CH	3.71, dd (11.1, 8.2)	5,7	5, 7, 10	4, 19
7	87.1, CH	3.51, d (8.2)	6	5, 6, 8, 9, 30	5
8	45.1, C				
9	42.7, CH	1.95	11a, 11b	8, 10, 11, 30	18
10	40.3, C				
11	24.5, CH ₂	a: 1.71	9, 11b, 12a, 12b		1
		b: 1.54 qd (13.3, 4.1)	9, 11a, 12a, 12b		1, 13
12	25.8, CH ₂	a: 2.34	11a, 11b, 12b, 13	11	
		b: 1.80	11a, 11b, 12a, 13	13, 14, 17	
13	50.7, CH	2.60, br d (10.9)	12a, 12b	14, 17, 18, 20	11b, 16, 30
14	47.7, C				
15	40.9, CH ₂	a: 2.20, dd (14.2, 8.5)	15b, 16	8, 14, 18	30
		b: 1.81	15a, 16	13, 14, 16, 17, 18	
16	74.2, CH	5.89, br d (8.5)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13, 30
17	148.8, C				
18	20.8, CH3	1.22, s		8, 13, 14, 15	9
19	27.5, CH ₃	1.23, s		1, 5, 9, 10	4, 6
20	130.4, C				
21	173.8, C				
22	28.6, CH ₂	a: 2.51	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.44	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.13	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.07	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.9, CH	5.10, br t (7.4)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.7, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	17.3, CH ₃	1.42, d (6.9)	4	3, 4, 5	5
30	21.4, CH ₃	1.10, s		7, 8, 9, 14	5, 13, 15a, 16
16- <u>C</u> OCH ₃	171.0, C				
16-СО <u>С</u> Н3	20.7, CH ₃	1.98, s		16- <u>C</u> OCH ₃	

Table S6 NMR data for 10 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

1	Δ
1	U

Position	δc , type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	NOESY
1	157.6, CH	7.27, d (10.3)	2	3, 5, 9, 10	
2	127.7, CH	5.86, d (10.3)	1	4, 10	
3	203.1, C				
4	43.0, CH	2.70, dq (11.9, 6.9)	5, 28	3, 5, 6, 10, 28	19
5	51.7, CH	2.16, t (11.6)	4, 6	1, 3, 4, 6, 7, 10, 19, 28	30
6	69.1, CH	3.91, ddd (10.7, 8.2, 6.7)	5, 7a, 7b	5, 7, 10	9, 19
7	45.6, CH ₂	a: 2.32, dd (13.8, 6.7)	6, 7b	5, 6, 8, 9, 14, 30	18
		b: 1.17	6, 7a	6, 30	
8	39.2, C				
9	44.0, CH	1.65, dd (12.7, 2.8)	11a, 11b	1, 8, 10, 11, 19, 30	6, 18
10	39.8, C				
11	24.6, CH ₂	a: 1.74	9, 11b, 12a, 12b	8,9	
		b: 1.46	9, 11a, 12a, 12b	8, 9, 12, 13	
12	$26.0,CH_2$	a: 2.36	11a, 11b, 12b, 13		
		b: 1.72	11a, 11b, 12a, 13	11, 13	18
13	48.7, CH	2.57, br d (11.6)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.2, C				
15	39.1, CH ₂	a: 2.06	15b, 16	8, 14, 18	30
		b: 1.35, br d (14.2)	15a, 16	13, 16, 17, 18	18
16	73.9, CH	5.87, br d (8.2)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.7, C				
18	18.3, CH ₃	1.01, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	27.3, CH ₃	1.18, s		1, 5, 9, 10	4, 6
20	129.9, C				
21	172.9, C				
22	28.6, CH ₂	a: 2.51	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.45	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.14	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.08	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.8, CH	5.10, br t (6.9)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.8, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	17.0, CH ₃	1.43, d (6.9)	4	3, 4, 5	
30	21.0, CH ₃	1.10, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	170.5, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.98, s		16- <u>C</u> OCH ₃	

Table S7 NMR data for 11 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

1	-1	
_		

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	159.2, CH	7.29, d (10.2)	2	3, 5, 10	11a, 11b
2	127.6, CH	5.81, d (10.2)	1	4, 10	
3	202.4, C				
4	42.4, CH	2.44	5, 28		19
5	44.5, CH	1.93	4, 6a, 6b	1, 4, 6, 7, 10, 19	28, 30
6	32.9, CH ₂	a: 1.98	5, 6b, 7		
		b: 1.39	5, 6a, 7	7	
7	79.7, CH	3.86, dd (8.7, 6.9)	6a, 6b	6, 9, 30	30
8	45.0, C				
9	43.0, CH	2.03	11a, 11b	8, 10, 19, 30	18, 19
10	39.0, C				
11	24.8, CH ₂	a: 1.82	9, 11b, 12a, 12b	8, 13	1
		b: 1.51, qd (14.4, 4.0)	9, 11a, 12a, 12b		1
12	25.8, CH ₂	a: 2.33	11a, 11b, 12b, 13	14	
		b: 1.80	11a, 11b, 12a, 13	13	
13	50.8, CH	2.58, br d (10.4)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.0, C				
15	40.7, CH ₂	a: 2.18, dd (14.4, 8.8)	15b, 16	14, 18	30
		b: 1.73, br d (14.4)	15a, 16	13, 14, 16, 17, 18	
16	74.3, CH	5.86, br d (8.4)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.1, C				
18	21.2, CH ₃	1.21, s		8, 13, 14, 15	9
19	25.7, CH ₃	1.22, s		1, 5, 9, 10	4, 9
20	130.4, C				
21	174.5, C				
22	28.6, CH ₂	2.46	23	17, 20, 21, 23, 24	24
23	28.2, CH ₂	2.09	22, 24	22, 24, 25	
24	122.9, CH	5.09, br t (7.1)	23, 26, 27	23, 26, 27	22, 26
25	132.6, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.59, br s	24	24, 25, 26	
28	12.9, CH ₃	1.13, d (6.7)	4	3, 4, 5	5
30	21.2, CH ₃	0.98, s		7, 8, 9, 14	5, 7, 13, 15a
16- <u>C</u> OCH3	170.8, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.95, s		16- <u>С</u> ОСН3	

Table S8 NMR data for 12 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

1	1
1	4

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	33.8, CH ₂	a: 2.58	1b, 2a, 2b	19	30
		b: 1.80	1a, 2a, 2b	5, 10, 19	
2	34.9, CH ₂	a: 2.58	1a, 1b, 2b		
		b: 2.36	1a, 1b, 2a	3	
3	217.8, C				
4	45.1, CH	2.50	5, 28		6, 19
5	48.9, CH	1.87, t (10.6)	4, 6	6, 7, 19	7, 28, 30
6	73.9, CH	3.53, dd (10.4, 8.3)	5, 7	7	4, 9, 19
7	87.3, CH	3.48, d (8.2)	6	6, 30	5, 30
8	46.4, C				
9	46.2, CH	1.78	11	1, 5, 8, 10, 19, 30	6, 18, 19
10	38.5, C				
11	67.8, CH	4.36, br s	9, 12a, 12b	8, 9, 13	19
12	36.3, CH ₂	a: 2.28	11, 12b, 13	14	22
		b: 1.99	11, 12a, 13		18
13	46.3, CH	3.06, br d (12.7)	12a, 12b	12, 14, 17, 20	16, 30
14	48.3, C				
15	40.8, CH ₂	a: 2.31	15b, 16	14	30
		b: 1.79	15a, 16	8	18
16	74.5, CH	5.91, br d (8.3)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.9, C				
18	20.4, CH3	1.17, s		8, 13, 14, 15	9, 12b, 15b
19	23.8, CH3	1.02, s		1, 5, 9, 10	4, 6, 9, 11
20	130.2, C				
21	173.8, C				
22	28.8, CH ₂	2.45	23a, 23b	17, 20, 21, 23, 24,	12a, 24
23	28.3, CH ₂	a: 2.14	22, 23b, 24		
		b: 2.08	22, 23a, 24		
24	122.9, CH	5.09, br t (6.9)	23a, 23b, 26, 27	26, 27	22, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH3	1.59, br s	24	24, 25, 26	
28	18.8, CH ₃	1.31, d (6.9)	4	3, 4, 5	5
30	25.8, CH ₃	1.45, s		7, 8, 9, 14	1a, 5, 7, 13, 15a
16- <u>C</u> OCH ₃	171.1, C				
16-СО <u>С</u> Н3	20.7, CH ₃	1.97, s		16- <u>С</u> ОСН3	

Table S9 NMR data for 13 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

1	3
	•

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	34.8, CH ₂	a: 1.97	1b, 2a, 2b	2, 10, 19	
		b: 1.77	1a, 2a, 2b	2, 3, 5, 10	
2	31.6, CH ₂	a: 1.91	1a, 1b, 2b, 3	3	
		b: 1.66	1a, 1b, 2a, 3	1, 3	
3	76.6, CH	3.13, td (10.8, 4.9)	2a, 2b, 4	2, 4, 5, 28	28
4	39.1, CH	1.48	3, 5, 28	3, 5	19
5	42.6, CH	1.41, td (11.8, 4.0)	4, 6a, 6b	3, 4, 6, 7, 10, 19	7, 28, 30
6	33.8, CH ₂	a: 2.03	5, 6b, 7	5, 7, 8, 10	19
		b: 1.16	5, 6a, 7	7	
7	79.0, CH	3.73, t (6.2)	6a, 6b	5, 6, 8, 9, 14, 30	5, 30
8	45.2, C				
9	46.5, CH	1.92, br s	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	36.8, C				
11	68.6, CH	4.40, br s	9, 12a, 12b	8, 13	19
12	35.9, CH ₂	a: 2.29	11, 12b, 13	11	
		b: 1.96	11, 12a, 13		
13	46.4, CH	3.06, br d (11.6)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.6, C				
15	40.3, CH ₂	a: 2.26	15b, 16	8, 14, 18	30
		b: 1.62, br d (14.4)	15a, 16	13, 14, 16, 17, 18	18
16	74.4, CH	5.91, br d (8.4)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	150.5, C				
18	21.3, CH ₃	1.17, s		8, 13, 14, 15	9, 15b
19	22.9, CH ₃	1.15, s		1, 5, 9, 10	4, 6a, 9, 11
20	130.0, C				
21	173.8, C				
22	28.8, CH ₂	2.46	23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.16	22, 23b, 24	20, 22, 24, 25	
		b: 2.06	22, 23a, 24	20, 22, 24, 25	
24	123.0, CH	5.10, br t (6.6)	23a, 23b, 26, 27	23, 26, 27	22, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	15.4, CH ₃	0.96, d (6.1)	4	3, 4, 5	3, 5
30	23.9, CH ₃	1.30, s		7, 8, 9, 14	5, 7, 13, 15a
16- <u>C</u> OCH ₃	170.7, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.97, s		16- <u>С</u> ОСН3	

Table S10 NMR data for 14 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

14

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	34.4, CH ₂	a: 2.58	1b, 2a, 2b		5, 30
		b: 1.89	1a, 2a, 2b	3, 5	19
2	36.1, CH ₂	a: 2.53	1a, 1b, 2b	1, 3	
		b: 2.41	1a, 1b, 2a	1, 3	19
3	215.9, C				
4	46.0, CH	2.49	5, 28		6, 19
5	51.1, CH	2.10	4, 6	4, 6, 10, 19	1a, 30
6	69.7, CH	3.79	5, 7a, 7b		4, 9, 19, 28
7	44.7, CH ₂	a: 2.15	6, 7b	9, 14	9, 18
		b: 1.20, dd (14.0, 5.5)	6, 7a		
8	39.9, C				
9	48.4, CH	1.56, br s	11	1, 8, 10, 11, 19, 30	6, 7a, 12b, 18, 19
10	37.4, C				
11	67.6, CH	4.37, br s	9, 12a, 12b	8, 13	19
12	36.2, CH ₂	a: 2.30, br d (13.2)	11, 12b, 13	14	
		b: 1.90	11, 12a, 13		9, 18
13	43.8, CH	3.06, br d (11.4)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	48.4, C				
15	39.0, CH ₂	a: 2.20	15b, 16	18	13
		b: 1.36, br d (14.5)	15a, 16	16	18
16	74.2, CH	5.93, br d (8.2)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	150.1, C				
18	17.9, CH ₃	0.95, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	24.8, CH ₃	1.05, s		1, 5, 9, 10	1b, 2b, 4, 6, 9, 11
20	130.2, C				
21	173.9, C				
22	$28.8,CH_2$	2.45	23	17, 20, 21, 23, 24	24
23	28.3, CH ₂	2.11	22, 24	24	
24	122.9, CH	5.09, br t (6.5)	23, 26, 27	26, 27	22, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.59, br s	24	24, 25, 26	
28	16.9, CH ₃	1.29, d (6.6)	4	3, 4, 5	6
30	24.2, CH ₃	1.41, s		7, 8, 9, 14	1a, 5, 13
16- <u>C</u> OCH ₃	170.7, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.97, s		16- <u>С</u> ОСН ₃	

Table S11 NMR data for 15 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

1	5
	5

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	35.7, CH ₂	a: 2.39	1b, 2		
		b: 1.99	1a, 2		
2	38.0, CH ₂	2.46	1a, 1b	3	19
3	213.5, C				
4	45.6, CH	2.35	5, 28	2	19
5	44.5, CH	1.82, td (11.8, 4.0)	4, 6a, 6b		7, 28, 30
6	34.5, CH ₂	a: 1.99	5, 6b, 7		
		b: 1.29	5, 6a, 7		
7	78.9, CH	3.76, t (6.5)	6a, 6b	5, 8, 30	5, 30
8	45.4, C				
9	46.4, CH	2.01, br s	11	1, 7, 8, 10, 11, 12, 14, 19, 30	18, 19
10	36.8, C				
11	68.4, CH	4.44, br s	9, 12a, 12b	8, 13	19
12	36.2, CH ₂	a: 2.29	11, 12b, 13	9, 11, 13, 14	
		b: 1.99	11, 12a, 13		
13	46.3, CH	3.07, br d (11.3)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.5, C				
15	40.3, CH ₂	a: 2.28	15b, 16	13, 14, 18	
		b: 1.65	15a, 16	13, 14, 16, 17, 18	
16	74.4, CH	5.91, br d (8.4)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	150.2, C				
18	21.1, CH ₃	1.19, s		8, 13, 14, 15	9
19	22.3, CH ₃	1.29, s		1, 5, 9, 10	2, 4, 9, 11
20	130.4, C				
21	174.3, C				
22	28.7, CH ₂	2.45	23	17, 20, 21, 23, 24	24
23	28.3, CH ₂	2.11	22, 24	24, 25	
24	123.0, CH	5.09, br t (7.0)	23, 26, 27	26, 27	22, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.59, br s	24	24, 25, 26	
28	12.3, CH ₃	1.01, d (6.6)	4	3, 4, 5	5
30	24.0, CH ₃	1.29, s		7, 8, 9, 14	5, 7, 13
16- <u>C</u> OCH3	170.8, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.96, s		16- <u>С</u> ОСН ₃	

Table S12 NMR data for 17 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

1	7
-	

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	НМВС	ROESY ^b
1	35.5, CH ₂	a: 1.97	1b, 2a, 2b	2, 3, 19	3
		b: 1.74	1a, 2a, 2b	2, 3, 5	11
2	31.6, CH ₂	a: 1.95	1a, 1b, 2b, 3	1	
		b: 1.72	1a, 1b, 2a, 3	1, 3, 4	
3	76.7, CH	3.19, td (10.9, 5.3)	2a, 2b, 4	2, 4, 28	1a, 5, 28
4	35.3, CH	2.01	3, 5, 28	3, 5, 28	19
5	46.0, CH	1.65, br d (10.6)	4, 6	1, 3, 4, 19	3
6	72.8, CH	4.03, d (2.5)	5	5, 7, 8, 10	28
7	215.9, C				
8	52.8, C				
9	46.1, CH	2.30, br s	11	7, 8, 10, 11, 19, 30	18, 19
10	36.2, C				
11	68.1, CH	4.49, br s	9, 12a, 12b	8, 13	1b, 19
12	35.8, CH ₂	a: 2.32	11, 12b, 13	11	
		b: 1.96	11, 12a, 13		
13	44.4, CH	3.09, br d (11.5)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	46.8, C				
15	40.4, CH ₂	a: 2.31	15b, 16	18	
		b: 1.91	15a, 16	13, 14, 16, 17, 18	
16	73.9, CH	5.91, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.7, C				
18	18.0, CH ₃	0.96, s		8, 13, 14, 15	9
19	25.1, CH3	1.28, s		1, 5, 9, 10	4, 9, 11
20	130.0, C				
21	173.2, C				
22	28.7, CH ₂	2.46	23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.14	22, 23b, 24	20, 22, 24, 25	
		b: 2.07	22, 23a, 24	20, 22, 24, 25	
24	122.9, CH	5.10, br t (7.2)	23a, 23b, 26, 27	23, 26, 27	22, 26
25	132.8, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	15.1, CH ₃	1.08, d (6.3)	4	3, 4, 5	3,6
30	21.5, CH ₃	1.47, s		7, 8, 9, 14	13
16- <u>C</u> OCH ₃	170.6, C				
16-CO <u>C</u> H3	20.6, CH ₃	1.98, s		16- <u>С</u> ОСН ₃	

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^bThe data is recorded at 400 MHz.

Table S13 NMR data for 18 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

1	8
-	•••

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	НМВС	NOESY
1	34.7, CH ₂	a: 2.11	1b, 2a, 2b	2, 3, 10, 19	3, 11
		b: 1.71, dt (13.5, 3.6)	1a, 2a, 2b	3	11, 19
2	32.3, CH ₂	a: 1.77	1a, 1b, 2b, 3	1	
		b: 1.55	1a, 1b, 2a, 3	10	
3	76.9, CH	3.00	2a, 2b, 4	2, 4, 28	1a, 5, 28
4	42.0, CH	1.29	3, 5, 28	3, 5	19
5	43.8, CH	1.85	4, 6a, 6b	3, 4, 6, 10, 19	3, 28, 30
6	35.1, CH ₂	a: 1.67	5, 6b, 7	7, 8	
		b: 1.59	5, 6a, 7		
7	71.4, CH	3.87, t (8.3)	6a, 6b	6, 8, 9, 14, 30	9, 18
8	46.2, C				
9	51.4, CH	1.51, d (1.4)	11	7, 8, 10, 11, 14, 19, 30	7, 18, 19
10	37.1, C				
11	68.5, CH	4.31, br s	9, 12a, 12b	8, 13	1a, 1b, 19
12	37.3, CH ₂	a: 2.29	11, 12b, 13	11, 14	
		b: 1.84	11, 12a, 13	13	18
13	45.3, CH	3.02	12a, 12b	11, 12, 14, 17, 18, 20	16, 30
14	49.2, C				
15	43.0, CH ₂	a: 2.25	15b, 16	8, 14, 18	30
		b: 1.57	15a, 16	13, 14, 16, 17, 18	
16	76.0, CH	5.75, br d (8.7)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.8, C				
18	16.7, CH ₃	0.99, s		8, 13, 14, 15	7, 9, 12b
19	25.7, CH ₃	0.99, s		1, 5, 9, 10	1b, 4, 9, 11
20	132.0, C				
21	174.6, C				
22	29.8, CH ₂	a: 2.55	22b, 23	17, 20, 21, 23, 24	24
		b: 2.35	22a, 23	17, 20, 21, 23, 24	24
23	29.4, CH ₂	2.09	22a, 22b, 24	20, 22, 24, 25	
24	124.4, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.60, br s	24	24, 25, 26	
28	15.8, CH ₃	0.95, d (6.3)	4	3, 4, 5	3, 5
30	15.0, CH ₃	1.26, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

Table S14 NMR data for 19 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

17

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	NOESY
1	35.5, CH ₂	1.90	2a, 2b	2, 3, 5, 10, 19	
2	32.7, CH ₂	a: 1.87	1, 2b, 3	1, 3	
		b: 1.67	1, 2a, 3	3	19
3	77.2, CH	3.03	2a, 2b, 4	2, 4, 5, 28	5, 28
4	38.2, CH	1.57	3, 5, 28	3, 5, 28	19
5	43.9, CH	1.50	4, 6a, 6b	1, 3, 4, 6, 7, 10, 19	3, 28, 30
6	41.1, CH ₂	a: 2.26	5, 6b	5, 7, 8, 10	28
		b: 2.18, t (14.6)	5, 6a	5, 7, 10	19
7	221.5, C				
8	54.6, C				
9	48.0, CH	1.86, br s	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	37.9, C				
11	67.5, CH	4.37, br d (1.6)	9, 12a, 12b	8, 10, 13	19
12	36.9, CH ₂	a: 2.32	11, 12b, 13		
		b: 1.84	11, 12a, 13	13	
13	44.8, CH	3.05	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.4, C				
15	41.8, CH ₂	a: 2.29	15b, 16	8, 14, 18	30
		b: 1.72, br d (14.7)	15a, 16	13, 14, 16, 17, 18	18
16	75.5, CH	5.79, br d (8.5)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	145.9, C				
18	17.5, CH ₃	0.82, s		8, 13, 14, 15	9, 15b
19	21.6, CH3	1.11, s		1, 5, 9, 10	2b, 4, 6b, 9, 11
20	133.6, C				
21	174.8, C				
22	29.9, CH ₂	a: 2.54	22b, 23	17, 20, 21, 23, 24	24
		b: 2.35	22a, 23	17, 20, 21, 23, 24	24
23	29.2, CH ₂	2.10	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH3	1.66, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.60, br s	24	24, 25, 26	
28	15.7, CH ₃	0.93, d (6.2)	4	3, 4, 5	3, 5, 6a
30	22.5, CH ₃	1.41, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH ₃	172.6, C				
16-СО <u>С</u> Н3	20.7, CH ₃	1.95, s		16- <u>С</u> ОСН ₃	

Table S15 NMR data for 20 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

1	A	
7	U	

Position	$\delta_{\rm C}$, type	$\delta_{\rm H} (J {\rm in} {\rm Hz})^{\rm a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	37.3, CH ₂	a: 2.40	1b, 2	2, 3, 10, 19	
		b: 1.98	1a, 2	2, 5, 10	
2	38.6, CH ₂	2.50	1a, 1b	1, 3, 10	
3	216.9, C				
4	42.9, CH	2.87, dq (13.3, 6.7)	5, 28	3, 5, 6, 10, 28	19
5	47.5, CH	1.88, dd (12.5, 1.8)	4, 6	1, 3, 4, 7, 10, 19, 28	
6	74.5, CH	3.82, br s	5	4, 5, 7, 8, 10	30
7	216.9, C				
8	54.5, C				
9	45.7, CH	2.53, br s	11	1, 5, 7, 8, 10, 11, 14, 19, 30	19
10	37.3, C				
11	67.7, CH	4.47, br s	9, 12a, 12b	8, 13	19
12	36.9, CH ₂	a: 2.35	11, 12b, 13	11, 14	
		b: 1.92	11, 12a, 13	13	
13	44.9, CH	3.12, br d (12.0)	12a, 12b	12, 14, 17. 18. 20	30
14	48.0, C				
15	41.9, CH ₂	a: 2.34	15b, 16	8, 14, 18	
		b: 1.81, br d (14.6)	15a, 16	13, 14, 16, 17, 18	
16	75.5, CH	5.81, br d (8.5)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	
17	147.1, C				
18	18.7, CH ₃	0.92, s		8, 13, 14, 15	
19	24.8, CH ₃	1.45, s		1, 5, 9, 10	4, 9, 11
20	132.7, C				
21	174.2, C				
22	29.8, CH ₂	a: 2.55	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.37	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	29.2, CH ₂	a: 2.14	22a, 22b, 23b, 24	22, 24, 25	27
		b: 2.08	22a, 22b, 23a, 24	22, 24, 25	27
24	124.2, CH	5.13, br t (7.2)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.60, br s	24	24, 25, 26	23a, 23b
28	12.8, CH ₃	1.06, d (6.8)	4	3, 4, 5	
30	22.4, CH ₃	1.44, s		7, 8, 9, 14	6, 13
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.96, s		16- <u>С</u> ОСН ₃	

Table S16 NMR data for 21 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

2	1
-	1

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	NOESY
1	35.5, CH ₂	a: 2.42	1b, 2a, 2b	2, 10, 19	11
		b: 1.97	1a, 2a, 2b	2, 3, 5, 10, 19	11
2	38.2, CH ₂	a: 2.48	1a, 1b, 2b	1, 3	
		b: 2.37, br d (12.4)	1a, 1b, 2a	3, 10	
3	212.8, C				
4	46.5, CH	2.26	5, 28	2, 3, 5, 10, 28	19
5	44.5, CH	2.25	4, 6a, 6b	3, 4, 10, 19, 28	28, 30
6	35.0, CH ₂	a: 1.82	5, 6b, 7	4, 5, 7	
		b: 1.53	5, 6a, 7	5, 7, 10	
7	70.4, CH	3.96, t (7.9)	6a, 6b	5, 6, 8, 9, 14, 30	9, 18, 19
8	44.7, C				
9	49.8, CH	1.59	11	7, 8, 10, 11, 12, 14, 19, 30	7, 12b, 18, 19
10	36.1, C				
11	68.1, CH	4.37, br s	9, 12a, 12b	8, 9, 10, 12, 13	1a, 1b, 19
12	36.0, CH ₂	a: 2.30	11, 12b, 13	9, 11, 14	
		b: 1.92	11, 12a, 13	13	9, 18
13	44.3, CH	3.02, br d (12.1)	12a, 12b	11, 12, 14, 17, 18, 20	16, 30
14	47.9, C				
15	41.7, CH ₂	a: 2.27	15b, 16	14, 18	
		b: 1.56	15a, 16	8, 14, 16, 17, 18	
16	74.3, CH	5.85, br d (8.4)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13, 30
17	148.7, C				
18	16.7, CH ₃	1.00, s		8, 13, 14, 15	7, 9, 12b
19	24.4, CH ₃	1.19, s		1, 5, 9, 10	4, 7, 9, 11
20	130.0, C				
21	174.4, C				
22	28.7, CH ₂	2.43	23a, 23b	17, 20, 21, 23, 24	24
23	28.4, CH ₂	a: 2.13	22, 23b, 24	20, 22, 24, 25	
		b: 2.04	22, 23a, 24	20, 22, 24, 25	
24	123.0, CH	5.08, br t (6.8)	23a, 23b, 26, 27	23, 26, 27	22, 26
25	132.6, C				
26	25.7, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.58, br s	24	24, 25, 26	
28	11.5, CH ₃	0.98, d (5.0)	4	3, 4, 5	5
30	14.4, CH ₃	1.23, s		7, 8, 9, 14	5, 13, 16
16- <u>C</u> OCH3	171.0, C				
16-СО <u>С</u> Н3	20.6, CH3	1.94, s		16- <u>C</u> OCH ₃	

Table S17 NMR data for 22 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

22

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY ^b	HMBC ^b	ROESY ^b
1	34.7, CH ₂	a: 2.36	1b, 2	9, 10, 19	
		b: 2.05	1a, 2	3, 19	
2	37.7, CH ₂	2.52	1a, 1b	1, 3	19
3	212.2, C				
4	44.2, CH	2.40	5, 28	3, 5, 10	19
5	43.0, CH	1.99	4, 6a, 6b	4	30
6	40.4 ^c , CH ₂	a: 2.32	5, 6b	7, 10	
		b: 2.19, t (14.7)	5, 6a	5, 7, 10	
7	216.7, C				
8	53.2, C				
9	46.5, CH	1.94, d (1.3)	11	1, 7, 8, 10, 11, 19, 30	18, 19
10	36.6, C				
11	67.4, CH	4.51, br s	9, 12a, 12b	8, 13	19
12	35.7, CH ₂	a: 2.34	11, 12b, 13	11, 14	
		b: 1.91	11, 12a, 13		
13	43.9, CH	3.06, br d (11.8)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	47.2, C				
15	40.5°, CH2	a: 2.32	15b, 16	18	
		b: 1.89, br d (14.7)	15a, 16	13, 14, 16, 17	
16	73.8, CH	5.93, br d (8.3)	15a, 15b	14, 17, 16- <u>C</u> OCH ₃	13
17	148.0, C				
18	17.1, CH ₃	0.85, s		8, 13, 14, 15	9
19	21.3 ^d , CH ₃	1.23, s		1, 5, 9, 10	2, 4, 9, 11
20	130.7, C				
21	174.1, C				
22	28.7, CH ₂	2.42	23	17, 20, 21, 23, 24	24
23	28.3, CH ₂	2.09	22, 24	22, 24, 25	
24	122.9, CH	5.09, br t (7.1)	23, 26, 27	26, 27	22, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.59, br s	24	24, 25, 26	
28	12.6, CH ₃	1.03, d (6.7)	4	3, 4, 5	
30	21.4 ^d , CH ₃	1.41, s		7, 8, 9, 14	5, 13
16- <u>С</u> ОСН3	170.7, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^bThe data were recorded at 400 MHz.

^{c,d}Assignment might be interchanged.

Table S18 NMR data for 23 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

~	-	
,	٠.	K.
4	•	,

Position	$\delta_{\rm C}$, type	$\delta_{\rm H} (J {\rm in} {\rm Hz})^{\rm a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	30.0, CH ₂	a: 1.71	1b, 2a, 2b	19	
		b: 1.23	1a, 2a, 2b		
2	29.8, CH ₂	a: 1.90	1a, 1b, 2b, 3		
		b: 1.70	1a, 1b, 2a, 3	3, 4, 10	
3	71.4, CH	3.89, br s	2a, 2b, 4	1, 2, 5, 28	
4	32.1, CH	2.23	3, 5, 28	5, 28	19
5	39.0, CH	2.12	4, 6,	1, 3, 4, 7, 10, 19	28, 30
6	73.8, CH	3.87, br s	5	4, 5, 7, 8, 10	28
7	217.7, C				
8	52.5, C				
9	41.7, CH	2.45	11a, 11b	1, 8, 10, 14, 19, 30	18, 19
10	35.6, C				
11	22.7, CH ₂	a: 1.76	9, 11b, 12a, 12b	8	
		b: 1.38	9, 11a, 12a, 12b		13
12	26.1, CH ₂	a: 2.27	11a, 11b, 12b, 13	9, 14	
		b: 1.71	11a, 11b, 12a, 13		
13	49.3, CH	2.51	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	46.7, C				
15	40.7, CH ₂	a: 2.25	15b, 16	8, 14, 18	13
		b: 1.80	15a, 16	13, 14, 16, 17, 18	18
16	74.0, CH	5.80, br d (8.2)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.8, C				
18	18.2, CH ₃	0.89, s		8, 13, 14, 15	9, 15b
19	23.0, CH ₃	1.25, s		1, 5, 9, 10	4, 9
20	130.1, C				
21	174.1, C				
22	28.4, CH ₂	2.43	23	17, 20, 21, 23, 24	24
23	28.4, CH ₂	2.06	22, 24	20, 22, 24, 25	
24	123.0, CH	5.07, br t (6.7)	23, 26, 27	23, 26, 27	22, 26
25	132.5, C				
26	25.6, CH ₃	1.65, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.57, br s	24	24, 25, 26	
28	15.0, CH ₃	0.97, d (6.2)	4	3, 4, 5	5, 6
30	17.4, CH ₃	1.25, s		7, 8, 9, 14	5, 13
16- <u>C</u> OCH ₃	170.9, C				
16-СО <u>С</u> Н3	20.4, CH ₃	1.93, s		16- <u>C</u> OCH ₃	

Table S19 NMR data for 24 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

24

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	29.6, CH ₂	a: 1.60	1b, 2a, 2b	2, 9, 10, 19	
		b: 1.27, br d (12.1)	1a, 2a, 2b	2, 3, 5	
2	29.7, CH ₂	a: 1.77	1a, 1b, 2b, 3	1	
		b: 1.69	1a, 1b, 2a, 3	1	
3	71.3, CH	3.73, br s	2a, 2b, 4	1, 2, 5, 28	28
4	35.8, CH	1.55	3, 5, 28	5, 6, 28	19
5	34.7, CH	2.15	4, 6a, 6b	1, 3, 4, 6, 10, 19, 28	28, 30
6	33.4, CH ₂	a: 1.66	5, 6b, 7	4, 5, 7, 8, 10	
		b: 1.37	5, 6a, 7	4, 5, 7, 8, 10	
7	70.4, CH	4.00, dd (8.1, 4.7)	6a, 6b	5, 6, 8, 14, 30	9, 18, 19
8	44.5, C				
9	45.9, CH	1.48	11a, 11b	8, 10, 12, 19, 30	7, 18, 19
10	35.7, C				
11	23.4, CH ₂	a: 1.71	9, 11b, 12a, 12b		
		b: 1.35	9, 11a, 12a, 12b	8, 9, 10	
12	26.3, CH ₂	a: 2.23	11a, 11b, 12b, 13	11, 14	
		b: 1.60	11a, 11b, 12a, 13	9, 11, 13	
13	49.3, CH	2.48	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.2, C				
15	41.6, CH ₂	a: 2.24	15b, 16	8, 14, 18	30
		b: 1.49	15a, 16	13, 14, 16, 17, 18	18
16	74.4, CH	5.83, br d (8.6)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.4, C				
18	17.9, CH ₃	0.99, s		8, 13, 14, 15	7, 9, 15b
19	22.2, CH ₃	0.87, s		1, 5, 9, 10	4, 7, 9
20	129.6, C				
21	174.1, C				
22	28.6, CH ₂	a: 2.50	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.40	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.11	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.05	22a, 22b, 23a, 24	20, 22, 24, 25	
24	123.0, CH	5.09, br t (7.1)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.6, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.59, br s	24	24, 25, 26	
28	15.8, CH ₃	0.90, d (6.8)	4	3, 4, 5	3, 5
30	12.3, CH ₃	1.08, s		7, 8, 9, 14	5, 13, 15a
16- <u>С</u> ОСН ₃	170.6, C				
16-CO <u>C</u> H3	20.6, CH3	1.95, s		16- <u>С</u> ОСН3	

Table S20 NMR data for 25 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

•	_	
"	5	
4		

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	NOESY
1	28.2, CH ₂	a: 1.72	1b, 2a, 2b	2, 10, 19	
		b: 1.33	1a, 2a, 2b	2, 3, 5, 10	
2	29.7, CH ₂	a: 1.89	1a, 1b, 2b, 3		
		b: 1.75	1a, 1b, 2a, 3	3, 4, 10	
3	71.1, CH	3.82, br s	2a, 2b, 4	1, 5, 28	28
4	34.0, CH	1.81	3, 5, 28	5, 28	19
5	35.5, CH	2.21	4, 6a, 6b	1, 3, 4, 6, 7, 10, 19	28, 30
6	39.5, CH ₂	a: 2.20	5, 6b	4, 7, 8, 10	
		b: 2.07	5, 6a	5, 7, 10	19
7	218.2, C				
8	52.5, C				
9	43.3, CH	1.91	11a, 11b	1, 8, 10, 11, 19, 30	18, 19
10	36.1, C				
11	22.7, CH ₂	a: 1.74	9, 11b, 12a, 12b		
		b: 1.34	9, 11a, 12a, 12b	9	
12	26.1, CH ₂	a: 2.28	11a, 11b, 12b, 13		
		b: 1.65	11a, 11b, 12a, 13	11, 13	18
13	49.2, CH	2.51	12a, 12b	12, 14, 17, 18, 20	16, 30
14	47.1, C				
15	40.6, CH ₂	a: 2.28	15b, 16	8, 14, 18	
		b: 1.87	15a, 16	13, 14, 16, 17, 18	18
16	73.8, CH	5.85, br d (8.5)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.5, C				
18	17.4, CH ₃	0.85, s		8, 13, 14, 15	9, 12b, 15b
19	19.6, CH3	1.00, s		1, 5, 9, 10	4, 6b, 9
20	129.9, C				
21	174.0, C				
22	28.5, CH ₂	a: 2.50	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.41	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.10	22a, 22b, 23b, 24	20, 22, 24, 25	27
		b: 2.04	22a, 22b, 23a, 24	20, 22, 24, 25	27
24	122.9, CH	5.08, br t (6.7)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.59, br s	24	24, 25, 26	23a, 23b
28	15.6, CH ₃	0.90, d (6.8)	4	3, 4, 5	3, 5
30	17.4, CH ₃	1.27, s		7, 8, 9, 14	5, 13
16- <u>C</u> OCH ₃	170.3, C				
16-CO <u>C</u> H ₃	20.5, CH ₃	1.94, s		16- <u>C</u> OCH ₃	

Table S21 NMR data for 26 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

-	1
,	6
· /.	
_	

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	160.8, CH	8.06, d (10.2)	2	3, 5, 10	11
2	126.2, CH	5.83, d (10.2)	1	4, 10	
3	202.3, C				
4	39.9, CH	3.02, dq (13.1, 6.5)	5,28	3, 5, 28	19
5	46.5, CH	2.38	4, 6	1, 3, 4, 10, 19	30
6	73.3, CH	4.0, br s	5	5, 7, 8, 10	28
7	215.3, C				
8	53.0, C				
9	45.4, CH	2.55, br s	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	38.7, C				
11	67.6, CH	4.68, br s	9, 12a, 12b	8, 13	1, 19
12	35.8, CH ₂	a: 2.37	11, 12b, 13	11, 14	
		b: 2.08	11,12a, 13		
13	44.2, CH	3.11, br d (11.9)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	46.7, C				
15	40.7, CH ₂	a: 2.32	15b, 16	18	
		b: 1.91, br d (14.7)	15a, 16	13, 16, 17, 18	
16	74.0, CH	5.92, br d (8.2)	15a, 15b	14, 17, 20, 16-COC <u>H</u> ₃	13
17	149.1, C				
18	18.1, CH ₃	0.94, s		8, 13, 14, 15	9
19	28.4, CH ₃	1.55, s		1, 5, 9, 10	4, 9, 11
20	130.2, C				
21	173.9, C				
22	28.7, CH ₂	2.45	23	17, 20, 21, 23, 24	
23	28.4, CH ₂	2.13	22, 24	22, 24, 25	
24	122.8, CH	5.09, br t (6.6)	23, 26, 27	23, 26, 27	26
25	132.9, C				
26	25.7, CH ₃	1.68, br s	24	24, 25 ,27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	12.4, CH ₃	1.22, d (6.7)	4	3, 4, 5	6
30	21.7, CH ₃	1.36, s		7, 8, 9, 14	5, 13
16- <u>C</u> OCH ₃	170.6, C				
16-CO <u>C</u> H ₃	20.5, CH ₃	1.96, s		16- <u>C</u> OCH ₃	

Table S22 NMR data for 29 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

29

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	140.1, CH	6.21, d (10.1)	2	3, 5, 9, 10, 19	3, 11, 19
2	127.5, CH	5.80, dd (10.1, 4.9)	1, 3	3, 4, 10	
3	68.2, CH	3.87, t (4.9)	2, 4	1, 2, 5, 28	1, 28
4	34.7, CH	1.76	3, 5, 28	5, 10, 28	19
5	33.2, CH	2.35	4, 6a, 6b	1, 3, 4, 6, 10, 19	28, 30
6	19.7, CH ₂	a: 1.72	5, 6b, 7a, 7b	10	
		b: 1.29	5, 6a, 7a, 7b		
7	30.1, CH ₂	a: 1.58	6a, 6b, 7b	8, 30	18, 19
		b: 1.22	6a, 6b, 7a	9	
8	39.4, C				
9	49.9, CH	1.71, d (1.8)	11	1, 7, 8, 10, 11, 14, 19, 30	12b, 18, 19
10	37.9, C				
11	67.6, CH	4.42, br s	9, 12a, 12b	8, 13	1, 19
12	$34.1,CH_2$	a: 2.38	11, 12b, 13	14	
		b: 1.88, td (12.7, 3.1)	11, 12a, 13	13	9, 18
13	43.9, CH	3.01, br d (12.4)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	48.8, C				
15	39.0, CH ₂	a: 2.21, dd (14.6, 9.0)	15b, 16	8, 14, 16, 18	13, 30
		b: 1.28, br d (14.4)	15a, 16	13, 14, 16, 17, 18	18
16	74.4, CH	5.86, br d (8.6)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.7, C				
18	17.3, CH ₃	0.90, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	27.8, CH3	1.00, s		1, 5, 9, 10	1, 4, 7a, 9, 11
20	129.9, C				
21	174.2, C				
22	28.8, CH ₂	2.45	23a, 23b	17, 20, 21, 23, 24	24
23	28.4, CH ₂	a: 2.16	22, 23b, 24	20, 22, 24, 25	
		b: 2.04	22, 23a, 24	20, 22, 24, 25	
24	123.0, CH	5.09, br t (7.1)	23a, 23b, 26, 27	23, 26, 27	22, 26
25	132.6, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.59, br s	24	24, 25, 26	
28	13.8, CH ₃	0.97, d (6.8)	4	3, 4, 5	3, 5
30	22.4, CH ₃	1.34, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	170.7, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.96, s		16- <u>С</u> ОСН ₃	

Table S23 NMR data for 30 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

2	Δ	
ు	U	

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	140.5, CH	6.16, d (10.0)	2	3, 5, 9, 10	11a, 19, 30
2	126.9, CH	5.62, dd (10.0, 4.1)	1, 3	4, 10	
3	68.7, CH	4.11, t (4.1)	2, 4	1, 2, 5	28
4	30.8, CH	2.51	3, 5, 28	5, 10, 28	19
5	39.7, CH	2.03, br d (10.9)	4, 6	1, 3, 4, 7, 10, 19	30
6	73.5, CH	4.02, br s	5	4, 5, 7, 8, 10	28
7	215.8, C				
8	52.2, C				
9	41.9, CH	2.46	11a, 11b	1, 8, 10, 11, 19, 30	18, 19
10	37.6, C				
11	24.0, CH ₂	a: 1.92	9, 11b, 12a, 12b	12, 13	1, 19
		b: 1.45	9, 11a, 12a, 12b	9	
12	26.0, CH ₂	a: 2.33	11a, 11b, 12b, 13	9	
		b: 1.75	11a, 11b, 12a, 13		18
13	49.5, CH	2.53	12a, 12b	12, 14, 17, 18, 20	16, 30
14	46.4, C				
15	40.8, CH ₂	a: 2.21, dd (15.2, 8.4)	15b, 16	8, 14, 18	30
		b: 1.92	15a, 16	13, 14, 16, 17, 18	18
16	73.8, CH	5.85, br d (8.3)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.1, C				
18	18.2, CH ₃	0.95, s		8, 13, 14, 15	9, 12b, 15b
19	28.7, CH ₃	1.31, s		1, 5, 9, 10	1, 4, 9, 11a
20	129.9, C				
21	173.5, C				
22	28.5, CH ₂	a: 2.51	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.43	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.12	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.9, CH	5.10, br t (7.0)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.8, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	13.4, CH ₃	1.11, d (7.0)	4	3, 4, 5	3, 6
30	17.5, CH ₃	1.14, s		7, 8, 9, 14	1, 5, 13, 15a
16- <u>C</u> OCH ₃	170.6, C				
16-СО <u>С</u> Н3	20.6, CH3	1.97, s		16- <u>С</u> ОСН ₃	

Table S24 NMR data for 31 (1 H for 600 MHz and 13 C for 150 MHz in CDCl₃).

-	1
ູ	

Position	$\delta_{\rm C}$, type	$\delta_{ m H}(J{ m in}{ m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	158.7, CH	7.27, d (10.1)	2	3, 5, 9, 10	11a, 11b, 19
2	127.7, CH	5.83, d (10.1)	1	3, 4, 10	
3	202.3, C				
4	42.5, CH	2.35	5, 28	3, 5, 28	19
5	41.9, CH	2.35	4, 6a, 6b	3, 4, 6, 10, 19	28, 30
6	33.0, CH ₂	a: 1.81	5, 6b, 7	5, 7, 8, 10	
		b: 1.55	5, 6a, 7	7, 10	
7	69.2, CH	4.15, br d (7.4)	6a, 6b	5, 6, 8, 14, 30	
8	43.8, C				
9	44.4, CH	1.56	11a, 11b	7, 8, 10, 30	18
10	38.7, C				
11	25.1, CH ₂	a: 1.88	9, 11b, 12a, 12b	9	1
		b: 1.48	9, 11a, 12a, 12b	9, 12, 13	1
12	25.7, CH ₂	a: 2.35	11a, 11b, 12b, 13		
		b: 1.70	11a, 11b, 12a, 13	13	
13	49.2, CH	2.52	12a, 12b	12, 14, 17, 18, 20	16
14	48.1, C				
15	41.2, CH ₂	a: 2.19	15b, 16	8, 14, 18	30
		b: 1.49	15a, 16	13, 14, 18	
16	74.3, CH	5.85, br d (8.3)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.1, C				
18	18.7, CH ₃	1.01, s		8, 13, 14, 15	9
19	25.6, CH ₃	1.12, s		1, 5, 9, 10	1,4
20	130.3, C				
21	174.1, C				
22	28.6, CH ₂	a: 2.50	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.43	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.2, CH ₂	a: 2.13	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.9, CH	5.09, br t (6.9)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.7, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.59, br s	24	24, 25, 26	
28	12.6, CH ₃	1.12, d (6.0)	4	3, 4, 5	5
30	12.2, CH ₃	0.96, s		7, 8, 9, 14	5, 15a
16- <u>С</u> ОСН ₃	170.7, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

Table S25 NMR data for 32 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

32

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	140.6, CH	6.09, d (10.1)	2	3, 5, 9, 10	11a, 19
2	126.8, CH	5.65, dd (10.1, 4.6)	1, 3	3, 4, 10	
3	68.3, CH	3.90, t (4.4)	2, 4	1, 2, 5	28
4	33.5, CH	1.83	3, 5, 28	5, 10, 28	19
5	34.1, CH	2.14	4, 6a, 6b	1, 3, 4, 6, 7, 10, 19	28, 30
6	32.3, CH ₂	a: 1.76, td (14.1, 8.2)	5, 6b, 7	4, 5, 7, 8, 10	19, 28
		b: 1.46	5, 6a, 7	5, 7, 10	28
7	70.2, CH	4.07, dd (8.1, 3.9)	6a, 6b	5, 14, 30	9, 18, 19
8	44.5, C				
9	45.1, CH	1.51	11a, 11b	7, 8, 10, 11, 12, 19, 30	7, 18, 19
10	38.0, C				
11	24.9, CH ₂	a: 1.86	9, 11b, 12a, 12b		1
		b: 1.33, qd (13.1, 4.1)	9, 11a, 12a, 12b	9, 12	30
12	26.0, CH ₂	a: 2.29	11a, 11b, 12b, 13		
		b: 1.65	11a, 11b, 12a, 13	11, 13	18
13	49.2, CH	2.49	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.2, C				
15	41.7, CH ₂	a: 2.22, dd (14.9, 8.4)	15b, 16	8, 14, 18	30
		b: 1.49	15a, 16	13, 14, 16, 17, 18	
16	74.3, CH	5.84, br d (8.6)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.2, C				
18	18.2, CH ₃	1.00, s		8, 13, 14, 15	7, 9, 12b
19	26.6, CH3	0.91, s		1, 5, 9, 10	1, 4, 6a, 7, 9
20	129.7, C				
21	173.2, C				
22	28.7, CH ₂	a: 2.51	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.42	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.13	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25	
24	123.0, CH	5.10, br t (7.3)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.7, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	14.0, CH ₃	0.98, d (7.0)	4	3, 4, 5	3, 5, 6a, 6b
30	12.6, CH ₃	0.99, s		7, 8, 9, 14	5, 11b, 13, 15a
16- <u>C</u> OCH ₃	170.6, C				
16-СО <u>С</u> Н3	20.6, CH3	1.96, s		16- <u>C</u> OCH ₃	

Table S26 NMR data for 33 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

33

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	NOESY
1	157.4, CH	7.32, d (10.1)	2	3, 5, 10, 19	11a, 19, 30
2	128.4, CH	5.89, d (10.0)	1	3, 4, 10	
3	201.2, C				
4	41.9, CH	2.56	5, 28	3, 5, 6, 10, 28	19
5	43.7, CH	2.23	4, 6a, 6b	1, 3, 4, 6, 7, 10, 19, 28	30
6	39.8, CH ₂	a: 2.38	5, 6b	4, 5, 7, 8, 10	
		b: 2.31, t (14.6)	5, 6a	5, 7, 10	19
7	215.9, C				
8	52.1, C				
9	43.3, CH	2.06	11a, 11b	1, 8, 10, 11, 30	12b, 18, 19
10	38.4, C				
11	24.2, CH ₂	a: 1.93	9, 11b, 12a, 12b	12	1, 19
		b: 1.51, qd (13.0, 3.4)	9, 11a, 12a, 12b	8, 9	30
12	25.9, CH ₂	a: 2.39	11a, 11b, 12b, 13		
		b: 1.76, qd (13.0, 3.8)	11a, 11b, 12a, 13	13	9, 18
13	49.3, CH	2.53	12a, 12b	12, 14, 17, 18, 20	16, 30
14	46.8, C				
15	40.6, CH ₂	a: 2.24	15b, 16	8, 14, 18	
		b: 1.91	15a, 16	13, 14, 16, 17, 18	18
16	73.6, CH	5.86, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.7, C				
18	17.4, CH ₃	0.89, s		8, 13, 14, 15	9, 12b, 15b
19	25.4, CH ₃	1.30, s		1, 5, 9, 10	1, 4, 6b, 9, 11a
20	130.2, C				
21	173.8, C				
22	28.6, CH ₂	a: 2.50	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.43	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.13	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.07	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.8, CH	5.10, br t (7.0)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.8, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	13.0, CH ₃	1.14, d (6.8)	4	3, 4, 5	
30	17.7, CH ₃	1.11, s		7, 8, 9, 14	1, 5, 11b, 13
16- <u>C</u> OCH3	170.3, C				
16-CO <u>C</u> H ₃	20.5, CH ₃	1.95, s		16- <u>С</u> ОСН ₃	

Table S27 NMR data for 34 (1 H for 600 MHz and 13 C for 150 MHz in CDCl₃).

34

Position	$\delta_{\rm C}$, type	$\delta_{\rm H} (J {\rm in} {\rm Hz})^{\rm a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	139.4, CH	6.20, d (10.0)	2	3, 5, 9, 10	11a, 11b, 19
2	127.9, CH	5.67, dd (10.1, 4.1)	1, 3	3, 4, 10	
3	68.2, CH	4.03, t (4.3)	2, 4	1, 2, 5	28
4	32.5, CH	2.14	3, 5, 28	28	19
5	36.3, CH	2.01	4, 6a, 6b	1, 3, 4, 6, 7, 9, 10, 19	28, 30
6	38.9, CH ₂	a: 2.34	5, 6b	4, 5, 7, 8, 10	28
		b: 2.12	5, 6a	4, 5, 7, 10	19, 28
7	217.7, C				
8	52.2, C				
9	43.2, CH	1.91	11a, 11b	1, 5, 7, 8, 10, 11, 12, 19	18, 19
10	37.9, C				
11	$24.1,CH_2$	a: 1.89	9, 11b, 12a, 12b	12	1, 19
		b: 1.41	9, 11a, 12a, 12b	9	1, 13, 30
12	26.0, CH ₂	a: 2.32	11a, 11b, 12b, 13		
		b: 1.71	11a, 11b, 12a, 13		18
13	49.3, CH	2.51	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	46.8, C				
15	40.6, CH ₂	a: 2.22, dd (14.8, 8.6)	15b, 16	8, 14, 18	13, 30
		b: 1.89	15a, 16	13, 14, 16, 17, 18	18
16	73.7, CH	5.86, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.7, C				
18	17.4, CH ₃	0.86, s		8, 13, 14, 15	9, 12b, 15b
19	25.9, CH ₃	1.07, s		1, 5, 9, 10	1, 4, 6b, 9, 11a
20	130.3, C				
21	173.7, C				
22	28.6, CH ₂	a: 2.49	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.42	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.12	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.9, CH	5.09, br t (7.1)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.7, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	13.9, CH ₃	0.99, d (6.8)	4	3, 4, 5	3, 5, 6a, 6b
30	17.6, CH ₃	1.11, s		7, 8, 9, 14	5, 11b, 13, 15a
16- <u>C</u> OCH3	170.6, C				
16-CO <u>C</u> H ₃	20.6, CH3	1.95, s		16- <u>C</u> OCH ₃	

Table S28 NMR data for 35 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

35

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	84.7, CH	3.36, dd (9.5, 7.2)	2a, 2b	5, 19	11, 19
2	42.1, CH ₂	a: 2.94, dd (12.4, 9.5)	1, 2b	1, 3	5
		b: 2.59, dd (12.4, 7.2)	1, 2a	1, 3, 4, 10	
3	217.2, C				
4	46.9, CH	2.22	5, 28	3, 5, 6, 28	6, 19
5	43.6, CH	2.69, t (11.4)	4, 6	1, 3, 4, 6, 10, 19, 28	2a, 7, 28, 30
6	81.9, CH	3.78, br d (11.4)	5, 7	4, 5, 7, 8	4, 9, 19
7	86.1, CH	3.60, br s	6	5, 6, 8, 9, 14, 30	5, 15a, 15b, 30
8	42.1, C				
9	47.1, CH	2.45, d (5.5)	11	1, 7, 8, 10, 14, 19, 30	6, 18, 19
10	44.2, C				
11	78.5, CH	4.11, br dd (7.7, 5.7)	9, 12a, 12b	8, 13	1, 19
12	28.7, CH ₂	a: 2.52	11, 12b, 13	9, 11, 13, 14	
		b: 2.26	11, 12a, 13	11, 13, 17	18
13	45.9, CH	2.97, dd (12.1, 5.8)	12a, 12b	8, 12, 14, 17, 18, 20	16, 30
14	50.7, C				
15	39.0, CH ₂	a: 2.30	15b, 16	8, 14, 18	7, 30
		b: 1.46, br d (14.6)	15a, 16	13, 14, 16, 17, 18	7, 18
16	76.7, CH	5.86, br d (8.7)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	145.5, C				
18	18.9, CH ₃	1.16, s		8, 13, 14, 15	9, 12b, 15b
19	22.7, CH ₃	0.93, s		1, 5, 9, 10	1, 4, 6, 9, 11
20	134.0, C				
21	174.9, C				
22	30.4, CH ₂	a: 2.54	22b, 23	17, 20, 21, 23, 24	24
		b: 2.37	22a, 23	17, 20, 21, 23, 24	24
23	28.8, CH ₂	2.11	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.14, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	18.5, CH ₃	1.28, d (7.1)	4	3, 4, 5	5
30	21.1, CH ₃	1.32, s		7, 8, 9, 14	5, 7, 13, 15a
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.98, s		16- <u>С</u> ОСН3	

Table S29 NMR data for 36 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

-	-
- 7	•
•	h
	v

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	163.9, CH	7.86, d (10.2)	2	3, 5, 9, 10	11, 19
2	126.1, CH	5.77, d (10.2)	1	4, 10	
3	205.6, C				
4	45.3, CH	2.65	5, 28	3, 5, 6, 10, 28	6, 19
5	50.9, CH	2.44, dd (11.8, 9.8)	4, 6	1, 3, 6, 7, 10, 19, 28	28, 30
6	69.5, CH	3.90	5, 7a, 7b	8, 10	4, 9, 19, 28
7	45.0, CH ₂	a: 2.09	6, 7b	5, 6, 8, 14, 30	9, 18
		b: 1.28	6, 7a	6	
8	40.3, C				
9	50.6, CH	1.68, br s	11	1, 8, 10, 11, 14, 19, 30	6, 7a, 12b, 18, 19
10	40.4, C				
11	67.4, CH	4.42, br s	9, 12a, 12b	8, 13	1, 19
12	36.8, CH ₂	a: 2.39	11, 12b, 13		
		b: 1.94	11, 12a, 13	13	9, 18
13	44.2, CH	3.08, br d (12.4)	12a, 12b	14, 17	15a, 16, 30
14	49.6, C				
15	40.1, CH ₂	a: 2.17	15b, 16	8, 14, 18	13
		b: 1.29	15a, 16	13, 14, 16, 17, 18	18
16	75.7, CH	5.82, br d (8.4)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.6, C				
18	17.9, CH ₃	0.96, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	28.6, CH ₃	1.22, s		1, 5, 9, 10	1, 4, 6, 9, 11
20	134.1, C				
21	175.1, C				
22	30.1, CH ₂	a: 2.57	22b, 23	17, 20, 21, 23, 24	24
		b: 2.38	22a, 23	17, 20, 21, 23, 24	24
23	29.2, CH ₂	2.12	22a, 22b, 24	22, 24, 25	
24	124.5, CH	5.15, br t (7.0)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	15.8, CH ₃	1.32, d (6.8)	4	3, 4, 5	5, 6
30	23.6, CH ₃	1.35, s		7, 8, 9, 14	5, 13
16- <u>С</u> ОСН3	172.7, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.97, s		16- <u>C</u> OCH ₃	

Table S30 NMR data for 37 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

37

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	163.9, CH	7.55, d (10.4)	2	2, 3, 5, 9, 10, 19	11, 19
2	125.9, CH	5.76. d (10.3)	1	10	
3	204.1, C				
4	44.8, CH	2.33	5, 28	3, 5, 6, 10, 28	19
5	43.3, CH	2.68, td (12.3, 7.6)	4, 6a, 6b	1, 3, 4, 6, 9, 10, 19, 28	28, 30
6	34.8, CH ₂	a: 1.91	5, 6b, 7	4, 5, 7, 8	
		b: 1.64	5, 6a, 7	5, 7, 10	28
7	71.0, CH	3.90, t (7.6)	6a, 6b	6, 8, 9, 14, 30	9, 18, 19
8	46.0, C				
9	51.2, CH	1.69, d (2.1)	11	1, 5, 7, 8, 10, 11, 14, 19, 30	7, 12b, 18, 19
10	39.5, C				
11	67.5, CH	4.45, br s	9, 12a, 12b	8, 9, 10, 13	1, 19
12	36.4, CH ₂	a: 2.39	11, 12b, 13	9, 11, 14	
		b: 1.96	11, 12a, 13	13	9, 18, 22a
13	44.9, CH	3.02, br d (12.4)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	49.5, C				
15	43.1, CH ₂	a: 2.28, dd (15.1, 8.8)	15b, 16	8, 14, 18	13, 30
		b: 1.60	15a, 16	13, 14, 16, 17, 18	18
16	76.0, CH	5.77, br d (8.3)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.9, C				
18	16.8, CH ₃	1.01, s		8, 13, 14, 15	7, 9, 12b, 15b
19	27.3, CH ₃	1.19, s		1, 5, 9, 10	1, 4, 7, 9, 11
20	132.8, C				
21	174.7, C				
22	30.0, CH ₂	a: 2.59	22b, 23	17, 20, 21, 23, 24	12b, 24
		b: 2.38	22a, 23	17, 20, 21, 23, 24	24
23	29.3, CH ₂	2.12	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.14, br t (7.0)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	12.6, CH ₃	1.09, d (6.7)	4	3, 4, 5	5, 6b
30	15.0, CH ₃	1.25, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

Table S31 NMR data for 38 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

38

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	83.8, CH	3.44, dd (8.8, 7.5)	2a, 2b	5, 10, 19	11, 19
2	42.9, CH ₂	a: 2.91	1, 2b	1, 3	
		b: 2.62	1, 2a	1, 3, 10	
3	216.6, C				
4	45.2 ^b , CH	1.91	5,28	3, 5, 28	19
5	37.1, CH	2.86	4, 6a, 6b		28, 30
6	33.4, CH ₂	a: 2.00	5, 6b, 7	5, 8	
		b: 1.54	5, 6a, 7		
7	71.5, CH	3.88, dd (9.0, 3.9)	6a, 6b	8, 30	9, 18
8	43.2, C				
9	52.5, CH	1.69	11	7, 19	7, 18, 19
10	43.8, C				
11	77.9, CH	4.06, br dd (7.0, 5.6)	9, 12a, 12b	8, 10, 13	1, 19
12	28.4, CH ₂	a: 2.56	11, 12b, 13	9, 11, 13, 14	
		b: 2.24, ddd (15.0, 12.4, 7.6)	11, 12a, 13	13	18
13	45.1 ^b , CH	2.93	12a, 12b	17	16, 30
14	49.9, C				
15	41.7, CH ₂	a: 2.40	15b, 16	14, 18	30
		b: 1.49, br d (15.5)	15a, 16	13, 14, 16, 17, 18	
16	76.8, CH	5.83, br d (8.6)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	144.8, C				
18	16.0, CH ₃	0.96, s		8, 13, 14, 15	7, 9, 12b
19	21.7, CH ₃	0.85, s		1, 5, 9, 10	1, 4, 9, 11
20	133.4, C				
21	174.5				
22	30.4, CH ₂	a: 2.57	22b, 23	17, 23	
		b: 2.38	22a, 23	17, 23	
23	28.8, CH ₂	2.11	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.15, br t (6.8)	23, 26, 27	23, 26, 27	26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	15.5, CH ₃	1.07, d (7.1)	4	3, 4, 5	5
30	18.2, CH ₃	1.38, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH ₃	172.5, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.97, s		16- <u>С</u> ОСН ₃	

^aThe indiscernible signals due to overlap or the complex multiplicity are reported without designating multiplicity.

^bThe data are interchangeable.

Table S32 NMR data for 39 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

39

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	163.8, CH	8.27, d (10.3)	2	3, 5, 9, 10	11
2	127.0, CH	5.79, d (10.3)	1	4, 10	
3	203.7, C				
4	43.1, CH	2.60	5,28	3, 5, 6, 10, 28	19
5	44.6, CH	2.37	4, 6a, 6b	1, 4, 6, 7, 10, 19	28, 30
6	41.1, CH ₂	a: 2.43	5, 6b	5, 10, 7	19
		b: 2.31	5, 6a	4, 5, 8, 10	28
7	219.3, C				
8	54.5, C				
9	47.8, CH	2.02, br s	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	40.5, C				
11	67.4, CH	4.55, br s	9, 12a, 12b	8, 13	1, 19
12	36.5, CH ₂	a: 2.40	11, 12b, 13	11	
		b: 1.96	11, 12a, 13	13	18, 22a
13	44.6, CH	3.10, br d (11.8)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	48.3, C				
15	42.0, CH ₂	a: 2.29	15b, 16	14, 18	13, 30
		b: 1.79, br d (14.8)	15a, 16	13, 14, 16, 17, 18	18
16	75.5, CH	5.80, br d (8.3)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	145.2, C				
18	17.6, CH ₃	0.86, s		8, 13, 14, 15	9, 12b, 15b
19	25.8, CH ₃	1.37, s		1, 5, 9, 10	4, 6a, 9, 11
20	134.1, C				
21	175.1, C				
22	30.0, CH ₂	a: 2.56	22b, 23	17, 20, 21, 23, 24	12b, 24
		b: 2.38	22a, 23	17, 20, 21, 23, 24	24
23	29.3, CH ₂	2.13	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.15, br t (7.2)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH3	1.61, br s	24	24, 25, 26	
28	13.1, CH ₃	1.11, d (6.8)	4	3, 4, 5	5, 6b
30	22.5, CH ₃	1.32, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.96, s		16- <u>С</u> ОСН ₃	

Table S33 NMR data for 40 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

40

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	84.1, CH	3.46, t (8.0)	2a, 2b	5, 19	11, 19
2	42.9, CH ₂	a: 2.89, dd (13.4, 9.2)	1, 2b	1, 3	
		b: 2.63	1, 2a	3, 10	
3	216.9, C				
4	45.3, CH	1.93	5, 28		19
5	36.9, CH	2.62	4, 6a, 6b	3, 10	28, 30
6	34.0, CH ₂	a: 2.38	5, 6b, 7		
		b: 1.26	5, 6a, 7		
7	73.7, CH	3.93, br d (8.4)	6a, 6b	5, 9, 30	
8	41.8, C				
9	47.0, CH	2.52	11	1, 8, 10, 11, 12, 14, 30	12b, 18, 19
10	43.9, C				
11	78.7, CH	4.14, br t (6.6)	9, 12a, 12b	8, 13	1, 19
12	28.7, CH ₂	a: 2.50	11, 12b, 13		
		b: 2.26	11, 12a, 13		9
13	46.3, CH	2.96, dd (11.7, 5.7)	12a, 12b		30
14	50.8, C				
15	38.9, CH ₂	a: 2.31	15b, 16	18	
		b: 1.47, br d (14.6)	15a, 16	13, 14, 16, 17, 18	
16	76.7, CH	5.86, br d (8.8)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	
17	146.6, C				
18	19.0, CH3	1.17, s		8, 13, 14, 15	9
19	21.3, CH ₃	0.96, s		1, 5, 9, 10	1, 4, 9, 11
20	133.0, C				
21	174.1, C				
22	30.3, CH ₂	a: 2.54	22b, 23	21	
		b: 2.37	22a, 23		
23	28.8, CH ₂	2.11	22a, 22b, 24	24	
24	124.3, CH	5.14, br t (6.7)	23, 26, 27	23, 26, 27	26
25	133.5, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	15.5, CH ₃	1.04, d (7.1)	4	3, 4, 5	5
30	22.6, CH ₃	1.25, s		7, 8, 9, 14	5, 13
16- <u>C</u> OCH ₃	172.5, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.97, s		16- <u>C</u> OCH ₃	

Table S34 NMR data for 41 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	141.2, CH	6.09, d (10.2)	2	3, 5, 10	11a, 11b, 19
2	127.5, CH	5.55, dd (10.1, 4.4)	1, 3	4, 10	
3	70.4, CH	3.79, t (4.4)	2, 4		28
4	36.0, CH	2.16	3, 5, 28		19
5	43.0, CH	1.90, t (11.2)	4, 6	3, 4, 6, 7, 10, 19	7, 28, 30
6	77.7, CH	3.59, dd (10.8, 4.5)	5,7		9, 19, 28
7	85.9, CH	3.51, d (4.6)	6	5, 9	5, 30
8	45.6, C				
9	42.9, CH	2.05	11a, 11b	1, 8, 10, 19, 30	6, 18, 19
10	40.6, C				
11	26.1, CH ₂	a: 1.83	9, 11b, 12a, 12b		1, 19
		b: 1.42, qd (13.3, 4.3)	9, 11a, 12a, 12b		1, 30
12	27.4, CH ₂	a: 2.27	11a, 11b, 12b, 13		
		b: 1.72	11a, 11b, 12a, 13		18
13	50.7, CH	2.61	12a, 12b	14, 17, 18	16, 30
14	49.6, C				
15	41.3, CH ₂	a: 2.15	15b, 16	18	30
		b: 1.61	15a, 16	13, 16, 17	18
16	76.0, CH	5.78, br d (8.6)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.8, C				
18	21.5, CH ₃	1.19, s		8, 13, 14, 15	9, 12b, 15b
19	27.5, CH ₃	1.11, s		1, 5, 9, 10	1, 4, 6, 9, 11a
20	133.5, C				
21	175.3, C				
22	29.9, CH ₂	a: 2.54	22b, 23		24
		b: 2.35	22a, 23		24
23	29.1, CH ₂	2.09	22a, 22b, 24	24, 25	
24	124.6, CH	5.13, br t (7.2)	23, 26, 27	26, 27	22a, 22b, 26
25	133.1, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	17.0, CH ₃	1.19, d (6.4)	4	3, 4, 5	3, 5, 6
30	19.6, CH ₃	1.08, s		7, 8, 9, 14	5, 7, 11b, 13, 15a
16- <u>C</u> OCH3	172.8, C				
16-CO <u>C</u> H ₃	20.8, CH3	1.96, s		16- <u>С</u> ОСН ₃	
Table S35 NMR data for 42 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

42

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	НМВС	ROESY
1	138.4, CH	6.16, d (10.1)	2	3, 5, 9, 10	11a, 11b, 19
2	129.1, CH	5.67, dd (10.1, 4.4)	1, 3	3, 4, 10	
3	67.9, CH	3.90, t (4.6)	2, 4	1, 2, 5	28
4	31.1, CH	2.22	3, 5, 28	5, 10, 28	19
5	53.4, CH	3.35, d (11.9)	4	1, 3, 4, 6, 10, 19	28, 30
6	216.1, C				
7	52.8, CH ₂	a: 2.46, d (17.6)	7b	5, 6, 8, 14, 30	9, 18
		b: 2.18, d (17.6)	7a	6, 8, 9, 30	30
8	43.2, C				
9	47.5, CH	1.64, dd (13.1, 3.2)	11a, 11b	8, 10, 19, 30	7a, 18, 19
10	43.3, C				
11	26.7, CH ₂	a: 1.87, dq (13.3, 3.0)	9, 11b, 12a, 12b		1, 19
		b: 1.45, qd (13.0, 4.1)	9, 11a, 12a, 12b	9, 10, 12	1, 13
12	27.0, CH ₂	a: 2.36	11a, 11b, 12b, 13		
		b: 1.69	11a, 11b, 12a, 13	11, 13, 14	18, 22a
13	49.6, CH	2.66, br d (10.9)	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	49.5, C				
15	40.2, CH ₂	a: 2.11	15b, 16	8, 13, 14, 18	13, 30
		b: 1.24, br d (14.2)	15a, 16	14, 16, 17, 18	18
16	75.4, CH	5.80, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.3, C				
18	19.0, CH ₃	0.97, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	28.4, CH ₃	0.93, s		1, 5, 9, 10	1, 4, 9, 11a
20	133.8, C				
21	174.7, C				
22	29.9, CH ₂	a: 2.55	22b, 23	17, 20, 21, 23, 24	12b, 24
		b: 2.36	22a, 23	17, 20, 21, 23, 24	24
23	29.1, CH ₂	2.10	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	14.1, CH ₃	1.07, d (6.7)	4	3, 4, 5	3, 5
30	21.1, CH ₃	1.39, s		7, 8, 9, 14	5, 7b, 13, 15a
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.96, s		16- <u>С</u> ОСН ₃	

Table S36 NMR data for 43 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

1	2
_	.

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	141.3, CH	6.14, d (10.1)	2	3, 5, 9, 10, 19	11a, 11b, 19
2	128.3, CH	5.53, dd (10.0, 4.2)	1, 3	3, 4, 10	
3	69.1, CH	3.88, t (4.5)	2, 4	1, 2, 4, 5	28
4	34.3, CH	1.99	3, 5, 28	5, 10, 28	19
5	38.5, CH	1.74	4. 6a, 6b	1, 3, 4, 6, 7, 10, 19	7, 30
6	32.3, CH ₂	a: 1.89	5, 6b, 7	4, 7, 8, 10	
		b: 1.24, td (12.6, 9.6)	5, 6a, 7	5, 7, 10	
7	81.3, CH	3.78, dd (9.2, 6.9)	6a, 6b	5, 6, 8, 9, 30	5, 30
8	46.4, C				
9	44.6, CH	1.93	11a, 11b	1, 8, 10, 11, 19, 30	18, 19
10	39.4, C				
11	25.9, CH ₂	a: 1.77	9, 11b, 12a, 12b		1
		b: 1.47	9, 11a, 12a, 12b	9, 12	1, 13
12	27.4, CH ₂	a: 2.30	11a, 11b, 12b, 13	9, 11, 13, 14	
		b: 1.74	11a, 11b, 12a, 13		
13	51.5, CH	2.60, br d (11.5)	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	49.5, C				
15	41.7, CH ₂	a: 2.15, dd (14.5, 8.8)	15b, 16	8, 14, 16, 18	13, 30
		b: 1.72	15a, 16	13, 14, 16, 17, 18	18
16	76.0, CH	5.78, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.2, C				
18	21.3, CH ₃	1.18, s		8, 13, 14, 15	9, 15b
19	26.6, CH3	1.01, s		1, 5, 9, 10	1, 4, 9
20	133.0, C				
21	174.8, C				
22	29.8, CH ₂	a: 2.56	22b, 23	17, 20, 21, 23, 24	24
		b: 2.35	22a, 23	17, 20, 21, 23, 24	24
23	29.1, CH ₂	2.10	22a, 22b, 24	22, 24, 25	
24	124.5, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.2, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	14.7, CH ₃	0.96, d (7.0)	4	3, 4, 5	3
30	21.8, CH ₃	1.03, s		7, 8, 9, 14	5, 7, 13, 15a
16- <u>C</u> OCH ₃	172.8, C				
16-CO <u>C</u> H ₃	20.8, CH ₃	1.95, s		16- <u>С</u> ОСН3	

Table S37 NMR data for 44 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

44	
----	--

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	NOESY
1	158.0, CH	7.25, d (10.3)	2	3, 5, 9, 10	11a, 19
2	126.9, CH	5.86, d (10.3)	1	4, 10	
3	201.2, C				
4	43.2, CH	2.64, dq (12.6, 6.7)	5,28	3, 5, 6, 10, 28	19
5	45.8, CH	2.40, t (11.7)	4,6	1, 3, 4, 6, 10, 19, 28	7, 28, 30
6	80.1, CH	4.78, dd (10.8, 2.5)	5,7	4, 5, 7, 6- <u>C</u> OCH ₃	19, 28
7	80.7, CH	3.59, d (2.0)	6	5, 6, 8, 9, 14, 30	5, 30
8	43.4, C				
9	40.7, CH	2.32	11a, 11b	1, 7, 8, 10, 11, 12, 14, 19, 30	18, 19
10	39.1, C				
11	25.4, CH ₂	a: 1.99	9, 11b, 12a, 12b		1
		b: 1.45, qd (13.0, 3.8)	9, 11a, 12a, 12b	12, 13	30
12	25.5, CH ₂	a: 2.31	11a, 11b, 12b, 13		
		b: 1.81, qd (12.5, 3.8)	11a, 11b, 12a, 13	11, 13	18
13	49.7, CH	2.57, br d (11.2)	12a, 12b	11, 14, 17, 18, 20	30
14	48.4, C				
15	39.9, CH ₂	a: 2.16	15b, 16	8, 14, 16, 18	30
		b: 1.56, br d (14.4)	15a, 16	13, 14, 16, 17, 18	18
16	74.2, CH	5.85, br d (8.2)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	
17	149.6, C				
18	21.4, CH ₃	1.21, s		8, 13, 14, 15	9, 12b, 15b
19	26.5, CH ₃	1.38, s		1, 5, 9, 10	1, 4, 6, 9
20	130.3, C				
21	173.6, C				
22	28.7, CH ₂	a: 2.49	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.43	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.2, CH ₂	a: 2.13	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25	
24	122.9, CH	5.10, br t (6.8)	23a, 23b, 26, 27	26, 27	22a, 22b, 26
25	132.7, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.60, br s	24	24, 25, 26	
28	14.4, CH ₃	1.13, d (6.8)	4	3, 4, 5	5,6
30	18.2, CH ₃	1.00, s		7, 8, 9, 14	5, 7, 11b, 13, 15a
6- <u>C</u> OCH3	171.5, C				
6-CO <u>C</u> H ₃	21.5, CH ₃	2.10, s		6- <u>C</u> OCH ₃	
16- <u>C</u> OCH3	170.7, C				
16-CO <u>C</u> H ₃	20.6, CH ₃	1.96, s		16- <u>C</u> OCH ₃	

Table S38 NMR data for 45 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

45

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	157.5, CH	7.25, d (10.2)	2	3, 5, 9, 10	11a, 11b, 19
2	127.3, CH	5.86, d (10.2)	1	4, 10	
3	202.0, C				
4	43.8, CH	2.63	5, 28	3, 5, 6, 10, 28	6, 19
5	48.1, CH	2.25, t (11.2)	4,6	1, 3, 4, 6, 7, 10, 28	7, 28, 30
6	75.3, CH	3.66, dd (10.4, 2.4)	5,7	4, 5, 7, 8	4, 19, 28
7	83.8, CH	4.67, d (2.2)	6	5, 6, 8, 9, 14, 30, 7- <u>C</u> OCH ₃	5, 15a, 15b, 30
8	42.5, C				
9	41.6, CH	2.23	11a, 11b	1, 8, 10, 11, 12, 14, 30	12b, 18, 19
10	38.7, C				
11	25.5, CH ₂	a: 1.99	9, 11b, 12a, 12b		1, 19
		b: 1.47, qd (13.4, 4.5)	9, 11a, 12a, 12b	9, 12	1, 13, 30
12	25.6, CH ₂	a: 2.35, br d (11.5)	11a, 11b, 12b, 13	9, 14	
		b: 1.76, qd (12.5, 3.9)	11a, 11b, 12a, 13	13	9, 18
13	49.5, CH	2.59	12a, 12b	12, 17, 18, 20	11b, 16, 30
14	48.1, C				
15	39.9, CH ₂	a: 2.18	15b, 16	8, 14, 18	7, 30
		b: 1.29	15a, 16	13, 16, 17, 18	7
16	73.8, CH	5.88, br d (8.3)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.5, C				
18	21.2, CH ₃	1.08, s		8, 13, 14, 15	9, 12b
19	22.1, CH ₃	1.26, s		1, 5, 9, 10	1, 4, 6, 9, 11a
20	130.9, C				
21	173.5, C				
22	28.7, CH ₂	a: 2.49	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.43	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.2, CH ₂	a: 2.14	22a, 22b, 23b, 24	22, 24, 25	
		b: 2.07	22a, 22b, 23a, 24	22, 24, 25	
24	122.9, CH	5.10, br t (6.8)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.8, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	15.3, CH ₃	1.33, d (6.8)	4	3, 4, 5	5, 6
30	17.4, CH ₃	1.14, s		7, 8, 9, 14	5, 7, 11b, 13, 15a
7- <u>C</u> OCH3	170.9, C				
7-CO <u>C</u> H ₃	21.8, CH ₃	2.09, s		7- <u>C</u> OCH ₃	
16- <u>C</u> OCH3	170.6, C				
16-CO <u>C</u> H ₃	20.5, CH ₃	1.97, s		16- <u>C</u> OCH ₃	

Table S39 NMR data for 46 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

4	6
т	υ

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ a}$	¹ H– ¹ H COSY	НМВС	NOESY
1	158.5, CH	7.27, d (10.1)	2	3, 5, 10	19
2	127.6, CH	5.84, d (10.1)	1	4, 10	
3	201.7, C				
4	42.7, CH	2.39	5, 28	3, 5, 10, 28	19
5	43.1, CH	2.09	4, 6a, 6b	4, 6, 7, 9, 10, 19	28, 30
6	29.7, CH ₂	a: 2.15	5, 6b, 7	5, 7, 10	
		b: 1.33	5, 6a, 7	4, 7, 10	
7	77.5, CH	4.96, t (6.8)	6a, 6b	6, 9, 14, 30, 7- <u>C</u> OCH ₃	30
8	43.6, C				
9	42.7, CH	2.19	11a, 11b	7, 8, 10, 11, 12, 19, 30	18
10	38.7, C				
11	24.9, CH ₂	a: 1.92	9, 11b, 12a, 12b		19
		b: 1.48	9, 11a, 12a, 12b	9, 12	30
12	25.7, CH ₂	a: 2.35	11a, 11b, 12b, 13		
		b: 1.79	11a, 11a, 12b, 13	13	18
13	50.3, CH	2.57, br d (11.9)	12a, 12b	11, 14, 17, 18, 20	30
14	48.0, C				
15	40.3, CH ₂	a: 2.14	15b, 16	8, 14, 18	
		b: 1.33	15a, 16	13, 14, 16, 17, 18	
16	73.9, CH	5.87, br d (8.5)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	
17	148.4, C				
18	21.1, CH ₃	1.14, s		8, 13, 14, 15	9, 12b
19	25.6, CH ₃	1.25, s		1, 5. 9, 10	1, 4, 11a
20	130.7, C				
21	173.4, C				
22	28.7, CH ₂	a: 2.50	22b, 23a, 23b	17, 20, 21, 24	
		b: 2.43	22a, 23a, 23b	17, 20, 21, 24	
23	28.2, CH ₂	a: 2.14	22a, 22b, 23b, 24	20, 24, 25	
		b: 2.07	22a, 22b, 23a, 24	20, 24, 25	
24	122.9, CH	5.10, br t (6.7)	23a, 23b, 26, 27	26, 27	26
25	132.8, C				
26	25.7, CH ₃	1.68, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	12.7, CH ₃	1.12, d (6.8)	4	3, 4, 5	5
30	20.2, CH ₃	1.05, s		7. 8, 9, 14	5, 7, 11b, 13
7- <u>C</u> OCH3	169.7, C				
7-CO <u>C</u> H ₃	21.9, CH ₃	2.02, s		7-CO <u>C</u> H3	
16- <u>C</u> OCH3	170.5, C				
16-CO <u>C</u> H ₃	20.5, CH ₃	1.96, s		16- <u>C</u> OCH ₃	

Table S40 NMR data for 47 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

47

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	32.3, CH ₂	a: 2.39	1b, 2a, 2b	2, 10, 19	11
		b: 1.49	1a, 2a, 2b	2, 3, 5, 10	11
2	31.0, CH ₂	a: 1.91	1a, 1b, 2b, 3	1,4	
		b: 1.68	1a, 1b, 2a, 3	4	
3	73.5, CH	3.64	2a, 2b, 4	1, 5, 28	
4	38.5, CH	1.87	3, 5, 28	5, 28	6, 19
5	44.2, CH	2.10	4, 6	1, 3, 4, 6, 7, 9, 10, 19, 28	28, 30
6	79.4, CH	3.46, dd (9.4, 2.0)	5,7	4, 5, 7, 8	4, 19, 28
7	83.8, CH	3.44, d (2.0)	6	5, 6, 8, 9, 14, 30	15a, 15b, 30
8	45.1, C				
9	46.7, CH	2.00, d (2.0)	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	38.3, C				
11	68.9, CH	4.36	9, 12a, 12b	8, 13	1a, 1b, 19
12	37.3, CH ₂	a: 2.29, dt (13.0, 3.0)	11, 12b, 13	11, 13, 14	
		b: 1.90	11, 12a, 13	9, 13	
13	46.3, CH	3.11, br d (11.5)	12a, 12b	12, 14, 17, 18, 20	15a, 30
14	49.8, C				
15	40.6, CH ₂	a: 2.20, dd (14.1, 8.6)	15b, 16	8, 14, 16, 18	7, 13, 30
		b: 1.45, br d (14.2)	15a, 16	13, 14, 16, 17, 18	7, 18
16	76.0, CH	5.81, br d (8.6)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	
17	148.6, C				
18	21.8, CH3	1.15, s		8, 13, 14, 15	9, 15b
19	24.2, CH ₃	1.20, s		1, 5, 9, 10	4, 6, 9, 11
20	132.8, C				
21	174.6, C				
22	30.0, CH ₂	a: 2.53	22b, 23	17, 20, 21, 23, 24	
		b: 2.35	22a, 23	17, 20, 21, 23, 24	
23	29.3, CH ₂	2.10	22a, 22b, 24	22, 24, 25	
24	124.5, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	26
25	133.3, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH3	1.60, br s	24	24, 25, 26	
28	18.5, CH ₃	1.10, br d (7.0)	4	3, 4, 5	5, 6
30	22.0, CH ₃	1.36, s		7, 8, 9, 14	5, 7, 13, 15a
16- <u>C</u> OCH ₃	172.8, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.96, s		16- <u>C</u> OCH3	

Table S41 NMR data for 48 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

48

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	31.2, CH ₂	a: 2.32	1b, 2a, 2b	2, 10, 19	
		b: 1.48	1a, 2a, 2b	2, 3, 9, 10	11
2	30.8, CH ₂	a: 1.84	1a, 1b, 2b, 3	1	
		b: 1.69	1a, 1b, 2a, 3	3, 4, 10	
3	73.4, CH	3.64	2a, 2b, 4	1, 5, 28	28
4	38.9, CH	1.78	3, 5, 28	5, 28	6
5	43.9, CH	2.20, dd (11.9, 9.5)	4, 6	1, 3, 4, 6, 10, 19	28, 30
6	70.5, CH	3.73, br dd (9.4, 6.7)	5, 7a, 7b	4, 5, 7, 8, 10	4, 19, 28
7	43.6, CH ₂	a: 1.95	6, 7b	5, 6, 8, 9, 14, 30	
		b: 1.25	6, 7a	6, 8, 9, 14, 30	
8	40.4, C				
9	51.7, CH	1.57, d (1.3)	11	1, 8, 10, 11, 12, 14, 19, 30	18, 19
10	37.6, C				
11	68.3, CH	4.33	9, 12a, 12b	8, 9, 13	1b, 19
12	37.3, CH ₂	a: 2.30	11, 12b, 13	11, 13, 14	
		b: 1.85	11, 12a, 13	13, 14	
13	44.4, CH	3.09, br d (11.6)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	49.4, C				
15	39.9, CH2	a: 2.18	15b, 16	8, 14, 18	13, 30
		b: 1.25	15a, 16	8, 13, 14, 16, 17, 18	18
16	75.6, CH	5.80, br d (8.6)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.4, C				
18	17.6, CH3	0.91, s		8, 13, 14, 15	9, 15b
19	25.9, CH ₃	0.99, s		1, 5, 9, 10	6, 9, 11
20	132.2, C				
21	174.3, C				
22	29.8, CH ₂	a: 2.53	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.35	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	29.3, CH ₂	a: 2.12	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.06	22a, 22b, 23a, 24	20, 22, 24, 25	
24	124.3, CH	5.12, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	26.0, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH3	1.60, br s	24	24, 25, 26	
28	18.6, CH ₃	1.12, d (7.0)	4	3, 4, 5	3, 5, 6
30	23.1, CH ₃	1.44, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	172.5, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.96, s		16- <u>С</u> ОСН ₃	

Table S42 NMR data for 49 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	31.8, CH ₂	a: 2.21	1b, 2a, 2b	2, 3, 9, 10, 19	
		b: 1.50	1a, 2a, 2b	2, 3, 5	11
2	31.2, CH ₂	a: 1.88	1a, 1b, 2b, 3		
		b: 1.68	1a, 1b, 2a, 3	3	
3	72.4, CH	3.68	2a, 2b, 4	1, 5	28
4	36.8, CH	1.65	3, 5, 28	5, 28	19
5	38.0, CH	1.94	4, 6a, 6b	1, 3, 4, 6, 7, 10, 19	7, 28, 30
6	34.0, CH ₂	a: 1.82, ddd (13.4, 6.7, 3.6)	5, 6b, 7	5, 7	28
		b: 1.14, td (12.4, 7.6)	5, 6a, 7	5, 7, 8	
7	80.9, CH	3.67	6a, 6b	5, 6, 9, 30	5, 30
8	47.0, C				
9	48.5, CH	1.87, d (1.9)	11	1, 8, 10, 11, 14, 19, 30	18, 19
10	38.4, C				
11	68.8, CH	4.30	9, 12a, 12b	8, 13	1b, 19
12	37.4, CH ₂	a: 2.30, dt (12.9, 2.8)	11, 12b, 13	11, 13, 14	
		b: 1.90	11, 12a, 13	13	22a
13	47.3, CH	3.04, br d (11.4)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	49.9, C				
15	41.5, CH ₂	a: 2.22	15b, 16	8, 14, 16, 18	13, 30
		b: 1.65	15a, 16	13, 14, 16, 17, 18	18
16	76.1, CH	5.81, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.3, C				
18	21.3, CH ₃	1.16, s		8, 13, 14, 15	9, 15b
19	22.0, CH ₃	1.09, s		1, 5, 9, 10	4, 9, 11
20	132.9, C				
21	174.7, C				
22	30.0, CH ₂	a: 2.54	22b, 23	17, 20, 21, 23, 24	12b, 24
		b: 2.35	22a, 23	17, 20, 21, 23, 24	24
23	29.3, CH ₂	2.10	22a, 22b, 24	22, 24, 25	
24	124.5, CH	5.13, br t (7.1)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.2, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.60, br s	24	24, 25, 26	
28	16.6, CH ₃	0.89, d (6.8)	4	3, 4, 5	3, 5, 6a
30	25.3, CH ₃	1.36, s		7, 8, 9, 14	5, 7, 13, 15a
16- <u>C</u> OCH3	172.8, C				
16-CO <u>C</u> H ₃	20.8, CH3	1.96, s		16- <u>C</u> OCH ₃	

Table S43 NMR data for 50 (1 H for 400 MHz and 13 C for 100 MHz in CD₃OD).

5	Λ
Э	U

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	36.4, CH ₂	a: 2.70	1b, 2	3, 10, 19	
		b: 1.95	1a, 2		
2	37.6, CH ₂	2.48	1a, 1b	1, 3, 10	
3	218.4, C				
4	47.7, CH	2.54	5, 28	5, 28	6, 19
5	51.3, CH	2.04	4, 6	1, 4, 6, 7, 10, 19, 28	7, 30
6	75.2, CH	3.47, dd (9.4, 3.4)	5,7	4, 5, 7, 8	4, 19, 28
7	84.6, CH	4.74, d (3.4)	6	5, 6, 9, 30, 7- <u>C</u> OCH ₃	5, 15b, 30
8	45.0, C				
9	47.0, CH	2.03	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	38.2, C				
11	68.0, CH	4.37, br s	9, 12a, 12b	8, 10, 13	19
12	37.3, CH ₂	a: 2.32	11, 12b, 13	9, 11, 14	
		b: 1.92	11, 12a, 13	13	
13	46.3, CH	3.14, br d (11.6)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	49.3, C				
15	40.9, CH ₂	a: 2.21, dd (14.6, 8.9)	15b, 16	14, 18	13, 30
		b: 1.23	15a, 16	16, 17	7
16	75.5, CH	5.81, br d (8.4)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.7, C				
18	21.2, CH ₃	1.03, s		8, 13, 14, 15	9
19	24.7, CH ₃	1.23, s		1, 5, 9, 10	4, 6, 9, 11
20	133.4, C				
21	174.2, C				
22	29.9, CH ₂	a: 2.53	22b, 23	17, 20, 21, 23, 24	24
		b: 2.37	22a, 23	17, 20, 21, 23, 24	24
23	29.2, CH ₂	2.12	22a, 22b, 24	22, 24, 25	
24	124.3, CH	5.13, br t (6.6)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.60, br s	24	24, 25, 26	
28	16.1, CH ₃	1.17, d (6.7)	4	3, 4, 5	6
30	22.3, CH ₃	1.44, s		7, 8, 9, 14	5, 7, 13, 15a
7- <u>C</u> OCH ₃	171.9, C				
7-CO <u>C</u> H ₃	22.0, CH ₃	2.03, s		7- <u>C</u> OCH ₃	
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.95, s		16- <u>С</u> ОСН ₃	

Table S44 NMR data for 51 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	35.9, CH ₂	a: 2.59	1b, 2	2	
		b: 2.00	1a, 2	3, 10	
2	37.4, CH ₂	2.47	1a, 1b	1, 3	
3	212.8, C				
4	46.2, CH	2.54	5, 28	3	6, 19
5	47.2, CH	2.28, t (10.5)	4, 6	4, 6, 10, 19	7, 28, 30
6	80.7, CH	4.63, br d (9.4)	5, 7	4, 5, 7, 8, 6- <u>C</u> OCH ₃	4, 19, 28
7	79.8, CH	3.46, br s	6	5, 6, 9, 30	5, 15b, 30
8	43.7, C				
9	44.8, CH	2.16, br s	11	8, 10, 11, 14, 19, 30	18, 19
10	36.7, C				
11	68.3, CH	4.48, br s	9, 12a, 12b	8, 13	19
12	36.3, CH ₂	a: 2.25	11, 12b, 13	11, 14	
		b: 2.00	11, 12a, 13		
13	45.4, CH	3.09, br d (11.6)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.4, C				
15	39.6, CH ₂	a: 2.21	15b, 16	18	
		b: 1.48, br d (14.2)	15a, 16	13, 14, 16, 17	7
16	74.2, CH	5.90, br d (8.4)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	150.1, C				
18	21.5, CH ₃	1.16, s		8, 13, 14, 15	9
19	24.4, CH ₃	1.40, s		1, 5, 9, 10	4, 6, 9, 11
20	130.6, C				
21	174.0, C				
22	28.8, CH ₂	2.43	23	17, 20, 21, 23, 24	24
23	28.3, CH ₂	2.09	22, 24	22, 24	
24	123.0, CH	5.09, br t (6.7)	23, 26, 27	26, 27	22, 26
25	132.7, C				
26	25.7, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.59, br s	24	24, 25, 26	
28	13.7, CH ₃	0.99, d (6.5)	4	3, 4, 5	5, 6
30	21.1, CH ₃	1.26, s		7, 8, 9, 14	5, 7, 13
6- <u>C</u> OCH3	171.3, C				
6-CO <u>C</u> H3	21.6, CH ₃	2.06, s		6- <u>C</u> OCH3	
16- <u>C</u> OCH ₃	170.8, C				
16-CO <u>C</u> H3	20.6, CH ₃	1.96, s		16- <u>C</u> OCH ₃	

51

Table S45 NMR data for 52 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

			52		
Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY ^b
1	36.0, CH ₂	a: 2.61	1b, 2	2	5
		b: 1.98	1a, 2		11
2	37.8, CH ₂	2.46	1a, 1b		
3	217.0, C				
4	47.1, CH	2.54	5, 28		6, 19
5	49.6, CH	2.37, dd (12.4, 9.8)	4,6	6, 10, 19	1a, 28, 30
6	74.1, CH	4.95, ddd (10.2, 6.9, 3.6)	5, 7a, 7b		4, 19, 28
7	41.6, CH ₂	a: 2.14	6, 7b		9, 18
		b: 1.20	6, 7a	30	
8	40.5, C				
9	50.3, CH	1.67	11	8, 10, 11, 14, 19, 30	7a, 12b, 18, 19
10	37.9, C				
11	67.8, CH	4.33, br s	9, 12a, 12b	8, 13	1b, 19
12	37.4, CH ₂	a: 2.32	11, 12b, 13	11, 14	
		b: 1.89, td (13.0, 2.0)	11, 12a, 13		9, 18
13	44.4, CH	3.07, br d (11.9)	12a, 12b	12, 17	15a, 16, 30
14	49.4, C				
15	39.8, CH ₂	a: 2.13	15b, 16	14	13, 30
		b: 1.23	15a, 16	13	18
16	75.6, CH	5.80, br d (8.5)	15a, 15b	14, 17, 16- <u>C</u> OCH ₃	13
17	147.0, C				
18	17.8, CH ₃	0.95, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	25.5, CH ₃	1.18, s		1, 5, 9, 10	4, 6, 9, 11
20	132.8, C				
21	#				
22	30.0, CH ₂	a: 2.53	22b, 23		24
		b: 2.37	22a, 23		24
23	29.2, CH ₂	2.11	22a, 22b, 24		
24	124.5, CH	5.13, br t (6.5)	23, 26, 27	26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.8, CH3	1.60, br s	24	24, 25, 26	
28	14.9, CH ₃	1.01, d (6.6)	4	3, 4, 5	5, 6
30	23.7, CH ₃	1.37, s		7, 8, 9, 14	5, 13, 15a

52

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^bThe data were measured in CD₃OD at 600 MHz; [#] The data is not observed.

2.00, s

1.96, s

6-<u>C</u>OCH₃

6-CO<u>C</u>H₃

16-<u>C</u>OCH3

16-CO<u>C</u>H3

172.4, C

21.7, CH₃

172.7, C

20.7, CH₃

6-<u>C</u>OCH3

16-<u>C</u>OCH3

Table S46 NMR data for 55 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	33.7, CH ₂	a: 2.20	1b, 2a, 2b	2, 5, 10, 19	
		b: 1.53	1a, 2a, 2b	2, 3, 5, 10	11
2	31.3, CH2	a: 1.94	1a, 1b, 2b, 3		19
		b: 1.71	1a, 1b, 2a, 3	3, 4, 10	
3	72.3, CH	3.81, br s	2a, 2b, 4	1, 4, 5	28
4	33.4, CH	2.19	3, 5, 28	5, 10, 28	19
5	40.7, CH	2.12	4,6	1, 3, 4, 7, 10, 19	28, 30
6	75.0, CH	3.80, br s	5	4, 5, 7, 8, 10	28
7	218.3, C				
8	54.5, C				
9	46.7, CH	2.39, d (1.5)	11	1, 7, 8, 10, 11, 14, 19, 30	12b, 18, 19
10	38.0, C				
11	67.9, CH	4.41, br s	9, 12a, 12b	8, 10, 13	1b, 19
12	37.0, CH ₂	a: 2.34	11, 12b, 13		
		b: 1.88, td (12.6, 2.3)	11, 12a, 13	13	9, 18
13	45.2, CH	3.10, br d (11.7)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.0, C				
15	42.0, CH ₂	a: 2.33	15b, 16	8, 14, 18	30
		b: 1.81, br d (14.6)	15a, 16	13, 14, 16, 17, 18	18
16	75.6, CH	5.81, br d (8.5)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.5, C				
18	18.7, CH ₃	0.90, s		8, 13, 14, 15	9, 12b, 15b
19	24.3, CH ₃	1.33, s		1, 5, 9, 10	2a, 4, 9, 11
20	132.5, C				
21	174.2, C				
22	29.8, CH ₂	a: 2.56	22b, 23	17, 20, 21, 23, 24	24
		b: 2.37	22a, 23	17, 20, 21, 23, 24	24
23	29.3, CH ₂	2.11	22a, 22b, 24	22, 24, 25	
24	124.3, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH3	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	16.1, CH ₃	0.97, d (6.7)	4	3, 4, 5	3, 5, 6
30	22.8, CH3	1.49, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH ₃	172.6, C				
16-CO <u>C</u> H3	20.7, CH ₃	1.96, s		16- <u>C</u> OCH ₃	

55

Table S47 NMR data for 56 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	30.6, CH ₂	a: 2.31	1b, 2a, 2b	5, 10, 19	
		b: 1.44	1a, 2a, 2b		11
2	30.8, CH ₂	a: 1.81	1a, 1b, 2b, 3		19
		b: 1.68	1a, 1b, 2a, 3		
3	72.0, CH	3.63, br s	2a, 2b, 4	1, 2, 5	28
4	38.9, CH	1.49	3, 5, 28	10, 28	19
5	37.2, CH	2.33	4, 6a, 6b	4, 6	28, 30
6	34.9, CH ₂	a: 1.60	5, 6b, 7	4, 5, 7, 8	
		b: 1.48	5, 6a, 7	7, 10	
7	71.4, CH	3.88, t (8.3)	6a, 6b	6, 8, 9, 14, 30	9, 18, 19
8	46.3, C				
9	51.8, CH	1.55, br s	11	7, 8, 10, 11, 19, 30	7, 18, 19
10	37.4, C				
11	68.5, CH	4.34, br s	9, 12a, 12b	8, 13	1b, 19
12	37.2, CH ₂	a: 2.30	11, 12b, 13		
		b: 1.84	11, 12a, 13	13	18, 22a
13	45.3, CH	3.04, br d (11.8)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	49.2, C				
15	43.0, CH ₂	a: 2.27, dd (14.9, 8.9)	15b, 16	8, 14, 18	30
		b: 1.57, br d (14.9)	15a, 16	13, 14, 16, 17, 18	
16	76.0, CH	5.76, br d (8.7)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.6, C				
18	16.6, CH3	0.99, s		8, 13, 14, 15	7, 9, 12b
19	25.0, CH ₃	0.97, s		1, 5, 9, 10	2a, 4, 7, 9, 11
20	132.1, C				
21	174.7, C				
22	29.9, CH ₂	a: 2.55	22b, 23a, 23b	17, 20, 21, 23, 24	12b, 24
		b: 2.35	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	29.4, CH ₂	a: 2.13	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.08	22a, 22b, 23a, 24	20, 22, 24, 25	
24	124.4, CH	5.13, br t (7.3)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH3	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	16.2, CH ₃	0.90, d (6.8)	4	3, 4, 5	3, 5
30	14.9, CH3	1.32, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	172.6, C				
16-CO <u>C</u> H3	20.7, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

56

Table S48 NMR data for 57 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	31.7, CH ₂	a: 2.21	1b, 2a, 2b	2, 10, 19	
		b: 1.62	1a, 2a, 2b	2, 3, 5, 10	11, 19
2	31.2, CH ₂	a: 1.92	1a, 1b, 2b, 3		19
		b: 1.75	1a, 1b, 2a, 3		
3	71.9, CH	3.74, br s	2a, 2b, 4	1,5	28
4	35.3, CH	1.81	3, 5, 28	5, 28	19
5	37.2, CH	2.23 ^b	4, 6	3, 4, 6, 7, 10, 19	30
6	40.8, CH ₂	2.13	5	5, 7, 8, 10	
7	222.1, C				
8	54.7, C				
9	48.2, CH	1.85	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	38.4, C				
11	67.5, CH	4.37, br s	9, 12a, 12b	8, 13	1b, 19
12	36.9, CH ₂	a: 2.32	11, 12b, 13	11, 14	
		b: 1.85	11, 12a, 13	11, 13, 14	
13	44.9, CH	3.07, br d (11.8)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.4, C				
15	41.8, CH ₂	a: 2.31	15b, 16	8, 14, 18	30
		b: 1.73, br d (14.8)	15a, 16	13, 14, 16, 17, 18	18
16	75.5, CH	5.79, br d (8.5)	15a, 15b	13, 14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.5, C				
18	17.6, CH ₃	0.82, s		8, 13, 14, 15	9, 15b
19	20.6, CH ₃	1.08, s		1, 5, 9, 10	1b, 2a, 4, 9, 11
20	133.2, C				
21	174.6, C				
22	29.9, CH ₂	a: 2.54	22b, 23	17, 20, 21, 23, 24	24
		b: 2.35	22a, 23	17, 20, 21, 23, 24	24
23	29.3, CH ₂	2.09	22a, 22b, 24	22, 24, 25	
24	124.3, CH	5.13, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.4, C				
26	25.9, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.60, br s	24	24, 25, 26	
28	16.4, CH ₃	0.88, br d (6.8)	4	3, 4, 5	3
30	22.4, CH ₃	1.48, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH ₃	172.6, C				
16-CO <u>C</u> H ₃	20.7, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

57

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^bThe chemical shift was confirmed by ¹H-¹H COSY, HMBC and ROESY.

Table S49 NMR data for 58 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	36.6, CH ₂	a: 2.49	1b, 2	19	
		b: 2.01	1a, 2	3, 5	
2	38.2, CH ₂	2.51	1a, 1b	3, 10	
3	215.4, C				
4	43.1, CH	2.61	5, 28	3, 5, 28	6, 19
5	47.1, CH	2.23, br d (12.1)	4, 6	3, 4, 7, 10, 19, 28	28, 30
6	74.9, CH	5.17, br s	5	4, 5, 7, 8, 10, 6- <u>C</u> OCH ₃	4, 28
7	211.7, C				
8	54.9, C				
9	46.2, CH	2.44, br s	11	7, 8, 10, 11, 12, 19, 30	12b, 18, 19
10	37.3, C				
11	67.6, CH	4.50, br s	9, 12a, 12b	8, 10, 13	19
12	36.8, CH ₂	a: 2.37	11, 12b, 13	9, 11, 14	
		b: 1.99	11, 12a, 13	13	9
13	44.9, CH	3.13, br d (12.0)	12a, 12b	11, 12, 14, 17, 18, 20	16, 30
14	48.2, C				
15	41.7, CH ₂	a: 2.34	15b, 16	8, 14, 18	30
		b: 1.74, br d (14.5)	15a, 16	13, 14, 16, 17, 18	18
16	75.3, CH	5.81, br d (8.1)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.7, C				
18	18.4, CH ₃	0.87, s		8, 13, 14, 15	9, 15b
19	24.7, CH ₃	1.39, s		1, 5, 9, 10	4, 9, 11
20	133.0, C				
21	174.1, C				
22	29.8, CH ₂	a: 2.55	22b, 23	17, 20, 21, 23, 24	
		b: 2.38	22a, 23	17, 20, 21, 23, 24	
23	29.2, CH ₂	2.12	22a, 22b, 24	22, 24, 25	
24	124.2, CH	5.14, br t (6.9)	23, 26, 27	23, 26, 27	26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	13.2, CH ₃	1.10, d (6.3)	4	3, 4, 5	5, 6
30	22.4, CH ₃	1.52, s		7, 8, 9, 14	5, 13, 15a
6- <u>C</u> OCH3	170.8, C				
6-CO <u>C</u> H ₃	20.7, CH ₃	2.08, s		6- <u>C</u> OCH ₃	
16- <u>С</u> ОСН3	172.4, C				
16-CO <u>C</u> H3	20.7, CH ₃	1.96, s		16- <u>C</u> OCH3	

58

Table S50 NMR data for 59 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	36.9, CH ₂	a: 1.99	1b, 2a, 2b		
		b: 1.84	1a, 2a, 2b	2, 3, 10	
2	32.5, CH ₂	a: 1.88	1a, 1b, 2b, 3	3, 4	
		b: 1.66	1a, 1b, 2a, 3		
3	77.3, CH	3.07	2a, 2b, 4	1	28
4	47.5, CH	1.75	3, 5, 28	5, 6	19
5	36.4, CH	1.73	4, 6	6	28, 30
6	75.1, CH	5.24, br s	5	4, 7, 8, 10, 6- <u>C</u> OCH ₃	28
7	212.5, C				
8	54.7, C				
9	47.3, CH	2.31, br s	11	7, 8, 10, 11, 14, 19, 30	18, 19
10	37.5, C				
11	67.8, CH	4.43, br s	9, 12a, 12b	8, 9, 10, 13	19
12	36.9, CH ₂	a: 2.34	11, 12b, 13	14	
		b: 1.92	11, 12a, 13	13	
13	45.0, CH	3.09	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.2, C				
15	41.5, CH ₂	a: 2.28	15b, 16	8, 14, 18	
		b: 1.71	15a, 16	13, 14, 16, 17	
16	75.4, CH	5.81, br d (8.3)	15a, 15b	14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.7, C				
18	18.3, CH ₃	0.87, s		8, 13, 14, 15	9
19	25.1, CH ₃	1.29, s		1, 5, 9, 10	4, 9, 11
20	133.0, C				
21	174.2, C				
22	29.8, CH ₂	a: 2.55	22b, 23	17, 20, 21, 23	
		b: 2.36	22a, 23	17, 20, 21, 23	
23	29.2, CH ₂	2.10	22a, 22b, 24	22, 24, 25	
24	124.3, CH	5.13, br t (7.2)	23, 26, 27	23, 26, 27	26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	15.7, CH ₃	1.03, d (4.6)	4	3, 4, 5	3, 5, 6
30	22.7, CH ₃	1.51, s		7, 8, 9, 14	5, 13
6- <u>C</u> OCH ₃	170.9, C				
6-CO <u>C</u> H ₃	20.8, CH ₃	2.05, s		6- <u>C</u> OCH ₃	
16- <u>С</u> ОСН3	172.5, C				
16-COCH ₃	20.7. CH ₃	1.95. s		16-COCH ₃	

59

Table S51 NMR data for 60 (¹H for 600 MHz and ¹³C for 150 MHz in CDCl₃).

L	ſ	۱.	
O	ι	,	

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	29.7, CH ₂	a: 1.75	1b, 2a, 2b	2, 10, 19	
		b: 1.23	1a, 2a, 2b	3, 5, 10	
2	29.5, CH ₂	a: 1.83	1a, 1b, 2b, 3	1	
		b: 1.69	1a, 1b, 2a, 3	3, 4, 10	
3	71.0, CH	3.84, br s	2a, 2b, 4	1, 2, 5, 28	28
4	32.3, CH	1.99	3, 5, 28	5, 28	19
5	39.3, CH	2.26	4, 6	1, 3, 4, 7, 10, 19	28, 30
6	74.5, CH	5.14, br s	5	4, 5, 7, 8, 10, 6- <u>C</u> OCH ₃	28
7	210.2, C				
8	52.8, C				
9	41.9, CH	2.40	11a, 11b	1, 7, 8, 10, 11, 12, 19, 30	12b, 18, 19
10	35.8, C				
11	22.6, CH ₂	a: 1.77	9, 11b, 12a, 12b		
		b: 1.40, qd (13.1, 3.4)	9, 11a, 12a, 12b	9	13
12	26.1, CH ₂	a: 2.29	11a, 11b, 12b, 13		
		b: 1.69	11a, 11b, 12a, 13	13	9
13	49.1, CH	2.52, br d (11.9)	12a, 12b	12, 14, 17, 18, 20	11b, 16, 30
14	46.8, C				
15	40.4, CH ₂	a: 2.24	15b, 16	8, 14, 18	30
		b: 1.83, br d (14.5)	15a, 16	13, 14, 16, 17, 18	18
16	73.6, CH	5.81, br d (8.5)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.1, C				
18	17.9, CH ₃	0.86, s		8, 13, 14, 15	9, 15b
19	22.7, CH ₃	1.18, s		1, 5, 9, 10	4,9
20	130.2, C				
21	174.6, C				
22	28.4, CH ₂	a: 2.47	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.40	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.3, CH ₂	a: 2.09	22a, 22b, 23b, 24	22, 24, 25	
		b: 2.01	22a, 22b, 23a, 24	22, 24, 25	
24	122.8, CH	5.06, br t (7.1)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.6, C				
26	25.6, CH ₃	1.65, br s	24	24, 25, 27	24
27	17.6, CH ₃	1.57, br s	24	24, 25, 26	
28	15.3, CH ₃	0.99, d (6.8)	4	3, 4, 5	3, 5, 6
30	17.9, CH ₃	1.30, s		7, 8, 9, 14	5, 13, 15a
6- <u>C</u> OCH3	169.1, C				
6-CO <u>C</u> H3	20.8, CH3	2.03, s		6- <u>C</u> OCH ₃	
16- <u>С</u> ОСН ₃	170.2, C				
16-CO <u>C</u> H₃	20.4, CH ₃	1.89, s		16- <u>С</u> ОСН ₃	

Table S52 NMR data for 61 (¹H for 400 MHz and ¹³C for 100 MHz in CDCl₃).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	160.6, CH	8.19, d (10.2)	2	3, 5, 9, 10	11
2	126.3, CH	5.81, d (10.2)	1	4, 10	
3	201.7, C				
4	40.3, CH	2.74, dq (13.2, 6.6)	5, 28	3, 5, 28	6, 19
5	46.5, CH	2.42	4, 6	1, 3, 4, 10, 19, 28	28, 30
6	73.6, CH	5.23, br s	5	4, 5, 7, 8, 10, 6- <u>C</u> OCH ₃	4, 28
7	208.8, C				
8	53.3, C				
9	45.3, CH	2.46	11	1, 7, 8, 10, 11, 14, 19, 30	12b, 18, 19
10	38.7, C				
11	67.2, CH	4.69, br s	9, 12a, 12b	8, 10, 13	1, 19
12	35.7, CH ₂	a: 2.39	11, 12b, 13	9, 11	
		b: 2.06	11, 12a, 13	13	9, 18
13	43.9, CH	3.12, br d (12.1)	12a, 12b	11, 12, 14, 17, 18, 20	16, 30
14	46.7, C				
15	40.5, CH ₂	a: 2.31, dd (15.0, 8.9)	15b, 16	8, 14, 18	30
		b: 1.91, br d (15.3)	15a, 16	13, 14, 16, 17, 18	18
16	73.8, CH	5.91, br d (8.3)	15a, 15b	13, 14, 17, 20, 16- <u>C</u> OCH ₃	13
17	148.2, C				
18	17.8, CH ₃	0.88, s		8, 13, 14, 15	9, 12b, 15b
19	27.8, CH ₃	1.47, s		1, 5, 9, 10	4, 9, 11
20	130.4, C				
21	174.1, C				
22	28.7, CH ₂	2.44	23a, 23b	17, 20, 21, 24	24
23	28.4, CH ₂	a: 2.15	22, 23b, 24	20, 22, 24, 25	
		b: 2.04	22, 23a, 24	20, 22, 24, 25	
24	122.8, CH	5.09, br t (7.0)	23a, 23b, 26, 27	23, 26, 27	22, 26
25	132.9, C				
26	25.7, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.58, br s	24	24, 25, 26	
28	13.0, CH ₃	1.24, d (6.7)	4	3, 4, 5	5, 6
30	22.3, CH ₃	1.38, s		7, 8, 9, 14,	5, 13, 15a
6- <u>C</u> OCH3	168.9, C				
6-CO <u>C</u> H ₃	20.6, CH3	2.08, s		6- <u>C</u> OCH ₃	
16- <u>C</u> OCH ₃	170.5, C				
16-CO <u>C</u> H3	20.4, CH ₃	1.93, s		16- <u>С</u> ОСН3	

61

Table S53 NMR data for 62 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{\rm H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	143.7, CH	6.79, d (10.2)	2	3, 5, 10	11, 19
2	126.0, CH	5.49, dd (10.2, 4.3)	1, 3	4, 10	
3	69.4, CH	3.97, t (4.4)	2,4	1, 2, 5	28
4	32.3, CH	2.46	3, 5, 28	28	19
5	41.1, CH	2.08, dd (11.2, 1.5)	4, 6	1, 3, 4, 10, 19	28, 30
6	74.6, CH	3.91, d (1.5)	5	4, 5, 7, 8, 10	28
7	217.9, C				
8	54.3, C				
9	46.7, CH	2.43, br s	11	1, 7, 8, 10, 11, 14, 19, 30	12b, 18, 19
10	39.4, C				
11	67.9, CH	4.53, br s	9, 12a, 12b	8, 13	1, 19
12	36.8, CH ₂	a: 2.37	11, 12b, 13		
		b: 1.91, br t (13.0)	11, 12a, 13	13	9, 18
13	44.7, CH	3.10, br d (11.4)	12a, 12b		15a, 30
14	47.9, C				
15	42.1, CH ₂	a: 2.27, dd (15.3, 8.7)	15b, 16	14, 18	13, 30
		b: 1.82, br d (14.7)	15a, 16	13, 14, 16, 18	18
16	75.7, CH	5.81, br d (8.2)	15a, 15b	14	
17	#				
18	18.6, CH ₃	0.93, s		8, 13, 14, 15	9, 12b, 15b
19	29.6, CH ₃	1.35, s		1, 5, 9, 10	1, 4, 9, 11
20	#				
21	#				
22	30.2, CH ₂	a: 2.56	22b, 23		
		b: 2.37	22a, 23		
23	29.3, CH ₂	2.13	22a, 22b, 24		
24	124.6, CH	5.15, br t (6.1)	23, 26, 27	23, 26, 27	26
25	133.1, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	14.2, CH ₃	1.06, d (6.9)	4	3, 4, 5	3, 5, 6
30	22.5, CH ₃	1.37, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	172.8, C				
16-CO <u>C</u> H ₃	20.9, CH3	1.97, s		16- <u>С</u> ОСН3	

62

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

[#]Data are not observed in NMR spectra.

Table S54 NMR data for 63 (¹H for 600 MHz and ¹³C for 150 MHz in pyridine- d_5).

63

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY	δc , type ^b	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a},\mathrm{b}}$
1	138.2, CH	6.19, d (10.0)	2	3, 5, 10	11a, 11b, 19	140.2, CH	6.18, d (10.0)
2	129.7, CH	5.97, dd (9.7, 3.5)	1, 3	4, 10		128.8, CH	5.58, dd (10.1,
							4.0)
3	67.8, CH	4.33, br s	2, 4	1, 2, 5	28	69.0, CH	4.01, t (4.3)
4	31.8, CH	2.50	3, 5, 28	3, 5, 10, 28	19	32.3, CH	2.36
5	41.1, CH	2.51	4, 6	1, 3, 4, 7, 9, 10, 19	30	41.8, CH	2.10
6	74.8, CH	5.74, br s	5	4, 5, 7, 8, 10, 6- <u>C</u> OCH ₃	28	75.5, CH	5.19, br s
7	210.7, C					212.0, C	
8	53.0, C					54.0, C	
9	42.1, CH	2.62	11a, 11b	1, 7, 8, 10, 11, 19, 30	18, 19	43.2, CH	2.50
10	38.0, C					38.8, C	
11	24.0, CH ₂	a: 1.90	9, 11b, 12a, 12b	8, 13	1	24.8, CH ₂	a: 1.96
		b: 1.46	9, 11a, 12a, 12b		1, 30		b: 1.56
12	26.5, CH ₂	a: 2.43	11a, 11b, 12b, 13	14		27.4, CH ₂	a: 2.38
		b: 1.81, br q (13.6)	11a, 11b, 12a, 13	11, 13	18		b: 1.77
13	49.1, CH	2.60	12a, 12b	12, 14, 17, 18	16, 30	50.0, CH	2.65, br d (11.4)
14	47.0, C					47.8, C	
15	41.3, CH ₂	a: 2.35, dd (14.2,	15b, 16	8, 14, 18	30	41.8, CH ₂	a: 2.23, dd (14.8,
		8.8)					9.0)
		b: 2.17	15a, 16	13, 14, 16, 17, 18	18		b: 1.73
16	74.2, CH	6.43, br d (8.4)	15a, 15b	13, 14, 17, 20,	13	75.2, CH	5.77, br d (8.3)
				16- <u>С</u> ОСН ₃			
17	144.6, C					146.1, C	
18	18.1, CH ₃	1.13, s		8, 13, 14, 15	9, 12b, 15b	18.4, CH ₃	0.87, s
19	28.3, CH ₃	1.42, s		1, 5, 9, 10	1, 4, 9	28.4, CH ₃	1.30, s
20	133.1, C					132.8, C	
21	173.0, C					#	
22	29.5, CH ₂	a: 2.94	22b, 23a, 23b	17, 20, 21, 23, 24	24	29.7, CH ₂	a: 2.57
		b: 2.84	22a, 23a, 23b	17, 20, 21, 23, 24	24		b: 2.38
23	29.1, CH ₂	a: 2.57	22a, 22b, 23b, 24	22, 24, 25		29.1, CH ₂	2.11
		b: 2.44	22a, 22b, 23a, 24	22, 24, 25			
24	124.3, CH	5.41, br t (6.4)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26	124.3, CH	5.14, br t (7.3)
25	132.2, C					133.4, C	
26	25.8, CH ₃	1.72, br s	24	24, 25, 27	24	25.9, CH ₃	1.68, br s
27	17.8, CH ₃	1.69, br s	24	24, 25, 26		17.8, CH ₃	1.61, br s
28	14.5, CH ₃	1.37, d (4.2)	4	3, 4, 5	3,6	14.0, CH ₃	1.04, d (6.8)
30	18.2, CH ₃	1.13, s		7, 8, 9, 14	5, 11b, 13, 15a	18.6, CH ₃	1.22, s
6- <u>C</u> OCH ₃	169.4, C					170.9, C	
6-CO <u>C</u> H ₃	20.7, CH3	2.13, s		6- <u>C</u> OCH3		20.7, CH ₃	2.07, s
16- <u>C</u> OCH3	170.4, C					172.5, C	
16-СО <u>С</u> Н3	20.6, CH3	1.91, s		16- <u>С</u> ОСН ₃		20.6, C	1.95, s

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^bThe data were measured in CD₃OD (¹H NMR for 400 MHz and ¹³C NMR for 100 MHz).

[#]The data is not observed in NMR spectra.

Table S55 NMR data for 64 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	HMBC	ROESY
1	141.3, CH	6.09, d (10.2)	2	3, 5, 10, 19	11a, 11b, 19
2	127.2, CH	5.59, dd (10.2, 4.7)	1, 3	3, 4, 10	
3	70.1, CH	3.78, t (4.0)	2,4	1, 2, 5	28
4	36.4, CH	2.07	3, 5, 28	5	19
5	42.0, CH	2.09	4,6	1, 3, 4, 6, 10, 19	28, 30
6	75.6, CH	3.52, br d (9.8)	5,7	4, 5, 7, 8	19
7	84.5, CH	4.81, br s	6	6, 8, 9, 14, 30, 7- <u>C</u> OCH ₃	30
8	43.8, C				
9	42.8, CH	2.22, dd (13.4, 3.7)	11a, 11b	1, 5, 8, 10, 11, 14, 19, 30	12b, 18, 19
10	39.6, C				
11	26.2, CH ₂	a: 2.00	9, 11b, 12a, 12b		1
		b: 1.39, qd (13.0, 4.4)	9, 11ba 12a, 12b	9, 12	1, 13, 30
12	27.2, CH ₂	a: 2.29	11a, 11b, 12b, 13		
		b: 1.69	11a, 11b, 12a, 13	11, 13	9, 18
13	50.2, CH	2.63, br d (11.2)	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	49.5, C				
15	41.0, CH ₂	a: 2.18, dd (14.4, 9.2)	15b, 16	8, 14, 18,	13
		b: 1.20, br d (14.4)	15a, 16	13, 16, 17, 18	18
16	75.5, CH	5.78, br d (8.6)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.9, C				
18	21.6, CH ₃	1.03, s		8, 13, 14, 15	9, 12b, 15b, 7-COC <u>H</u> ₃
19	27.7, CH ₃	1.14, s		1, 5, 9, 10	1, 4, 6, 9
20	133.6, C				
21	1745, C				
22	29.8, CH ₂	a: 2.54, dt (13.2, 7.6)	22b, 23	17, 20, 21, 23, 24	24
		b: 2.35	22a, 23	17, 20, 21, 23, 24	24
23	29.0, CH ₂	2.08	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.12, br t (7.2)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	16.5, CH ₃	1.13, d (5.8)	4	3, 4, 5	3, 5
30	17.3, CH ₃	1.18, s		7, 8, 9, 14	5, 7, 11b, 13
7- <u>C</u> OCH3	171.9, C				
7-CO <u>C</u> H ₃	22.0, CH ₃	2.03, s		7- <u>C</u> OCH ₃	18
16- <u>С</u> ОСН3	172.6, C				
16-CO <u>C</u> H3	20.6, CH ₃	1.95, s		16- <u>С</u> ОСН3	

64

Table S56 NMR data for 65 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{\rm H} (J {\rm in} {\rm Hz})^{\rm a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	140.4, CH	6.06, d (10.1)	2	3, 5, 9, 10, 19	11a, 11b, 19
2	127.6, CH	5.62, dd (10.1, 4.8)	1, 3	3, 4, 10	
3	69.8, CH	3.79, t (4.3)	2, 4	1, 2, 4, 5, 28	28
4	36.0, CH	2.06	3, 5, 28	5, 28	6, 19
5	39.9, CH	2.47, t (11.0)	4, 6	1, 3, 4, 6, 7, 9, 10, 19	28, 30
6	73.1, CH	5.01, ddd (10.8, 7.3, 2.4)	5, 7a, 7b	4, 5, 8, 6- <u>C</u> OCH ₃	4, 19, 28
7	41.0, CH ₂	a: 2.12, dd (14.9, 7.4)	6, 7b	5, 6, 8, 9, 14, 30	18
		b: 1.27, dd (14.9, 2.3)	6, 7a	6, 8, 9, 14, 30	
8	40.0, C				
9	47.7, CH	1.76, dd (13.3, 3.1)	11a, 11b	1, 5, 10, 11, 19, 30	18, 19
10	39.3, C				
11	26.1, CH ₂	a: 1.92	9, 11b, 12a, 12b	9	1
		b: 1.30, qd (13.0, 4.0)	9, 11ba 12a, 12b	8, 9, 12	1, 13, 30
12	27.8, CH ₂	a: 2.30	11a, 11b, 12b, 13		
		b: 1.69	11a, 11b, 12a, 13	11, 13	18
13	48.9, CH	2.61, br d (11.5)	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	49.4, C				
15	40.1, CH ₂	a: 2.06	15b, 16	14, 16, 18	13
		b: 1.19, br d (14.6)	15a, 16	13, 16, 17, 18	18
16	75.4, CH	5.75, br d (8.6)	15a, 15b	14, 15, 17, 20, 16- <u>C</u> OCH ₃	13
17	147.3, C				
18	17.9, CH3	0.95, s		8, 13, 14, 15	7a, 9, 12b, 15b
19	28.6, CH ₃	1.04, s		1, 5, 9, 10	1, 4, 6, 9
20	132.5, C				
21	174.4, C				
22	29.7, CH ₂	a: 2.55, dt (13.1, 7.6)	22b, 23	17, 20, 21, 23, 24	24
		b: 2.36	22a, 23	17, 20, 21, 23, 24	24
23	29.1, CH ₂	2.09	22a, 22b, 24	22, 24, 25	
24	124.4, CH	5.12, br t (7.3)	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	15.8, CH ₃	0.97, d (7.0)	4	3, 4, 5	3, 5, 6
30	19.4, CH3	1.17, s		7, 8, 9, 14	5, 11b, 13
6- <u>C</u> OCH ₃	172.6, C				
6-CO <u>C</u> H ₃	21.9, CH ₃	2.01, s		6-CO <u>C</u> H ₃	
16- <u>C</u> OCH3	172.6, C				
16-СО <u>С</u> Н3	20.6, CH ₃	1.95, s		16- <u>C</u> OCH ₃	

65

Table S57 NMR data for 66 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H}(J{ m in}{ m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	160.4, CH	7.46, d (9.3)	2	3, 5, 9, 10	11a, 11b
2	128.0, CH	5.84, d (9.5)	1	3, 4, 10	
3	204.5, C				
4	44.0, CH	2.65	5, 28	3, 5, 6, 10, 28	6, 19
5	50.1, CH	2.45, t (10.9)	4, 6	1, 3, 4, 6, 7, 10, 19, 28	28, 30
6	72.5, CH	5.05	5, 7a, 7b	4, 5, 7, 10, 6- <u>C</u> OCH ₃	4, 9, 19
7	42.1, CH ₂	a: 2.32	6, 7b	6, 8, 14, 30	18
		b: 1.27	6, 7a	6, 8, 30	
8	40.1, C				
9	45.9, CH	1.81	11a, 11b	1, 8, 11, 19, 30	6, 18, 19
10	40.9, C				
11	25.8, CH ₂	a: 1.85	9, 11b, 12a, 12b	8	1
		b: 1.53	9, 11a, 12a, 12b	9, 12	1, 30
12	27.3, CH ₂	a: 2.37	11a, 11b, 12b, 13		
		b: 1.76	11a, 11b, 12a, 13		
13	48.9, CH	2.63	12a, 12b	12, 14, 17, 18, 20	16, 30
14	49.3, C				
15	40.1, CH ₂	a: 2.04	15b, 16	8, 14, 18	30
		b: 1.24	15a, 16	8, 14, 16, 17, 18	18
16	75.3, CH	5.78, br d (7.1)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.6, C				
18	18.4, CH3	1.01, s		8, 13, 14, 15	7a, 9, 15b
19	27.5, CH ₃	1.24, s		1, 5, 9, 10	4, 6, 9
20	133.3, C				
21	174.6, C				
22	29.8, CH ₂	a: 2.55	22b, 23	17, 20, 21, 23, 24	24
		b: 2.38	22a, 23	17, 20, 21, 23, 24	24
23	29.1, CH ₂	2.10	22a, 22b, 24	20, 22, 24, 25	
24	124.4, CH	5.13	23, 26, 27	23, 26, 27	22a, 22b, 26
25	133.3, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.61, br s	24	24, 25, 26	
28	16.3, CH ₃	1.21, d (5.3)	4	3, 4, 5	5
30	20.9, CH ₃	1.13, s		7. 8, 9, 14	5, 11b, 13, 15a
6- <u>C</u> OCH ₃	172.3, C				
6-CO <u>C</u> H3	21.6, CH3	2.03, s		6- <u>C</u> OCH3	
16- <u>C</u> OCH3	172.6, C				
16-COCH ₃	20.7, CH ₃	1.96, s		16-COCH ₃	

66

Table S58 NMR data for 67 (¹H for 400 MHz and ¹³C for 100 MHz in acetone- d_6).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	30.8, CH ₂	a: 2.59	1b, 2a, 2b		
		b: 1.49, br d (13.8)	1a, 2a, 2b	3, 5	11, 19
2	31.0, CH ₂	a: 1.79	1a, 1b, 2b, 3		
		b: 1.67	1a, 1b, 2a, 3		
3	71.8, CH	3.66, br s	2a, 2b, 4	1, 5	28
4	38.3, CH	1.79	3, 5, 28		6, 19
5	40.2, CH	2.67, t (10.4)	4, 6	1, 3, 4, 6, 10, 19	28, 30
6	73.3, CH	4.84, br dd (9.6, 7.1)	5, 7a, 7b	8, 6- <u>C</u> OCH3	4, 19, 28
7	40.4, CH ₂	a: 1.92	6, 7b	8, 30	
		b: 1.19	6, 7a	6, 8, 9	
8	39.5, C				
9	51.2, CH	1.61	11	8, 10, 11, 14, 19, 30	12b, 18, 19
10	36.8, C				
11	67.6, CH	4.43, br s	9, 12a, 12b	8, 13	1b, 19
12	37.3, CH ₂	a: 2.36	11, 12b, 13	9, 11, 14	
		b: 1.90	11, 12a, 13	13	9, 18
13	44.1, CH	3.16. br d (11.8)	12a, 12b	12, 14, 17, 18, 20	15a, 16, 30
14	48.8, C				
15	39.6, CH ₂	a: 2.12	15b, 16	14, 18	13, 30
		b: 1.21	15a, 16	13, 14, 16, 17, 18	18
16	74.7, CH	5.82, br d (8.4)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.0, C				
18	17.5, CH ₃	0.92, s		8, 13, 14, 15	9, 12b, 15b
19	25.9, CH ₃	1.04, s		1, 5, 9, 10	1b, 4, 6, 9, 11
20	131.1, C				
21	171.3, C				
22	29.5, CH ₂	a: 2.52	22b, 23	17, 20, 21	24
		b: 2.41	22a, 23	17, 20, 21	24
23	29.2, CH ₂	2.10	22a, 22b, 24	24	
24	124.3, CH	5.14, br t (7.0)	23, 26, 27	26, 27	22a, 22b, 26
25	132.6, C				
26	25.8, CH ₃	1.66, br s	24	24, 25, 27	24
27	17.8, CH ₃	1.60, br s	24	24, 25, 26	
28	17.5, CH ₃	0.88, d (6.9)	4	3, 4, 5	3, 5, 6
30	22.5, CH ₃	1.44, s		7, 8, 9, 14	5, 13, 15a
6- <u>C</u> OCH3	170.6, C				
6-CO <u>C</u> H ₃	21.9, CH ₃	1.96, s		6- <u>C</u> OCH ₃	
16- <u>С</u> ОСН ₃	170.3, C				
16-CO <u>C</u> H3	20.6, CH ₃	1.88, s		16- <u>C</u> OCH3	

67

Table S59 NMR data for 68 (¹H for 400 MHz and ¹³C for 100 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	33.3, CH ₂	a: 2.28	1b, 2a, 2b		
		b: 1.58	1a, 2a, 2b	3, 5	11
2	31.0, CH ₂	a: 1.90	1a, 1b, 2b, 3		
		b: 1.74	1a, 1b, 2a, 3		
3	71.8, CH	3.79, br s	2a, 2b, 4	1, 5	28
4	33.7, CH	2.02	3, 5, 28		19
5	41.1, CH	2.41, dd (10.8, 1.4)	4, 6	3, 4, 7, 10, 19	28, 30
6	75.8, CH	5.14, d (1.4)	5	4, 5, 7, 8, 10, 6- <u>C</u> OCH ₃	28
7	212.8, C				
8	54.9, C				
9	47.5, CH	2.31, br s	11	1, 7, 8, 10, 11, 14, 19, 30	18, 19
10	38.1, C				
11	67.7, CH	4.44, br s	9, 12a, 12b	8, 13	1b, 19
12	37.0, CH ₂	a: 2.35	11, 12b, 13		
		b: 1.92	11, 12a, 13	13	
13	45.1, CH	3.11, br d (11.6)	12a, 12b	12, 14, 17, 18, 20	16, 30
14	48.2, C				
15	41.6, CH ₂	a: 2.31	15b, 16	8, 14, 18	30
		b: 1.72, br d (14.6)	15a, 16	13, 14, 16, 17	
16	75.4, CH	5.81, br d (8.4)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	146.8, C				
18	18.3, CH ₃	0.86, s		8, 13, 14, 15	9
19	24.3, CH ₃	1.29, s		1, 5, 9, 10	4, 9, 11
20	133.0, C				
21	174.3, C				
22	29.8, CH ₂	a: 2.55	22b, 23	17, 20, 21, 23	
		b: 2.38	22a, 23	17, 20, 21, 23	
23	29.2, CH ₂	2.12	22a, 22b, 24	22, 24, 25	
24	124.3, CH	5.13	23, 26, 27	23, 26, 27	26
25	133.4, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	16.1, CH ₃	0.96, d (6.8)	4	3, 4, 5	3, 5, 6
30	22.8, CH ₃	1.56, s		7, 8, 9, 14	5, 13, 15a
6- <u>C</u> OCH ₃	171.1, C				
6-CO <u>C</u> H ₃	20.8, CH3	2.04, s		6- <u>С</u> ОСН3	
16- <u>C</u> OCH3	172.5, C				
16-COCH ₃	20.7, CH ₃	1.95, s		16-COCH ₃	

68

Table S60 NMR data for 69 (¹H for 600 MHz and ¹³C for 150 MHz in CD₃OD).

Position	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}} (J \mathrm{in} \mathrm{Hz})^{\mathrm{a}}$	¹ H– ¹ H COSY	НМВС	ROESY
1	142.1, CH	6.71, d (10.2)	2	3, 5, 10	11
2	126.5, CH	5.56, dd (10.1, 4.4)	1, 3	10	
3	69.0, CH	3.96, t (4.5)	2,4		28
4	32.4, CH	2.28	3, 5, 28		19
5	41.1, CH	2.45, dd (11.2, 2.4)	4, 6	3, 4, 9, 10, 19	28, 30
6	75.1, CH	5.27, d (2.3)	5	4, 5, 7, 10, 6- <u>C</u> OCH ₃	28
7	212.0, C				
8	54.5, C				
9	47.5, CH	2.34, d (1.6)	11	1, 5, 7, 8, 10, 11, 14, 19, 30	12b, 18, 19
10	39.3, C				
11	67.9, CH	4.56	9, 12a, 12b	8, 13	1, 19
12	36.6, CH ₂	a: 2.39	11, 12b, 13		
		b: 1.96	11, 12a, 13	13	9, 18
13	44.7, CH	3.09, br d (11.6)	12a, 12b		15a, 16, 30
14	48.1, C				
15	41.6, CH ₂	a: 2.25	15b, 16	8, 14, 18	13, 30
		b: 1.73, br d (14.6)	15a, 16	13, 14, 16, 17, 18	18
16	75.5, CH	5.81, br d (8.4)	15a, 15b	13, 14, 16- <u>C</u> OCH ₃	13
17	144.4, C ^b				
18	18.1, CH ₃	0.90, s		8, 13, 14, 15	9, 12b, 15b
19	29.0, CH ₃	1.28, s		1, 5, 9, 10	4, 9, 11
20	#				
21	#				
22	30.1, CH ₂	a: 2.55	22b, 23	23, 24	
		b: 2.37	22a, 23	23, 24	
23	29.2, CH ₂	2.12	22a, 22b, 24	22, 24, 25	
24	124.6, CH	5.15, br t (7.2)	23, 26, 27	23, 26, 27	26
25	133.2, C				
26	25.9, CH ₃	1.67, br s	24	24, 25, 27	24
27	17.9, CH ₃	1.61, br s	24	24, 25, 26	
28	14.3, CH ₃	1.01, d (6.7)	4	3, 4, 5	3, 5, 6
30	22.1, CH ₃	1.46, s		7, 8, 9, 14	5, 13, 15a
6- <u>C</u> OCH3	171.1, C				
6-CO <u>C</u> H3	20.8, CH ₃	2.06, s		6- <u>С</u> ОСН3	
16- <u>C</u> OCH ₃	172.7, C				
16-CO <u>C</u> H3	20.8, CH ₃	1.97, s		16- <u>С</u> ОСН3	

69

^aThe indiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.

^bThe data is observed in the HMBC spectrum.[#]The data are not observed in NMR spectra.

Table S61 NMR data for 81 (¹H for 600 MHz and 13 C for 150 MHz in CDCl₃).

Position	$\delta_{\rm C}$, type	$\delta_{ m H} (J { m in} { m Hz})^{ m a}$	¹ H– ¹ H COSY	HMBC	ROESY
1	139.4, CH	6.06, br d (10.4)	2, 3	3, 5, 10	11a, 11b, 19
2	128.1, CH	5.44, dd (10.0, 2.3)	1, 3	4, 10	11a, 11b, 19
3	76.6, CH	3.77, br d (7.9)	1, 2, 4	1, 2, 4, 28	5, 28
4	37.7, CH	1.77	3, 5, 28	3, 5, 10, 28	19
5	44.1, CH	1.65	4, 6a, 6b	1, 3, 4, 6, 7, 9, 10, 19	3, 30
6	19.7, CH ₂	a: 1.57	5, 6b, 7a, 7b	4, 5, 7, 8, 10	
		b: 1.10	5, 6a, 7a, 7b	4, 5, 7, 10	
7	33.6, CH ₂	a: 1.91, br dd (14.3, 7.1)	6a, 6b, 7b	5, 6, 8, 14, 30	18
		b: 1.19	6a, 6b, 7a	6, 8, 9, 30	
8	38.5, C				
9	43.8, CH	1.53, dd (12.8, 2.5)	11a, 11b	1, 5, 8, 10, 11, 19, 30	18, 19
10	37.7, C				
11	24.7, CH ₂	a: 1.70	9, 11b, 12a, 12b		1, 2
		b: 1.34, qd (12.9, 3.5)	9, 11a, 12a, 12b	9, 12	1, 2, 13
12	26.2, CH ₂	a: 2.27	11a, 11b, 12b, 13	9, 14	
		b: 1.65	11a, 11b, 12a, 13	11, 13	
13	49.0, CH	2.52	12a, 12b	12, 14, 17, 18, 20	11b, 15a, 16, 30
14	48.5, C				
15	39.1, CH ₂	a: 2.00, dd (14.6, 8.9)	15b, 16	8, 13, 14, 18,	13, 30
		b: 1.27, br d (14.2)	15a, 16	14, 16, 17, 18	18
16	74.1, CH	5.85, br d (8.3)	15a, 15b	14, 17, 20, 16- <u>C</u> OCH ₃	13
17	149.4, C				
18	18.3, CH ₃	0.94, s		8, 13, 14, 15	7a, 9, 15b
19	27.8, CH ₃	1.03, s		1, 5, 9, 10	1, 2, 4, 9
20	130.4, C				
21	174.3, C				
22	28.6, CH ₂	a: 2.50	22b, 23a, 23b	17, 20, 21, 23, 24	24
		b: 2.42	22a, 23a, 23b	17, 20, 21, 23, 24	24
23	28.2, CH ₂	a: 2.11	22a, 22b, 23b, 24	20, 22, 24, 25	
		b: 2.05	22a, 22b, 23a, 24	20, 22, 24, 25	
24	123.1, CH	5.09, br t (7.0)	23a, 23b, 26, 27	23, 26, 27	22a, 22b, 26
25	132.5, C				
26	25.7, CH3	1.67, br s	24	24, 25, 27	24
27	17.7, CH ₃	1.59, br s	24	24, 25, 26	
28	16.5, CH ₃	1.02, d (6.4)	4	3, 4, 5	3
30	21.5, CH ₃	0.98, s		7, 8, 9, 14	5, 13, 15a
16- <u>C</u> OCH3	171.0, C				
16-СО <u>С</u> Н3	20.7, CH ₃	1.96, s		16- <u>С</u> ОСН3	

81

34-A		34-B	
Conformer	Contribution (%)	Conformer	Contribution (%)
1	26.06	1	35.62
2	6.25	2	8.36
3	4.73	3	3.78
4	13.84	4	28.83
5	20.92	5	5.26
6	6.75	6	9.30
7	3.37	7	3.12
8	3.72	8	4.34
9	10.83	9	1.40
10	3.53		

Table S62 The Boltzmann distribution for two possible structures (34-A and 34-B) of 34.

Table S63 The Boltzmann distribution for two possible structures (35-A and 35-B) of 35.

35-A		35-B			
Conformer	Contribution (%)	Conformer	Contribution (%)	Conformer	Contribution (%)
1	12.68	1	3.46	20	4.99
2	2.45	2	1.22	21	5.47
3	3.92	3	3.29	22	3.67
4	8.85	4	3.43	23	4.2
5	2.77	5	1.59	24	3.7
6	2.37	6	2.6	25	3.89
7	7.07	7	2.53	26	1.97
8	11.51	8	4.53	27	1.89
9	4.60	9	1.25	28	1.16
10	3.52	10	4.23	29	1.59
11	7.83	11	1.52	30	1.57
12	5.75	12	1.52	31	3.22
13	3.38	13	2.62	32	1.08
14	2.42	14	1.48	33	1.08
15	5.83	15	5.81	34	1.92
16	4.98	16	2.03	35	1.51
17	3.00	17	1.96	36	1.86
18	5.11	18	1.25	37	3.51
19	1.95	19	1.59	38	3.64

38-A		38-B			
Conformer	Contribution (%)	Conformer	Contribution (%)	Conformer	Contribution (%)
1	3.47	1	1.39	18	2.10
2	1.95	2	4.95	19	2.51
3	4.52	3	3.57	20	1.59
4	2.73	4	2.25	21	1.52
5	10.94	5	1.61	22	11.29
6	14.42	6	2.65	23	7.94
7	6.07	7	1.69	24	3.79
8	8.12	8	1.64	25	2.50
9	2.72	9	5.98	26	1.88
10	1.86	10	3.98	27	2.95
11	1.25	11	7.19	28	1.85
12	5.06	12	8.06		
13	1.44	13	5.54		
14	12.36	14	3.25		
15	15.71	15	1.30		
16	4.66	16	3.08		
17	2.71	17	1.97		

Table S64 The Boltzmann distribution for two possible structures (38-A and 38-B) of 38.

Table S65 The Boltzmann distribution for two possible structures (42-A and 42-B) of 42.

42-A		42-B	
Conformer	Contribution (%)	Conformer	Contribution (%)
1	4.02	1	25.98
2	12.98	2	8.08
3	14.16	3	28.67
4	1.28	4	16.30
5	4.30	5	3.24
6	4.74	6	3.61
7	4.37	7	2.06
8	14.27	8	3.93
9	2.54	9	1.25
10	8.11	10	4.38
11	15.68	11	2.51
12	9.19		
13	4.37		

Table S66 Comparison of the chemical shifts of compounds 38 and 40.

*S**,4*S**,5*S**,7*S**,8*S**,9*S**,10*S**,11*R**,13*R**,14*S**,16*S**.

No.	34	34-A		34-B		42	42-A		42-B	
	$\delta_{ ext{exptl}}$	$\delta_{ m corr.}$	AE	$\delta_{ m corr.}$	AE	$\delta_{ ext{exptl}}$	$\delta_{ m corr.}$	AE	$\delta_{ m corr.}$	AE
1	139.4	138.32	1.08	136.27	3.13	138.4	138.33	0.07	136.31	2.09
2	127.9	126.08	1.82	127.11	0.79	129.1	126.17	2.93	127.85	1.25
3	68.2	69.61	1.41	75.69	7.49	67.9	69.72	1.82	75.83	7.93
4	32.5	35.03	2.53	38.45	5.95	31.1	33.18	2.08	36.22	5.12
5	36.3	37.37	1.07	41.05	4.75	53.4	52.94	0.46	56.49	3.09
6	38.9	40.52	1.62	40.19	1.29	216.1	215.36	0.74	214.25	1.85
7	217.7	218.77	1.07	218.63	0.93	52.8	53.90	1.10	52.87	0.07
8	52.2	56.16	3.96	55.59	3.39	43.2	46.83	3.63	45.76	2.56
9	43.2	43.50	0.30	42.65	0.55	47.5	47.33	0.17	46.30	1.20
10	37.9	41.64	3.74	40.32	2.42	43.3	47.39	4.09	46.05	2.75
11	24.1	25.61	1.51	24.66	0.56	26.7	28.08	1.38	27.20	0.50
12	26.0	27.44	1.44	26.58	0.58	27	28.28	1.28	27.50	0.50
13	49.3	51.63	2.33	50.88	1.58	49.6	53.06	3.46	52.39	2.79
14	46.8	50.68	3.88	49.86	3.06	49.5	51.87	2.37	51.14	1.64
15	40.6	40.46	0.14	39.64	0.96	40.2	40.17	0.03	39.40	0.80
16	73.7	74.92	1.22	74.26	0.56	75.4	76.17	0.77	75.69	0.29
17	147.7	155.59	7.89	155.39	7.69	146.3	158.72	12.42	158.67	12.37
18	17.4	15.85	1.55	14.61	2.79	19	19.53	0.53	18.73	0.27
19	25.9	24.64	1.26	25.73	0.17	28.4	27.46	0.94	28.48	0.08
20	130.3	128.78	1.52	128.31	1.99	133.8	130.01	3.79	129.82	3.98
21	173.7	166.36	7.34	165.96	7.74	174.7	167.50	7.20	167.44	7.26
22	28.6	24.68	3.92	23.76	4.84	29.9	25.82	4.08	24.99	4.91
23	28.3	14.91	13.39	13.96	14.34	29.1	15.94	13.16	15.03	14.07
28	13.9	14.02	0.12	14.96	1.06	14.1	13.83	0.27	15.15	1.05
30	17.6	18.86	1.26	18.10	0.50	21.1	22.09	0.99	21.01	0.09
16- <u>C</u> OCH3	170.6	167.67	2.93	167.39	3.21	172.6	169.84	2.76	169.85	2.75
16-CO <u>C</u> H ₃	20.6	20.25	0.35	19.35	1.25	20.7	21.29	0.59	20.44	0.26
MAE		2.20		2.66			2.71		3.02	
R ²		0.9955		0.9940			0.9943		0.9932	
DP4+		100.0%		0.00%			100.00%	ó	0.00%	

Table S67 R square (R²) of the linear correlations, mean absolute error (MAE) values and DP4+ probabilities of **34-A/34-B** and **42-A/42-B** of **34** and **42**, respectively.

AE: absolute error; MAE: mean absolute error.

Based on the values of MAE, R^2 and DP4+, the relative configuration of **34** is assigned as $3R^*, 4S^*, 5S^*, 8S^*, 9S^*, 10S^*, 13R^*, 14S^*, 16S^*$, and the relative configuration of **42** is assigned as $3R^*, 4S^*, 5S^*, 8S^*, 9S^*, 10R^*, 13R^*, 14S^*, 16S^*$.

No.	35	35-A		35-B		38	38-A		38-B	
	$\delta_{ ext{exptl}}$	$\delta_{ m corr.}$	AE	$\delta_{ m corr.}$	AE	$\delta_{ ext{exptl}}$	$\delta_{ m corr.}$	AE	$\delta_{ m corr.}$	AE
1	84.7	74.02	10.68	73.57	11.13	83.4	74.73	8.67	74.04	9.76
2	42.1	47.98	5.88	47.19	5.09	42.9	48.53	5.63	49.67	6.77
3	217.2	216.63	0.57	216.95	0.25	216.6	213.53	3.07	211.17	5.43
4	46.9	46.92	0.02	47.73	0.83	45.2	50.17	4.97	46.18	0.98
5	43.6	44.81	1.21	46.89	3.29	37.1	39.85	2.75	39.71	2.61
6	81.9	77.25	4.65	73.91	7.99	33.4	35.77	2.37	33.84	0.44
7	86.1	88.19	2.09	88.85	2.75	71.5	71.50	0.00	69.91	1.59
8	42.1	49.59	7.49	50.55	8.45	43.2	48.76	5.56	49.75	6.55
9	47.1	49.03	1.93	47.58	0.48	52.5	53.16	0.66	49.66	2.84
10	44.2	50.25	6.05	49.45	5.25	43.8	46.66	2.86	48.01	4.21
11	78.5	71.09	7.41	69.82	8.68	77.9	70.11	7.79	69.16	8.74
12	28.7	36.87	8.17	37.21	8.51	28.4	37.35	8.95	38.07	9.67
13	45.9	48.64	2.74	49.80	3.90	45.1	48.46	3.36	49.33	4.23
14	50.7	52.91	2.21	53.22	2.52	49.9	51.86	1.96	52.69	2.79
15	39.0	41.01	2.01	41.15	2.15	41.7	43.33	1.63	41.74	0.04
16	76.7	75.60	1.10	76.76	0.06	76.8	75.65	1.15	76.13	0.67
17	145.5	159.03	13.53	159.77	14.27	144.8	159.01	14.21	162.87	18.07
18	18.9	19.60	0.70	18.54	0.36	16	18.21	2.21	21.59	5.59
19	22.7	21.73	0.97	17.64	5.06	31.7	25.44	6.26	16.14	5.56
20	134.0	130.04	3.96	130.29	3.71	133.4	130.64	2.76	131.64	1.76
21	174.9	168.51	6.39	167.77	7.13	174.5	168.42	6.08	167.40	7.10
22	30.4	25.13	5.27	25.96	4.44	30.4	26.24	4.16	26.50	3.90
23	28.8	16.20	12.60	15.79	13.01	28.8	16.48	12.32	16.74	12.06
28	18.5	14.41	4.09	19.64	1.14	15.5	13.06	2.44	13.37	2.13
30	21.1	26.53	5.43	26.01	4.91	18.2	15.43	2.77	16.69	1.51
16- <u>С</u> ОСН3	172.6	170.55	2.05	170.29	2.31	172.5	170.74	1.76	171.13	1.37
16-CO <u>C</u> H3	20.7	20.97	0.27	21.39	0.69	20.7	22.90	2.20	23.08	2.38
MAE		4.42		4.75			4.39		4.77	
R ²		0.9884		0.9867			0.9892		0.9864	
DP4+		99.98%		0.02%			100.00%)	0.00%	

Table S68 R square (R²) of the linear correlations, mean absolute error (MAE) values and DP4+ probabilities of **35-A/35-B** and **38-A/38-B** of **35** and **38**, respectively.

AE: absolute error; MAE: mean absolute error.

Based on the values of MAE, R^2 and DP4+, the relative configuration of **35** is assigned as $1S^*, 4S^*, 5S^*, 6R^*, 7R^*, 8S^*, 9S^*, 10S^*, 11R^*, 13R^*, 14S^*, 16S^*$, and the relative configuration of **38** is assigned as $1S^*, 4S^*, 5S^*, 7R^*, 8S^*, 9S^*, 10S^*, 11R^*, 13R^*, 14S^*, 16S^*$.

Compound	6	81	29	30	32	34	
${}^{3}J_{(\text{H-3, H-4})}$ in Hz	4.4	7.9	4.9	4.1	4.4	4.3	
Compound	41	42	43	63	64	65	
${}^{3}J_{(H-3, H-4)}$ in Hz	4.4	4.6	4.5	4.3	4.0	4.3	
Compound	69						
${}^{3}J_{(H-3, H-4)}$ in Hz	4.5						

Table S69 Comparison of the coupling constants of compounds containing C1–C2 double bond and C3-hydroxyl group.

Based on the coupling constants between H-3 and H-4, 3-OH in 29, 30, 32, 34, 41–43, 63–65, and 69 were determined to be α -oriented.

Table S70 Primers used for constructing recombinant plasmids.

Primer name	Sequence (5' to 3')	Usage
Inf-pBarI-HindIII-F	TGATTACGCCAAGCTCGACTCCAATC TTCAAGAGC	
Inf-pTA-Tamy-R1	AACGCGCTCGCGAGCAAGTACCATAC AGTACCGCG	Construction of recombinant pBarL and
Inf-pTA-Parm-F1	GCTCGCGAGCGCGTTCCACTGCATCA TCAGTCTAG	pPTRI plasmids containing one or two genes using the ClonExpress@II One Step Cloning
Inf-pBarI-HindIII-R	GCAGGCATGCAAGCTGTAAGATACAT GAGCTTCGG	Kit or ClonExpress®MultiS One Step Cloning Kit
Inf-pPTRI-HindIII-F	TGATTACGCCAAGCTCGACTCCAATC TTCAAGAGC	
Inf-pPTRI-HindIII-R	GCAGGCATGCAAGCTGTAAGATACAT GAGCTTCGG	

Plasmid	Characteristic	Source
pTAex3	Plasmid containing argB maker gene cassette for gene expression in A. oryzae NSAR1,	Fujii, et al. ³
	(Amp^R)	
pBarI	Plasmid containing bar maker gene cassette for gene expression in A. oryzae NSAR1,	Matsuda, et
	(Amp^R)	al. ⁴
pPTRI	Plasmid containing ptrA maker gene cassette for gene expression in A. oryzae NSAR1,	TaKaRa
	(Amp^R)	
pTAex3-helB3	pTAex3 containing <i>helB3</i> whose expression is regulated by <i>amyB</i> promoter, (Amp^R)	Lv, et al. ⁵
pTAex3-helD1	pTAex3 containing <i>helD1</i> whose expression is regulated by <i>amyB</i> promoter, (Amp^R)	
pTAex3-helE	pTAex3 containing <i>helE</i> whose expression is regulated by <i>amyB</i> promoter, (Amp^R)	
pTAex3-fusC1	pTAex3 containing <i>fusC1</i> whose expression is regulated by <i>amyB</i> promoter, (Amp^R)	Cao, et al.6
pTAex3-fusB1	pTAex3 containing <i>fusB1</i> whose expression is regulated by <i>amyB</i> promoter, (<i>Amp^R</i>)	
pPTRI-fusC1	pPTRI containing <i>fusC1</i> whose expressions is regulated by <i>amyB</i> promoter, (<i>Amp^R</i>)	
pTAex3-cepB4	pTAex3 containing <i>cepB4</i> whose expression is regulated by <i>amyB</i> promoter, (Amp^R)	Cao, et al. ⁷
pTAex3-cepD2	pTAex3 containing <i>cepD2</i> whose expression is regulated by <i>amyB</i> promoter, (Amp^R)	
pPTRI-cepB4	pPTRI containing <i>cepB4</i> whose expressions is regulated by <i>amyB</i> promoter, (Amp^R)	
pPTRI-cepD2	pPTRI containing <i>cepD2</i> whose expressions is regulated by <i>amyB</i> promoter, (Amp^R)	
pPTRI-helD1	pPTRI containing <i>helD1</i> whose expressions is regulated by <i>amyB</i> promoter, (<i>Amp^R</i>)	This work
pPTRI-helB3	pPTRI containing <i>helB3</i> whose expressions is regulated by <i>amyB</i> promoter, (<i>Amp^R</i>)	This work
pPTRI-helB3-fusC1	pPTRI containing <i>helB3</i> and <i>fusC1</i> whose expressions are independently regulated by	This work
	$amyB$ promoter, (Amp^R)	
pPTRI-helB3-helD1	pPTRI containing <i>helB3</i> and <i>helD1</i> whose expressions are independently regulated by	This work
	$amyB$ promoter, (Amp^R)	
pPTRI-fusB1-helD1	pPTRI containing <i>fusB1</i> and <i>helD1</i> whose expressions are independently regulated by	This work
	$amyB$ promoter, (Amp^R)	
pPTRI-cepB4-cepD2	pPTRI containing cepB4 and cepD2 whose expressions are independently regulated by	Cao, et al.7
	$amyB$ promoter, (Amp^R)	
pPTRI-cepB4-cepC2	pPTRI containing cepB4 and cepC2 whose expressions are independently regulated by	
	$amyB$ promoter, (Amp^R)	
pBarI-helE-cepB4	pBarI containing helE and cepB4 whose expressions are independently regulated by amyB	This work
	promoter, (Amp^R)	
pBarI-helE-fusB1	pBarI containing helE and fusB1 whose expressions are independently regulated by amyB	This work
	promoter, (Amp^R)	
pBarI-helE-fusCl	pBarI containing helE and fusC1 whose expressions are independently regulated by amyB	This work
	promoter, (Amp^R)	
pBarI-helB3-fusB1	pBarI containing helB3 and fusB1 whose expressions are independently regulated by amyB	This work
	promoter, (Amp^R)	
pBarI-helB3-fusC1	pBarI containing helB3 and fusC1 whose expressions are independently regulated by amyB	This work
	promoter, (Amp^R)	
pBarI-fusB1-cepB4	pBarI containing fusB1 and cepB4 whose expressions are independently regulated by amyB	This work
	promoter, (Amp^R)	
pBarI-fusC1-cepD2	pBarI containing <i>fusC1 and cepD2</i> whose expressions are independently regulated by	This work
	$amyB$ promoter, (Amp^R)	

Table S71 Plasmids used in the study.

Table S72	Strains	used in	the	study.
-----------	---------	---------	-----	--------

Strain	Characteristic	Source
E. coli DH5α	Host for general plasmid cloning	TaKaRa
A. oryzae	Host for gene expression, a quadruple auxotrophic mutant strain ($niaD^-$, sC^- , $\Delta argB$,	In et al ⁸
NSAR1	$adeA^{-}$)	Jili, et al.
AOS0	A. oryzae NSAR1 transformant harboring helA, helB1, helC, helB2, helD2 and helB4	Lv, et al. ⁵
AOS1	Transformant with addition of helE and fusB1 into AOS0	This work
AOS2	Transformant with addition of helE and fusC1 into AOS0	This work
AOS3	Transformant with addition of helE and cepB4 into AOS0	This work
AOS4	Transformant with addition of <i>fusB1 and cepB4</i> into AOS0	This work
AOS5	Transformant with addition of helB3 and fusB1 into AOS0	This work
AOS6	Transformant with addition of helB3 and fusC1 into AOS0	This work
AOS7	Transformant with addition of helE, fusB1 and helB3 into AOS0	This work
AOS8	Transformant with addition of helE, fusB1 and fusC1 into AOS0	This work
AOS9	Transformant with addition of helE, fusC1 and helB3 into AOS0	This work
AOS10	Transformant with addition of helE, cepB4 and fusB1 into AOS0	This work
AOS11	Transformant with addition of helE, cepB4 and fusC1 into AOS0	This work
AOS12	Transformant with addition of helE, cepB4 and cepD2 into AOS0	This work
AOS13	Transformant with addition of fusB1, cepB4 and fusC1 into AOS0	This work
AOS14	Transformant with addition of <i>fusB1</i> , cepB4 and cepD2 into AOS0	This work
AOS15	Transformant with addition of fusB1, helB3 and fusC1 into AOS0	This work
AOS16	Transformant with addition of fusB1, helB3 and helD1 into AOS0	This work
AOS17	Transformant with addition of helB3, fusC1 and helD1 into AOS0	This work
AOS18	Transformant with addition of helE, fusB1, helB3 and helD1 into AOS0	This work
AOS19	Transformant with addition of helE, fusB1, helB3 and fusC1 into AOS0	This work
AOS20	Transformant with addition of helE, fusC1, helB3 and helD1 into AOS0	This work
AOS21	Transformant with addition of helE, fusB1, cepB4 and cepC2 into AOS0	This work
AOS22	Transformant with addition of helE, fusB1, cepB4 and cepD2 into AOS0	This work
AOS23	Transformant with addition of helE, fusC1, cepB4 and cepD2 into AOS0	This work
AOS24	Transformant with addition of fusB1, cepB4, fusC1 and cepD2 into AOS0	This work
AOS25	Transformant with addition of fusB1, fusC1, helB3 and helD1 into AOS0	This work
AOS26	Transformant with addition of helE, fusB1, fusC1, helB3 and helD1 into AOS0	This work
AOS27	Transformant with addition of helE, fusB1, fusC1, cepB4 and cepD2 into AOS0	This work
AOS28	A. oryzae NSAR1 transformant harboring helB3	This work
COS6	A. oryzae NSAR1 transformant harboring cepB4	C_{22} et al ⁷
COS7	A. oryzae NSAR1 transformant harboring cepD2	Cau, et al.

References

- F.L.P. Costa, A.C.F. De Albuquerque, F.M. dos Santos Jr, M.B. de Amorim. GIAO-HDFT scaling factor for ¹³C NMR chemical shifts calculation. *J Phys Org Chem* 23,2010,972– 977.
- N. Grimblat, M.M. Zanardi, A.M. Sarotti. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. *J Org Chem* 80,2015,12526–12534.
- T. Fujii, H. Yamaoka, K. Gomi, K. Kitamoto, C. Kumagai. Cloning and nucleotide sequenceof the ribonuclease T1 gene (rntA) from *Aspergillus oryzae* and its expression in *Saccharomyces cerevisiae* and *Aspergillus oryzae*. *Biosci Biotechnol Biochem* 59,1995,1869–1874.
- Y. Matsuda, T. Wakimoto, T. Mori, T. Awakawa, I. Abe. Complete biosynthetic pathway of anditomin: Nature's sophisticated synthetic route to a complex fungal meroterpenoid. J Am Chem Soc 136,2014,15326–15336.
- J.M. Lv, D. Hu, H. Gao, T. Kushiro, T. Awakawa, G.D. Chen, et al. Biosynthesis of helvolic acid and identification of an unusual C-4-demethylation process distinct from sterol biosynthesis. *Nat Commun* 8,2017,1644.
- Z.Q. Cao, S.Y. Li, J.M. Lv, H. Gao, G.D. Chen, T. Awakawa, et al. Biosynthesis of clinically used antibiotic fusidic acid and identification of two short-chain dehydrogenase/reductases with converse stereoselectivity. *Acta Pharm Sin B* 9,2018,433– 442.
- Z.Q. Cao, J.M. Lv, Q. Liu, S.Y. Qin, G.D. Chen, P. Dai, et al. Biosynthetic study of cephalosporin P₁ reveals a multifunctional P450 enzyme and a site-selective acetyltransferase. ACS Chem Biol 15,2020,44–51.
- F.J. Jin, J. Maruyama, P.R. Juvvadi, M. Arioka, K. Kitamoto. Development of a novel quadruple auxotrophic host transformation system by *argB* gene disruption using *adeA* gene and exploiting adenine auxotrophy in *Aspergillus oryzae*. *FEMS Microbiol Lett* 239,2004,79–85.