Supporting Information for

Original article

From Vietnamese plants to a biflavonoid that relieves inflammation by triggering the lipid mediator class switch to resolution

Tran Thị Van Anh^{b,a,†}, Alilou Mostafa^{a,†}, Zhigang Rao^{c,†}, Simona Pace^d, Stefan Schwaiger^a, Christian Kretzer^d, Veronika Temml^a, Carsten Giesel^d, Paul M. Jordan^d, Rossella Bilancia^e, Christina Weinigel^f, Silke Rummler^f, Birgit Waltenberger^a, Tran Hung^b, Antonietta Rossi^e, Hermann Stuppner^a, Oliver Werz^{d,*}, Andreas Koeberle^{c,d,*}

^aInstitute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria

^bFaculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

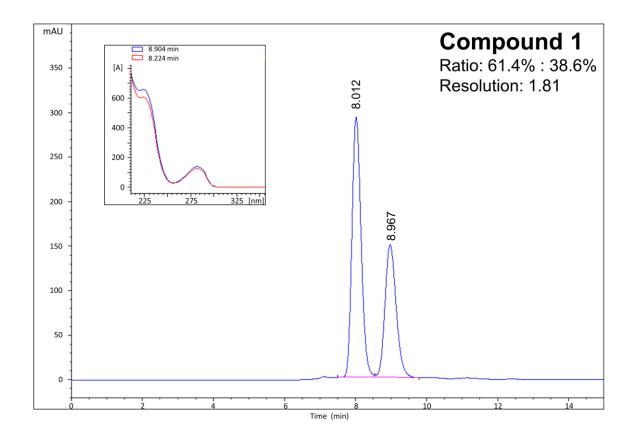
^cMichael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria

^dDepartment of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany

^eDepartment of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy

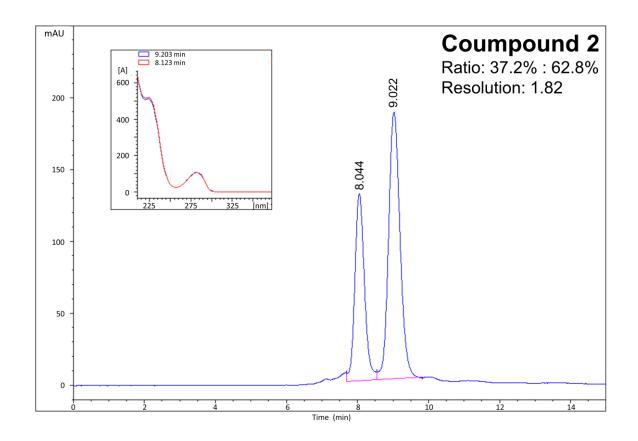
^fInstitute of Transfusion Medicine, University Hospital Jena, Jena 07747, Germany

[†]These authors made equal contributions to this work.

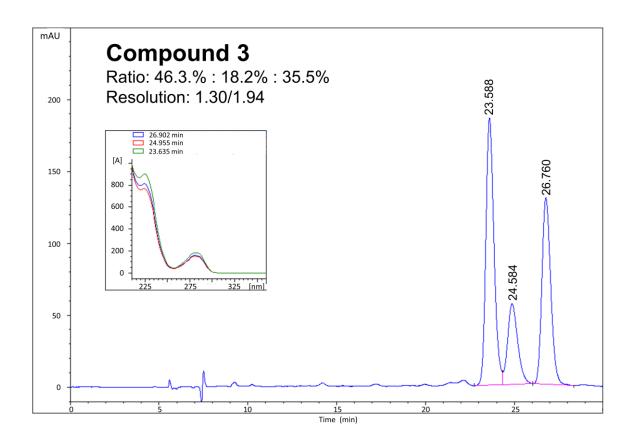

Received 4 March 2021; received in revised form 7 April 2021; accepted 7 April 2021

*Corresponding authors. Tel.: +49 3641 949801 (Oliver Werz), +43 512 507 57903 (Andreas Koeberle); fax: +49 3641 949802 (Oliver Werz).

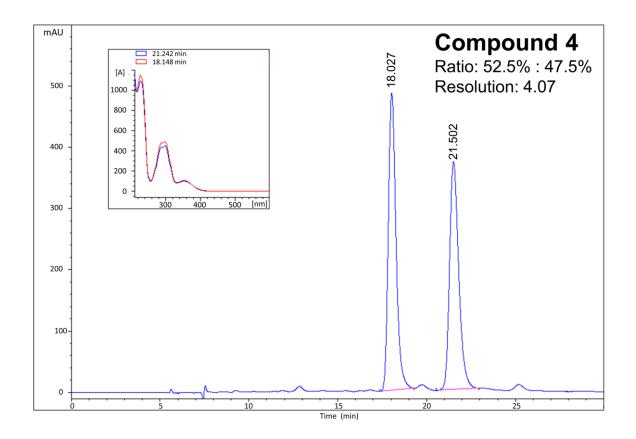
E-mail addresses: <u>oliver.werz@uni-jena.de</u> (Oliver Werz), <u>andreas.koeberle@uibk.ac.at</u> (Andreas Koeberle).


S1. Chiral HPLC-analysis of compounds 1 to 11

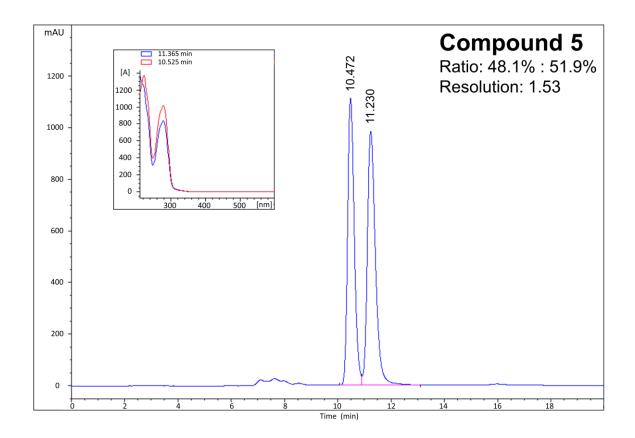
Chiral HPLC analysis of compound **1** ($[\alpha]_D^{20}$ +4.1 (*c* 0.2, MeOH))


Analytical conditions: Phenomenex Lux 3 μ m Cellulose-1250 mm× 4.6 mm, *n*-hexane+isopropanol with 0.1% TFA, 50+50 (*v*/*v*); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 0.95 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

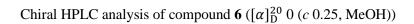
Chiral HPLC analysis of compound **2** ($[\alpha]_D^{20}$ –3.0 (*c* 0.1, MeOH))

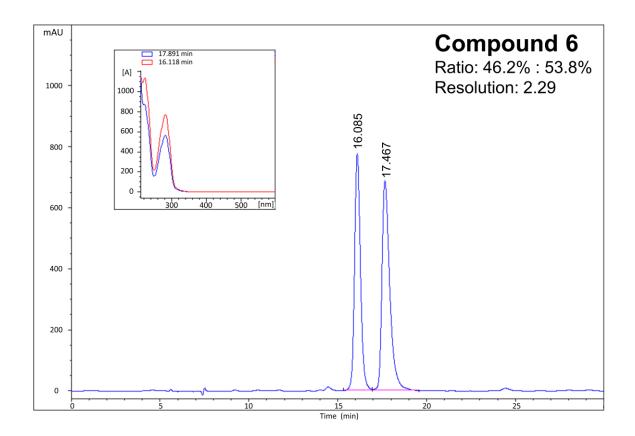

Analytical conditions: Phenomenex Lux 3 μ m Cellulose-1250 mm × 4.6 mm, *n*-hexane+isopropanol with 0.1% TFA, 50+50 (*v/v*); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 0.90 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

Chiral HPLC analysis of compound **3** ($[\alpha]_D^{20}$ +12.7 (*c* 0.19, MeOH))

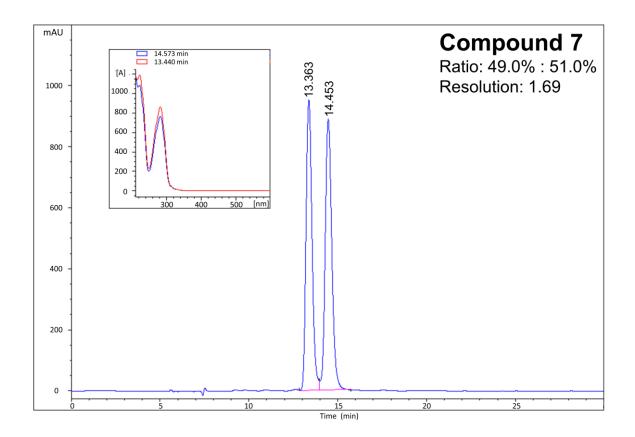

Analytical conditions: Phenomenex Lux 3 μ m i-Amylose-3250 mm× 4.6 mm, *n*-hexane+ethanol with 0.1% TFA, 80+20 (ν/ν); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 0.85 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

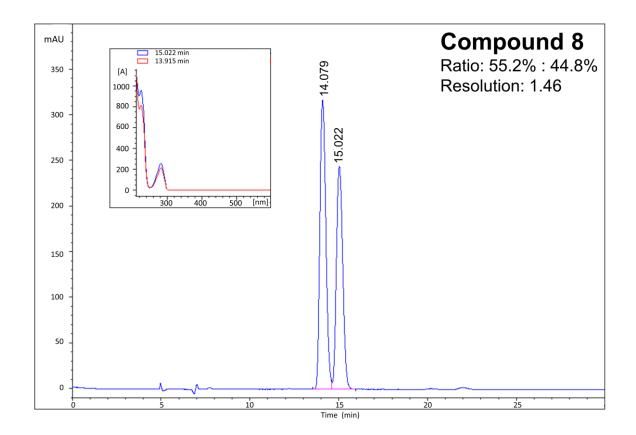
Chiral HPLC analysis of compound **4** ($[\alpha]_D^{20}$ –3.4 (*c* 0.23, MeOH))




Analytical conditions: Phenomenex Lux 3 μ m i-Amylose-3250 mm× 4.6 mm, *n*-hexane+ethanol with 0.1% TFA, 80+20 (ν/ν); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 1.27 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

Chiral HPLC analysis of compound **5** ($[\alpha]_D^{20}$ +12.4 (*c* 0.24, MeOH))

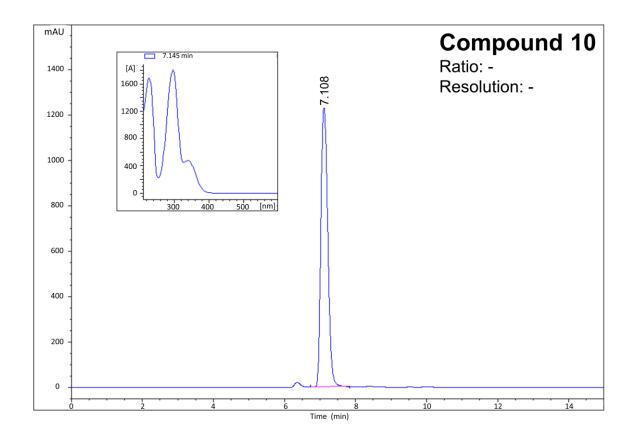

Analytical conditions: Phenomenex Lux 3 μ m i-Amylose-3250 mm× 4.6 mm, *n*-hexane+isopropanol with 0.1% TFA, 60+40 (*v/v*); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 1.14 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.


Analytical conditions: Phenomenex Lux 3 μ m i-Amylose-3250 mm× 4.6 mm, *n*-hexane+ethanol with 0.1% TFA, 80+20 (ν/ν); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 1.17 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

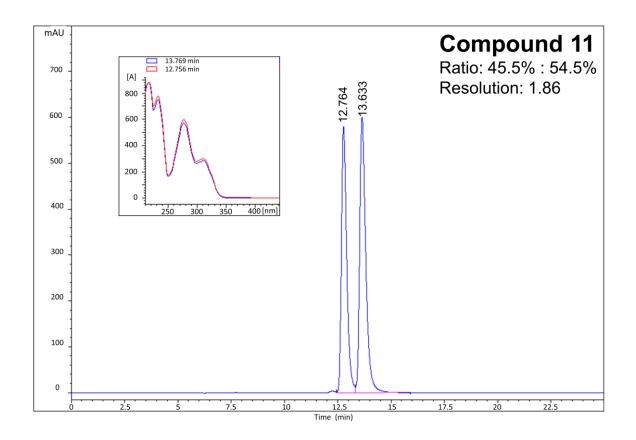
Chiral HPLC analysis of compound **7** ($[\alpha]_D^{20}$ +7.7 (*c* 0.3, MeOH))


Analytical conditions: Phenomenex Lux 3 μ m i-Amylose-3250 mm × 4.6 mm, *n*-hexane+ethanol with 0.1% TFA, 80+20 (ν/ν); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 1.27 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

Chiral HPLC analysis of compound **8** ($[\alpha]_D^{20}$ +6.8 (*c* 0.68, MeOH))


Analytical conditions: Phenomenex Lux 3 μ m Cellulose-1250 mm× 4.6 mm, *n*-hexane+ethanol with 0.1% TFA, 80+20 (ν/ν); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 1.06 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

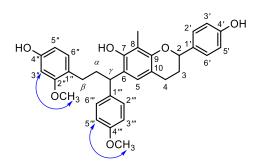
Chiral HPLC analysis of compound **9** ($[\alpha]_D^{20}$ –2.9 (*c* 0.35, MeOH))


Analytical conditions: Phenomenex Lux 3 μ m Cellulose-1250 mm× 4.6 mm, *n*-hexane+isopropanol with 0.1% TFA, 50+50 (*v*/*v*); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 0.84 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

Chiral HPLC analysis of compound **10** ($[\alpha]_D^{20}$ –30.3 (*c* 0.41, MeOH))

Analytical conditions: Phenomenex Lux 3 μ m Cellulose-1250 mm× 4.6 mm, *n*-hexane+isopropanol with 0.1% TFA, 50+50 (ν/ν); 0.5 mL/min, 20 °C, injection volume: 5 μ L; sample concentration: 0.87 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectrum.

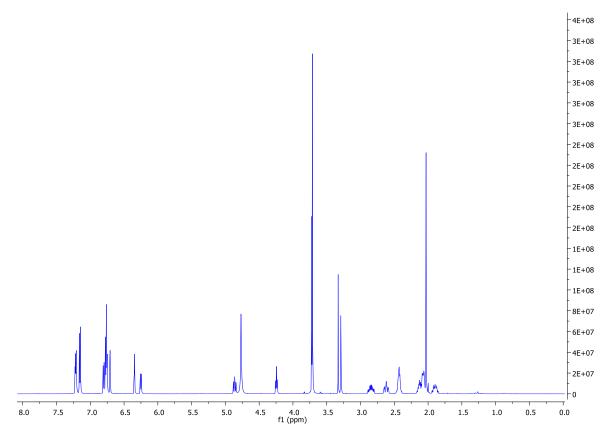
Chiral HPLC analysis of compound **11** ($[\alpha]_D^{20}$ –2.2 (*c* 0.51, MeOH)

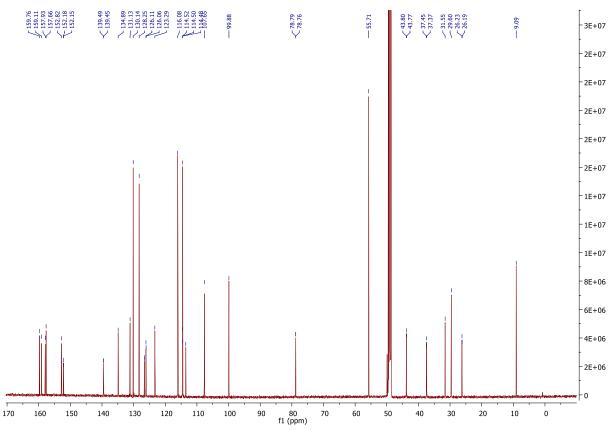

Analytical conditions: Phenomenex Lux 3 μ m i-Amylose-3250 mm × 4.6 mm, *n*-hexane+isopropanol with 0.1% TFA, 80+20 (*v*/*v*); 0.5 mL/min, 20 °C, injection volume: 2 μ L; sample concentration: 0.98 mg/mL *n*-hexane+isopropanol (1+1); 280 nm; insert: online-UV-spectra.

S2. Structure elucidation of the new compound 3

Compound **3** was obtained as a red amorphous powder. The HR-ESI-MS spectra showed a $[M+NH_4]^+$ ion at m/z 544.2690 (calculated for $C_{33}H_{38}NO_6^+$ $[M+NH_4]^+$, m/z 544.2694), corresponding to a molecular formula of $C_{33}H_{34}O_6$.

The ¹H NMR spectrum of **3** showed proton signals of two *p*-substituted phenyl rings [$\delta_{\rm H}$ 7.22 and 6.76 (both 2H, d, 8.6 Hz) and $\delta_{\rm H}$ 7.16 and 6.78 (both 2H, d, 8.6 Hz)], three aromatic proton signals of an ABX-system [$\delta_{\rm H}$ 6.36 (1H, d, 2.3 Hz), 6.25 (1H, dd, 2.3, 8.0 Hz), 6.81 (1H, d, 8.0 Hz)], one aromatic singlet [δ 6.72 (1H, s)], signals of four methylene groups [$\delta_{\rm H}$ 2.07 (1H, m) and 1.89 (1H, m); 2.84 (1H, m) and 2.62 (1H, m); 2.09 (2H, m); and 2.44 (2H, m)], one methine proton signal [$\delta_{\rm H}$ 4.26 (1H, t, 7.6 Hz)], one methyl singlet [$\delta_{\rm H}$ 2.03 (3H, s)], and signals of two methoxy groups [$\delta_{\rm H}$ 3.72 (3H, s) and 3.74 (3H, s)], and one oxymethine proton signal [$\delta_{\rm H}$ 4.87 (1H, m)].


The ¹³C-NMR spectrum and HSQC data of **3** revealed 29 signals with characteristic signals for 12 quaternary aromatic carbons with 6 carbons bearing oxygen, 14 tertiary carbons with 12 aromatic carbons, 4 methylene carbons, two identical methoxy carbons (δ_c 55.7) and one methyl carbon (δ_c 9.1). A typical oxymethine proton of the flavan skeleton at 4.87 (1H, m, H-2) and characteristic aliphatic protons at δ_H 2.07/1.89 and δ_H 2.84/2.62 indicated a biflavonoid structure consisting of a flavan and a deoxytetrahydrochalcone moiety.


Structure of compound 3 with key NOESY-correlations

The ¹H and ¹³C spectrum of **3** resembles those of compounds **1** and **2**, except for the exchange of a hydroxy group by a methoxy group in compound **3**. The HMBC correlation between the methoxy group at $\delta_{\rm H}$ 3.74 and the carbon resonance at $\delta_{\rm c}$ 159.1 (C-4^{'''}) indicated the position of the additional methoxy group at C-4^{'''}, which was further verified by the NOESY contact of the methoxy protons with H-3^{'''}/5^{'''}. Thus, compound **3** was identified as the new natural product 6-(3-(4-hydroxy-2-methoxyphenyl)-1-(4-methoxyphenyl)propyl)-2-(4-hydroxyphenyl)-8-methylchroman-7-ol. Interestingly, the 1D-NMR spectra of compound **3** showed for some signals a signal doubling mainly for protons/carbons (H-2, H-5, H-2[']/6', -OCH₃ at C-2^{'''}, H-5^{'''}, and H-6^{''}; C-2, C-4, C-5, C-6, C-7, C- α , C- γ , C-1^{'''}, and C-3^{'''}/5^{'''}) accompanying the stereo centers (C-2 and C- γ) of the compound, suggesting the presence of isomers

and/or rotamers. The chiral HPLC analysis of compound **3** revealed the presence of at least three of the four possible isomers of the compound (Section 1) and confirmed thereby this assumption.

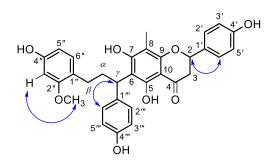
¹H-NMR spectrum (600.19 MHz, methanol- d_4) of compound **3**.

¹³C-NMR spectrum (150.91 MHz, methanol-*d*₄) of compound **3**

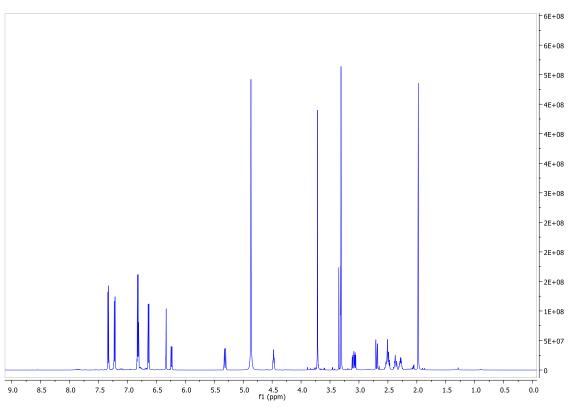
6-(3-(4-Hydroxy-2-methoxyphenyl)-1-(4-methoxyphenyl)propyl)-2-(4-hydroxyphenyl)-8-

methylchroman-7-ol (3). Red amorphous powder. $[\alpha]_D^{20}$ +12.7 (*c* 0.19, MeOH). UV_{max} (MeOH) λ_{max} (log ε) 203 (4.04), 224 (2.39), 282 (0.48) nm. ¹H-NMR (600.19 MHz, methanol-*d*₄; numbering according to shown figure): δ (ppm), *J* (Hz): 1.89 (m, H_a-3), 2.03 (s, 8-CH₃), 2.07 (m, H_b-3), 2.09 (m, H- α , 2H), 2.44 (m, H- β , 2H), 2.62 (m, H_a-4), 2.84 (m, H_b-4), 3.72 (s, 2"-OC<u>H₃</u>), 3.74 (s, 4"'-OC<u>H₃</u>), 4.26 (t, *J* = 7.6, H- γ), 4.87 (m, H-2), 6.25 (dd, *J* = 2.3, 8.0, H-5"), 6.36 (d, *J* = 2.3, H-3"), 6.72 (s, H-5), 6.76 (d, *J* = 8.6, H-3''/5'), 6.78 (d, *J* = 8.6, H-3'''/5'''), 6.81 (d, *J* = 8.0, H-6''), 7.16 (d, *J* = 8.6, H-2'''/6'''), 7.22 (d, *J* = 8.6, H-2''/6'). ¹³C-NMR (150.91 MHz, methanol-*d*₄; numbering according to shown figure): δ (ppm): 9.1 (8-<u>C</u>H₃), 26.2 (C-4), 29.6 (C- β), 31.6 (C-3), 37.4 (C- α), 43.8 (C- γ), 55.7 (2"-O<u>C</u>H₃, 4"'-O<u>C</u>H₃), 78.8 (C-2), 99.9 (C-3"), 107.7 (C-5"), 113.5 (C-8), 114.5 (C-10, 3"'/5"''), 116.1 (C-3'/5'), 123.3 (C-1"), 126.1 (C-5), 126.6 (C-6), 128.3 (C-2'/6'), 130.1 (C-2'''/6'''), 131.1 (C-6''), 134.9 (C-1'), 139.5 (C-1'''), 152.2 (C-7), 152.8 (C-9), 157.7 (C-4'''), 157.9 (C-4'), 159.1 (C-4'''), 159.8 (C-2'').

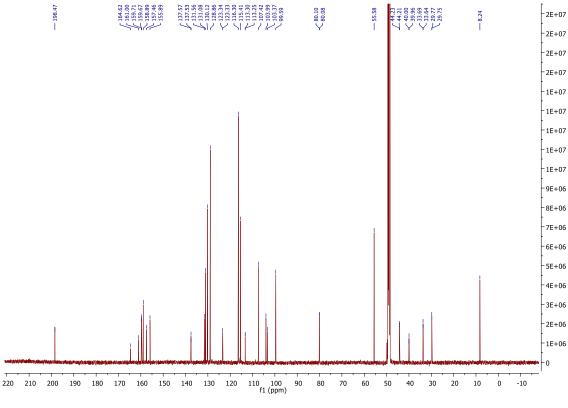
S3. Structure elucidation of the new compound 4


Compound **4** was obtained as red amorphous powder. The HR-ESI-MS spectra showed a $[M+H]^+$ ion at m/z 543.2018 (calculated for $C_{32}H_{31}O_8^+$ $[M+H]^+$, m/z 543.2013), corresponding to a molecular formula of $C_{32}H_{30}O_8$.

The ¹H-NMR spectrum of **4** showed proton signals of two 1,4-disubstituted aromatic rings [$\delta_{\rm H}$ 7.33 and 6.82 (both 2H, d, 8.6 Hz) and $\delta_{\rm H}$ 7.22 and 6.63 (both 2H, d, 8.6 Hz)], three aromatic proton signals of a 1,2,4-trisubstituted benzene ring [$\delta_{\rm H}$ 6.33 (1H, d, 2.3 Hz), 6.23 (1H, dd, 2.3, 8.0 Hz), 6.81 (1H, d, 8.2 Hz), proton signals of three methylene groups [$\delta_{\rm H}$ 2.70 (1H, dd, 2.9, 17.0 Hz) and 3.10 (1H, dd, 6.1, 13.1 Hz); 2.50 (1H, m) and 2.28 (1H, m); 2.36 (1H, m) and 2.51 (1H, m)], one oxymethine proton signal at $\delta_{\rm H}$ 5.31(1H, t, 3.0 Hz), one methine proton signal [$\delta_{\rm H}$ 4.47 (1H, t, 7.5 Hz)], one methyl singlet [$\delta_{\rm H}$ 1.98 (3H, s)], and a signal corresponding to one methoxy group [$\delta_{\rm H}$ 3.70 (3H, s)].


The ¹³C-NMR spectrum and HSQC data of **4** revealed 27 signals with characteristic signals for 14 quaternary aromatic carbons with 8 carbons bearing oxygen, 13 tertiary carbons with 10 aromatic carbons, 3 aliphatic secondary carbons, one methoxy carbon (δ_c 55.6) and one methyl carbon (δ_c 8.2). The NMR data of **4** corresponded closely to those of **1** except that an aliphatic methylene carbon was replaced by a carbonyl group (δ_c 198.5) in **4**, which revealed the presence of a flavanone subunit instead of the flavan part of **1**.

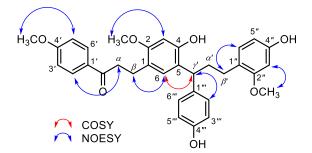
Furthermore, the ¹H-NMR of **4** did not show the singlet signal of a proton at C-5, suggesting an additional substitution at that position, which was identified as a methyl group [$\delta_{\rm H}$ 1.98 (3H, s); $\delta_{\rm c}$ 8.2]. A NOESY-cross-peak between the protons of the methoxy group at $\delta_{\rm H}$ 3.70 and H-3" ($\delta_{\rm H}$ 6.33 1H, d, 2.3 Hz) confirmed the location of the methoxy group at C-2". Analysis of the complete set of NMR data identified **4** as 5,7-dihydroxy-6-(3-(4-hydroxy-2-methoxyphenyl)-1-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)-8-methylchroman-4-one, representing a new natural product.


Again the 1D-NMR spectra of compound **4** showed for some signals a signal doubling mainly for protons/carbons (H-2, H_b-3, H- γ , -OCH₃ at C-2", and H-5"; C-2, C-3, C-6, C- α , C- β , C- γ , C-1", and C-1"") accompanying the stereo centers (C-2 and C- γ) of the compound, suggesting the presence of isomers and/or rotamers. The chiral HPLC analysis of compound **4** revealed the presence of at least two of the four possible isomers of the compound (Section 1) and confirmed thereby this assumption.

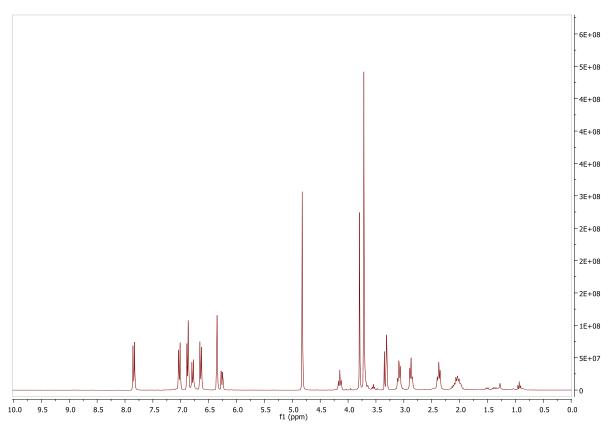
Structure of compound 4 with key NOESY-correlations.

¹H-NMR spectrum (600.19 MHz, methanol-*d*₄) of compound **4.**

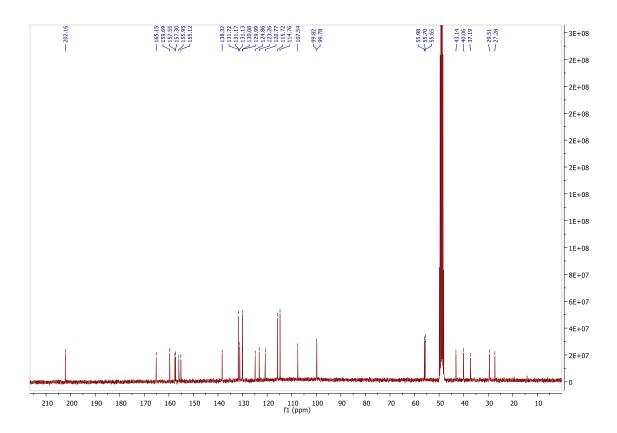
¹³C-NMR spectrum (150.91 MHz, methanol- d_4) of compound **4**.


$\textbf{5,7-Dihydroxy-6-(3-(4-hydroxy-2-methoxyphenyl)-1-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)-2-(4-hydroxyphenyl)propyl)propyl)-2-(4-hydroxyphenyl)propyl(propyl)propyl)propyl)propyl)propyl)propyl)propyl)propyl(propyl)propyl)propyl)propyl propyl)propyl)propyl)propyl(propyl)propyl)pr$

hydroxyphenyl)-8-methylchroman-4-one (4). Pale red powder. $[\alpha]_D^{20}$ -3.4 (*c* 0.23, MeOH). UV_{max} (MeOH) λ_{max} (log ε) 199 (4.35), 227 (1.84), 286 (0.69), 300 (0.67) nm. ¹H-NMR (600.19 MHz, methanol-*d*₄; numbering according to shown figure): δ (ppm), *J* (Hz): 1.98 (s, 8-CH₃), 2.28 (m, H_a- α), 2.36 (m, H_a- β), 2.50 (m, H_b- α), 2.51 (m, H_b- β), 2.70 (dd, *J* = 17.0, 2.9, H_a-3), 3.10 (dd, *J* = 13.1, 6.1, H_b-3), 3.70 (s, 2''-OC<u>H₃</u>), 4.47 (m, H- γ), 5.31 (t, *J* = 3.0, H-2), 6.24 (dd, *J* = 2.3, 8.0, H-5''), 6.33 (d, *J* = 2.3, H-3''), 6.63 (d, *J* = 8.6, H-3''/5''), 6.81 (d, *J* = 8.2, H-6''), 6.82 (d, *J* = 8.6, H-3'/5'), 7.22 (d, *J* = 8.6, H-2''/6''), 7.33 (d, *J* = 8.6, H-2'/6'). ¹³C-NMR (150.91 MHz, methanol-*d*₄; numbering according to shown figure): δ (ppm): 8.2 (8-CH₃), 29.8 (C- β), 33.7 (C- α), 40.0 (C- γ), 44.2 (C-3), 55.6 (2'-OCH₃), 80.1 (C-2), 99.6 (C-3''), 103.4 (C-10), 104.0 (C-8), 107.4 (C-5''), 113.3 (C-6), 115.4 (C-3'''/5'''), 116.3 (C-3'/5'), 123.3 (C-1''), 128.9 (C-2'/6'), 130.1 (C-2'''/6'''), 131.1 (C-6''), 131.6 (C-1'), 137.6 (C-1'''), 155.9 (C-4'''), 157.5 (C-4''), 158.9 (C-4'), 159.7 (C-9, C-2''), 161.0 (C-5), 164.6 (C-7), 198.5 (C-4).


S4. Structure elucidation of the new compound 5

Compound 5 was obtained as pinkish amorphous powder. The HR-ESI-MS spectra of compound 5 showed a $[M+H]^+$ ion at m/z 543.2382 (calculated for $C_{33}H_{35}O_7^+$ $[M+H]^+$, m/z 543.2377), corresponding to a molecular formula of $C_{33}H_{34}O_7$. The ¹H-NMR spectrum of **5** showed proton signals of two AA'BB' systems [$\delta_{\rm H}$ 7.86 and 6.89 (both 2H, d, 8.6 Hz) as well as $\delta_{\rm H}$ 7.04 and δ 6.66 (both 2H, d, 8.5 Hz)], three aromatic proton signals of an ABX-system [$\delta_{\rm H}$ 6.35 (1H, d, 2.2 Hz), 6.26 (1H, dd, 2.2, 8.0 Hz), 6.79 (1H, d, 8.1 Hz), two singlet aromatic proton signals ($\delta_{\rm H}$ 6.35 (1H, s) and 6.87 (1H, s)], proton signals corresponding to four methylene groups [$\delta_{\rm H}$ 3.09 (2H, m), 2.87 (2H, m), 2.37 (2H, m), and 2.04 (2H, m)] and signals of three methoxy groups [$\delta_{\rm H}$ 3.72 (6H, s) and 3.79 (3H, s)]. The ¹³C-NMR spectrum and HSQC data of 5 revealed 29 signals with characteristic signals for a carbonyl group at $\delta_{\rm C}$ 202.2, 24 aromatic carbons with 6 carbons bearing oxygen, 4 aliphatic methylene carbons, and three methoxy carbon signals [δ_c 55.7 (2C) and 56.0]. Comparison of the NMR data of 5 with those of the known biflavonoid 6 (cochinchinenene C) revealed as only difference between 5 and 6 the methoxy group location. HMBC data indicated that the methoxy groups of 5 are located at C-2, C-4', and C-2". This positioning could be confirmed by the observed NOESY contacts between the methoxy group at $\delta_{\rm H}$ 3.79 and H-3'/5' ($\delta_{\rm H}$ 6.88) and between the methoxy group proton signals at $\delta_{\rm H}$ 3.72 and H-3, H-6", respectively. A detailed overview of the observed key correlations is given in the ¹³C-NMR spectrum below. The structure of 5 was therefore established as the new natural product 3-(4-hydroxy-5-(3-(4hydroxy-2-methoxyphenyl)-1-(4-hydroxyphenyl)propyl)-2-methoxyphenyl)-1-(4-


methoxyphenyl)propan-1-one. The chiral HPLC analysis of compound **5** (Section 1) revealed the presence of both possible two isomers.

Structure of compound 5 with key correlations.

¹H-NMR spectrum (600.19 MHz, methanol- d_4) of compound **5.**

 13 C-NMR spectrum (150.91 MHz, methanol- d_4) of compound **5**.

3-(4-Hydroxy-5-(3-(4-hydroxy-2-methoxyphenyl)-1-(4-hydroxyphenyl)propyl)-2-

methoxyphenyl)-1-(4-methoxyphenyl)propan-1-one (5). Pinkish amorphous powder. $[\alpha]_D^{20}$ +12.4 (*c* 0.24, MeOH). UV_{max} (MeOH) λ_{max} (log ε) 202 (4.56), 222 (1.74), 280 (1.07) nm. ¹H-NMR (600.19 MHz, methanol-*d*₄; numbering according to shown figure): δ (ppm), *J* (Hz): 2.04 (m, H- α '), 2.37 (m, H- β '), 2.87 (m, H- β), 3.09 (m, H- α), 3.72 (s, 2-OC<u>H₃</u>, 2"-OC<u>H₃</u>), 3.79 (s, 4'-OC<u>H₃</u>), 4.15 (t, *J* = 7.8, H- γ '), 6.26 (dd, *J* = 8.0, 2.2, H-5''), 6.35 (d, *J* = 2.2, H-3''), 6.35 (s, H-3), 6.64 (d, *J* = 8.4, H-3'''/5'''), 6.79 (d, *J* = 8.1, H-6''), 6.87 (s, H-6), 6.88 (d, *J* = 8.5, H-3'/5'), 7.03 (d, *J* = 8.5, H-2'''/6'''), 7.84 (d, *J* = 8.8, H-2'/6'). ¹³C-NMR (150.91 MHz, methanol-*d*₄; numbering according to shown figure): δ (ppm): 27.3 (C- β), 29.5 (C- β '), 37.2 (C- α '), 40.1 (C- α), 43.1 (C- γ '), 55.7 (2-O<u>C</u>H₃, 2''-O<u>C</u>H₃), 56.0 (4'-O<u>C</u>H₃), 99.8 (C-3, C-3''), 107.5 (C-5''), 114.8 (C-3'/5'), 115.7 (C-3'''/5'''), 120.8 (C-1), 123.3 (C-1''), 124.9 (C-5), 130.0 (C-2'''/6'''), 130.1 (C-6), 131.1 (C-6''), 131.2 (C-1'), 131.7 (C-2'/6'), 138.3 (C-1'''), 155.1 (C-4), 156.0 (C-4'''), 157.3 (C-2), 157.6 (C-4''), 159.7 (C-2''), 165.2 (C-4'), 202.2 (<u>C</u>=O).

S5. Compounds isolated from bioactive subfractions

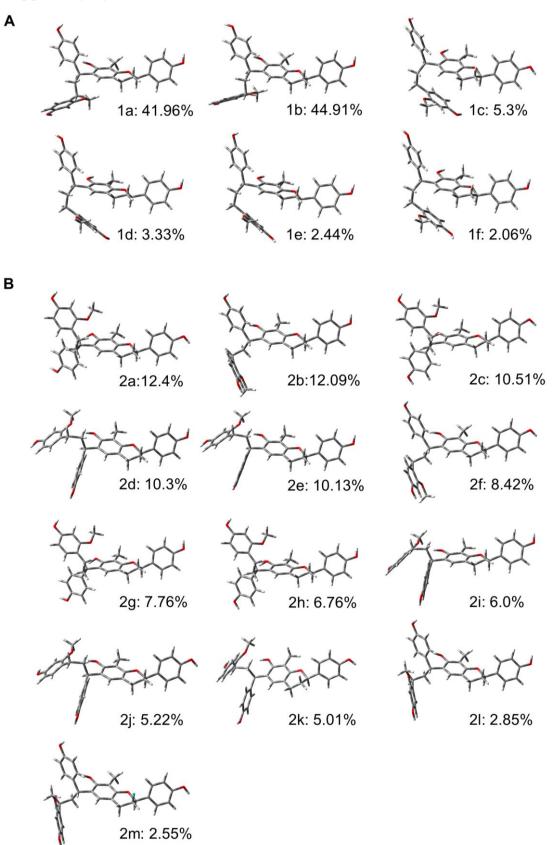
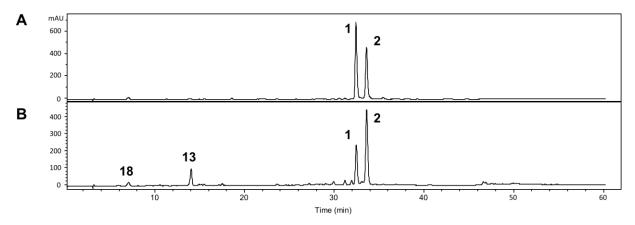
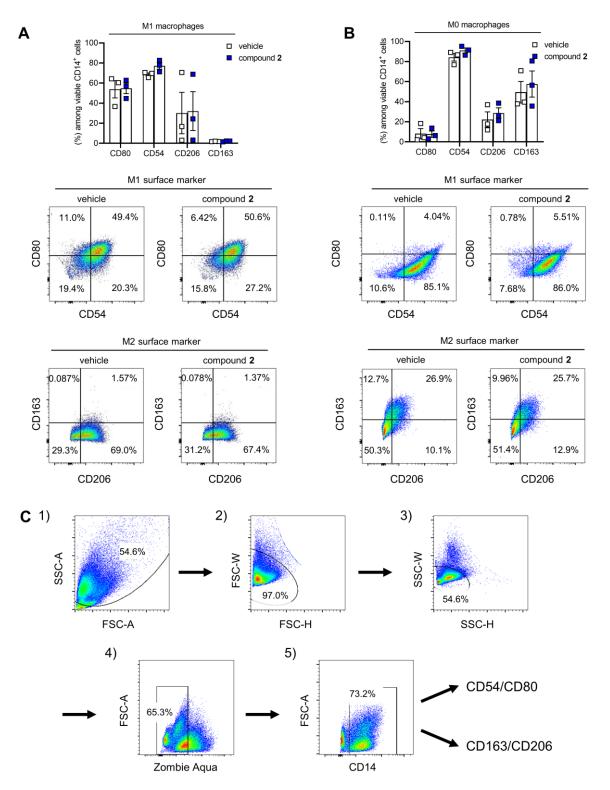
We isolated 18 (poly)phenolic compounds from the subfractions 5, 7 and 9-12 of the ethyl acetate subfraction that was prepared from the ethanol extract of Dracaena cambodiana red wood material (Table 1): the dimeric phenolic compounds 8-methylsocotrin-4'-ol (1 and 2)¹, 8-methylsocotrin-4'-ol-4^{'''}-methylether 2-(4-hydroxyphenyl)-5-hydroxy-6-[1-(4-hydroxyphenyl)-3-(4-hydroxy-2-(3), methoxy-phenyl)propyl]-8-methylchroman-4-one-7-ol (4), 3-(4-hydroxy-5-(3-(4-hydroxy-2methoxyphenyl)-1-(4-hydroxyphenyl)propyl)-2-methoxyphenyl)-1-(4-methoxyphenyl)propan-1-one (5), cochinchinenin С $(6)^2$, 3-[4-hydroxy-5-[3-(4-hydroxy-2-methoxyphenyl)-1-(4hydroxyphenyl)propyl]-2-methoxyphenyl]-1-(4-hydroxyphenyl)-propanone $(7)^3$, as well as the corresponding monomers and structurally related compounds 7,4'-dihydroxyflavan ($\mathbf{8}$)⁴, 7-methoxy-4'flavonol $(9)^4$, 8-methylnaringenin $(10)^5$, liquiritigenin $(11)^5$, 7,4'-dihydroxyflavone $(12)^6$, 2,4,4'trihydroxydihydrochalcone (13)⁷, loureirin C (14)⁸, 2'-methoxyisoliquiritigenin (15)⁹, 2,4'-dihydroxy-4methoxychalcone $(16)^{10}$, resveratrol $(17)^{11}$, and *p*-hydroxy benzoic acid $(18)^{12}$.

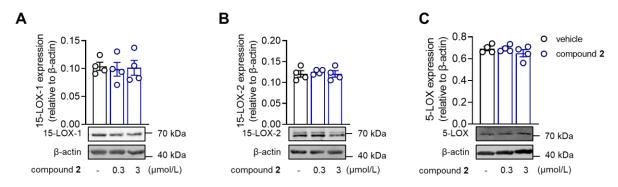
Compounds 1 and 2¹, 11¹³, 12¹⁴, 14¹³, 15¹³, and 17¹⁵ have previously been identified as constituents of *D. cambodiana*. The natural products 6, 7, 8, 13, and 18 are new for *D. cambodiana*, however, they have previously been isolated from other *Dracaena* species. In particular, 6 and 7 have previously been obtained from *D. cochinchinensis*², 8 from *D. loureiri*¹⁶, 13 from *D. draco*⁷ and *D. cochinchinensis*², and compound 18 from *D. angustifolia*¹⁷. This is the first report of compounds 9, 10, and 16 from a *Dracaena* species. Compounds 3-5 represent new natural products.

References

- 1 Guan J, Guo S-X. Three New Biflavonoids from Chinese Dragon's Blood, *Dracaena cochinchinensis*. *Nat Prod Commun* 2012;**7**:1934578X1200700510.
- 2 Zhu Y, Zhang P, Yu H, Li J, Wang MW, Zhao W. Anti-Helicobacter pylori and thrombin inhibitory components from Chinese dragon's blood, *Dracaena cochinchinensis*. *J Nat Prod* 2007;**70**:1570-7.
- Tobinaga SO, Satoshi; Koike, Takeshi; Takano, Akito Tetra-phenol substituted propanones and their use for granulation tissue formation enhancers and cancer cell apoptosis inducers. *Jpn patent*. JP 2006241078 A 20060914. 2006.
- 4 González AG, León F, Hernández JC, Padrón JI, Sánchez-Pinto L, Barrera JB. Flavans of dragon's blood from *Dracaena draco* and *Dracaena tamaranae*. *Biochem Syst Ecol* 2004;**32**:179-84.
- 5 Zhao J, Ding HX, Zhao DG, Wang CM, Gao K. Isolation, modification and cytotoxic evaluation of flavonoids from *Rhododendron hainanense*. *J Pharm Pharmacol* 2012;**64**:1785-92.
- 6 Park Y, Moon BH, Lee E, Lee Y, Yoon Y, Ahn JH, et al. ¹H and ¹³C-NMR data of hydroxyflavone derivatives. *Magn Reson Chem* 2007;**45**:674-9.
- 7 González AG, León F, Sánchez-Pinto L, Padrón JI, Bermejo J. Phenolic compounds of Dragon's blood from *Dracaena draco. J Nat Prod* 2000;63:1297-9.
- 8 Meksuriyen D, Cordell GA. Retrodihydrochalcones from *Dracaena Loureiri*. *J Nat Prod* 1988;**51**:1129-35.
- 9 Yahara S, Ogata T, Saijo R, Konishi R, Yamahara J, Miyahara K, et al. Isoflavan and related compounds from *Dalbergia odorifera*. I. *Chem Pharm Bull* 1989;**37**:979-87.
- 10 Wang DY, Dai Y, Tong L, Cai B. Studies on chemical constituents of *Oxytropis falcata*(II). *Zhongguo Yaoxue Zazhi* 2008;**43**:1292-4.
- 11 Mannila E, Talvitie A, Kolehmainen E. Anti-leukaemic compounds derived from stilbenes in *Picea abies* bark. *Phytochemistry* 1993;**33**:813-6.
- 12 Shataer D, Abdulla R, Ma QL, Liu GY, Aisa HA. Chemical composition of extract of *Corylus avellana* shells. *Chem Nat Compd* 2020;**56**:338-40.
- 13 Luo Y, Wang H, Zhao YX, Zeng YB, Shen HY, Dai HF, et al. Cytotoxic and antibacterial flavonoids from dragon's blood of *Dracaena cambodiana*. *Planta Med* 2011;**77**:2053-6.
- Luo Y, Dai HF, Wang H, Mei WL. Chemical constituents from Dragon's blood of *Dracaena cambodiana*.
 Chin J Nat Med 2011;9:112-4.
- 15 Fan LL, Tu PF, Chen HB, Cai SQ. Simultaneous quantification of five major constituents in stems of Dracaena plants and related medicinal preparations from China and Vietnam by HPLC-DAD. *Biomed Chromatogr* 2009;23:1191-200.
- 16 Meksuriyen D, Cordell GA. Traditional medicinal plants of Thailand. XIII. Flavonoid derivatives from Dracaena loureiri (Agavaceae). J Sci Soc Thailand 1988;14:3-24.
- 17 Huang HC, Lin MK, Hwang SY, Hwang TL, Kuo YH, Chang CI, et al. Two anti-inflammatory steroidal saponins from *Dracaena angustifolia* Roxb. *Molecules* 2013;18:8752-63.

Supporting figures


Figure S1 Low energy conformers used for ECD calculation. (A) Compound 1. (B) Compound 2.

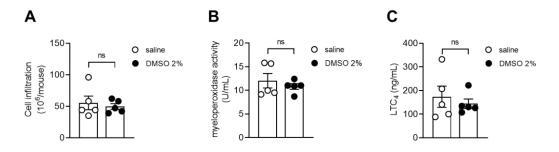

Figure S2 HLPC chromatograms of the most active subfractions. The ethanolic *D. cambodiana* extract was fractionated and the obtained EtOAc fraction was further separated. (A, B) HPLC chromatograms of the most active subfractions 11 (A) and 12 (B) at 280 nm with assigned compounds (see 2.2. for HPLC conditions).

Figure S3 Macrophage polarization is not influenced by compound **2**. Human monocyte-derived macrophages (M0) were pre-treated with vehicle (DMSO) or compound **2** (3 μ mol/L) for 15 min and then polarized for 48 h with LPS/IFN- γ to the M1 phenotype. (A, B) Expression of M1 (CD54 and CD80) and M2 surface markers (CD163 and CD206) among CD14⁺ cells in M1 (A) and M0 macrophages (B) is shown in bar charts and pseudocolor dot plots. Results are given as mean \pm S.E.M., percentage among viable CD14⁺ cells, n = 3; paired *t*-test. (C) Gating strategy.

Figure S4 Compound **2** neither affects 15-LOX-1, 15-LOX-2, nor 5-LOX expression. Human monocyte-derived M2 macrophages were treated with vehicle (DMSO) or compound **2** for 24 h. (A–C) Protein expression and densitometric analysis of (A) 15-LOX-1, (B) 15-LOX-2 and (C) 5-LOX. Results are given as mean \pm SEM, normalized to β -actin. Western blots are representative for n = 4 independent donors and treatments.

Figure S5 DMSO as vehicle does hardly influence cell infiltration and LTC₄ levels in zymosan-induced peritonitis in mice. Saline or DMSO (2%) were i.p. administrated 30 min before zymosan injection. Mice were sacrificed 4 h (A, B) or 30 min (C) after receiving zymosan. (A) Cell infiltration into the peritoneal cavity. (B) Myeloperoxidase activity of infiltrated cells as marker for neutrophils. (C) LTC₄ levels of the peritoneal exudate. Data are shown as mean \pm SEM and single data points, n = 5 mice; ns, non-significant; unpaired *t*-test.

Supporting tables

Table S1 Inhibition of 5-LOX, 15-LOX, and 12-LOX product formation by Vietnamese plant extracts in activated PMNL.

Latin plant	Plant	Plant	Extraction solvent	5-LOX	5-LOX	15-LOX	12-LOX
ame	family	organ	~ ~ ~ ~	at 30 µg/mL ^a	IC ₅₀ ^b	at 30 µg/mL ^a	at 30 µg/mL ^a
<i>olanum</i> sp.	Solanaceae	Stems	Chloroform	87 ± 29	n.d. ^c	390 ± 284	108 ± 7
		_	Methanol	102 ± 4	n.d.	103 ± 1	101 ± 5
		Fruits	Chloroform	98 ± 8	n.d.	101 ± 1	100 ± 3
			Methanol	94 ± 10	n.d.	126 ± 19	105 ± 1
		Leaves	Chloroform	32 ± 14	21.6 ± 3.9	94 ± 2	83 ± 6
~ .	a 1	a .	Methanol	102 ± 11	n.d.	116 ± 9	101 ± 5
Solanum sp.	Solanaceae	Stems	Chloroform	86 ± 31	n.d.	150 ± 30	105 ± 15
		T	Methanol	104 ± 9	n.d.	115 ± 17	96 ± 1
		Leaves	Chloroform	41 ± 14	24.8 ± 8.2	83 ± 13	98 ± 10
Calophyllum	Clusiaceae	Bark	Methanol Chloroform	$\begin{array}{c} 100\pm8\\ 8\pm6 \end{array}$	n.d. 17.7 ± 1.3	$154 \pm 36 \\ 158 \pm 23$	$\begin{array}{c} 104\pm10\\ 86\pm14 \end{array}$
nophyllum	Clusiaceae	Dark	Methanol	59 ± 12	n.d.	138 ± 23 138 ± 32	108 ± 8
порпушит		Seed	Chloroform	3 ± 3	14.8 ± 0.7	138 ± 32 124 ± 94	108 ± 8 128 ± 29
		Coat	Methanol	301 ± 9	14.8 ± 0.7 21.3 ± 2.6	124 ± 94 190 ± 39	120 ± 27 109 ± 11
Brucea mollis	Simaroubaceae	Semen	Chloroform	501 ± 9 71 ± 11	n.d.	100 ± 30 109 ± 4	75 ± 12
Sruceu monus	Simaroubaceae	Semen	Methanol	61 ± 4	n.d.	100 ± 4 101 ± 1	73 ± 12 73 ± 5
Artemisia	Asteraceae	Aerial	Chloroform	47 ± 7	30.0 ± 5.6	101 ± 1 216 ± 123	73 ± 3 335 ± 223
vulgaris	. Istoracouc	parts	Methanol	92 ± 3	n.d.	92 ± 1	92 ± 13
Piper lolot	Piperaceae	Leaves	Chloroform	72 ± 3 70 ± 2	n.d.	124 ± 53	122 ± 40
	-r 240		Methanol	95 ± 9	n.d.	121 ± 33 141 ± 30	104 ± 6
Cibotium	Dicksoniaceae	Rhizome	Chloroform	66 ± 11	n.d.	101 ± 7	101 ± 0 114 ± 9
barometz			Methanol	87 ± 11	n.d.	114 ± 20	99 ± 5
Drynaria	Polygonaceae	Rhizome	Chloroform	96 ± 12	n.d.	95 ± 19	94 ± 10
fortunei			Methanol	53 ± 1	n.d.	187 ± 70	79 ± 14
Momordica	Cucurbitaceae	Seed	Chloroform	56 ± 12	n.d.	65 ± 22	79 ± 18
cochinchinens	ris	Coat	Methanol	65 ± 2	n.d.	137 ± 49	73 ± 1
		Seedling	Chloroform	78 ± 11	n.d.	113 ± 10	136 ± 16
			Methanol	100 ± 4	n.d.	97 ± 7	115 ± 18
		Leaves	Chloroform	59 ± 1	n.d.	96 ± 6	96 ± 6
			Methanol	95 ± 1	n.d.	119 ± 7	102 ± 3
		Roots	Chloroform	98 ± 12	n.d.	66 ± 25	111 ± 10
			Methanol	53 ± 12	n.d.	153 ± 19	116 ± 28
		Bark	Chloroform	115 ± 11	n.d.	96 ± 2	90 ± 13
			Methanol	99 ± 6	n.d.	77 ± 16	97 ± 4
Dracaena	Dracaenaceae	Wood	Chloroform	7 ± 2	2.1 ± 0.7	76 ± 9	73 ± 6
cambodiana			Methanol	4 ± 2	0.4 ± 0.2	127 ± 16	38 ± 6
Siegesbeckia	Asteraceae	Aerial	Chloroform	73 ± 3	n.d.	80 ± 6	97 ± 8
orientalis	** .	parts	Methanol	108 ± 0	n.d.	127 ± 29	114 ± 1
Vitex	Verbernaceae	Leaves	Chloroform	13 ± 1	15.0 ± 0.8	159 ± 21	77 ± 15
rotundifolia		F '	Methanol	96 ± 4	n.d.	122 ± 20	99 ± 8
		Fruits	Chloroform	12 ± 3	10.6 ± 7.1	44 ± 5 107 + 5	39 ± 39
Caesalpinia	Fabaceae	Seedling	Methanol Chloroform	$\begin{array}{c} 66\pm8\\ 95\pm6\end{array}$	n.d. n.d.	$107 \pm 5 \\ 84 \pm 5$	$\begin{array}{c} 87\pm 6\\ 100\pm 11 \end{array}$
bonduc	rabaceae	Securing	Methanol	95 ± 6 96 ± 4	n.d. n.d.		
Aleurites	Euphorbiaceae	Leaves	Chloroform	96 ± 4 84 ± 1	n.d. n.d.	99.3 ± 8 143 ± 63	101 ± 2 132 ± 36
noluccana	Luphorolaceae	Laves	Methanol	116 ± 1	n.d.	145 ± 05 93 ± 26	132 ± 30 92 ± 9
nonuccunu		Stems	Chloroform	110 ± 1 19 ± 3	$1.0.19.5 \pm 1.9$	95 ± 20 157 ± 11	92 ± 9 81 ± 3
		Stellis	Methanol	19 ± 3 105 ± 2	19.3 ± 1.9 n.d.	137 ± 11 127 ± 15	106 ± 6
		Roots	Chloroform	105 ± 2 84 ± 2	n.d.	127 ± 13 144 ± 91	100 ± 0 130 ± 42
		1000	Methanol	100 ± 6	n.d.	144 ± 91 121 ± 7	130 ± 42 97 ± 3
Vepenthes	Nepenthaceae	Leaves	Chloroform	34 ± 8	22.4 ± 4.0	121 ± 7 91 ± 17	94 ± 1
nirabilis	repennaceae	Leaves	Methanol	34 ± 8 78 ± 2	n.d. n.d.	91 ± 17 105 ± 14	54 ± 1 71 ± 4
		Stems	Chloroform	78 ± 2 44 ± 1	26.7 ± 0.1	105 ± 14 118 ± 24	104 ± 5
		Stellis	Methanol	44 ± 1 78 ± 1	20.7 ± 0.1 n.d.	118 ± 24 94 ± 10	104 ± 3 86 ± 2
Alstonia	Anorunacia	Leaves	Chloroform	78 ± 1 25 ± 8	13.0 ± 4.2		80 ± 2 130 ± 64
aistonia scholaris	Apocynaceae	Leaves				147 ± 39 104 ± 7	
cholaris		Doult	Methanol	92 ± 4	n.d.	104 ± 7	88 ± 2
		Bark	Chloroform	56 ± 1	n.d.	156 ± 101	143 ± 55
D111	Events and '	T	Methanol	96 ± 4	n.d.	83 ± 21	80 ± 7
Phyllanthus	Euphorbiaceae	Leaves	Chloroform	40 ± 11	23.2 ± 7.9	111 ± 9	101 ± 6
reticulatus		D I	Methanol	102 ± 9	n.d.	88 ± 17	79 ± 8
		Bark	Chloroform	18 ± 6	19.1 ± 1.3	172 ± 23	108 ± 20
			Methanol	102 ± 14	n.d.	88 ± 18	84 ± 4

Chloroform

Latin plant	Plant	Plant	Extraction solvent	5-LOX	5-LOX	15-LOX	12-LOX
name	family	organ		at 30 µg/mL ^a	IC ₅₀ ^b	at 30 µg/mL ^a	at 30 µg/mL ^a
Kopsia	Apocynaceae	Pleaves		32 ± 11	18.0 ± 6.4	159 ± 22	125 ± 23
cochinchinens	is		Methanol	84 ± 5	n.d.	93 ± 20	82 ± 11
		Bark	Chloroform	97 ± 3	n.d.	89 ± 12	83 ± 8
			Methanol	83 ± 3	n.d.	93 ± 3	102 ± 21
Ficus	Moraceae	Leaves	Chloroform	23 ± 11	19.3 ± 2.8	130 ± 63	94 ± 28
benghalensis			Methanol	76 ± 4	n.d.	78 ± 21	64 ± 11
Symplocos	Symplocaceae	Leaves	Chloroform	31 ± 7	n.d.	102 ± 14	80 ± 6
annamensis			Methanol	86 ± 8	n.d.	96 ± 1	84 ± 0
Croton sp.	Euphorbiaceae	Leaves	Chloroform	7 ± 2	15.9 ± 2.1	88 ± 30	94 ± 26
			Methanol	10 ± 3	9.9 ± 4.6	55 ± 2	75 ± 7
Stephania	Menispermaceae	Roots	Chloroform	16 ± 6	11.2 ± 5.8	126 ± 4	74 ± 9
venosa			Methanol	86 ± 3	n.d.	85 ± 12	84 ± 12
Streptocaulon	Asclepidiaceae	Roots	Chloroform	65 ± 16	n.d.	82 ± 4	84 ± 1
juventas			Methanol	92 ± 7	n.d.	91.4 ± 5	87 ± 3
		Stems	Chloroform	36 ± 9	$\textbf{8.8} \pm \textbf{8.8}$	169 ± 33	144 ± 19
		+ Leaves	Methanol	87 ± 1	n.d.	113 ± 13	97 ± 2
Plumeria rubr	a Apocynaceae	Bark	Chloroform	61 ± 7	n.d.	75 ± 14	67 ± 17
			Methanol	95 ± 5	n.d.	102 ± 9	96 ± 1
Tinospora	Menispermaceae	Stems	Chloroform	28 ± 5	22.5 ± 1.4	66 ± 12	58 ± 8
crispa			Methanol	77 ± 2	n.d.	79 ± 14	74 ± 14
Stephania	Menispermaceae	Tuber	Chloroform	3 ± 3	10.6 ± 4.1	126 ± 19	81 ± 8
cambodica			Methanol	67 ± 11	n.d.	100 ± 9	81 ± 6
Stephania	Menispermaceae	Tuber	Chloroform	43 ± 6	26.2 ± 3.5	84 ± 8	71 ± 11
pierrei			Methanol	94 ± 9	n.d.	94 ± 7	88 ± 7
Adenium sp.	Apocynaceae	Bark	Chloroform	61 ± 8	n.d.	76 ± 4	74 ± 8
			Methanol	101 ± 6	n.d.	83 ± 5	87 ± 3
Aristolochia s	p. Aristolochiaceae	Stems	Chloroform	7 ± 1	19.4 ± 2.1	25 ± 1	78 ± 13
			Methanol	97 ± 2	n.d.	94 ± 24	96 ± 5
Hydnophytum	Rubiaceae	Tuber	Chloroform	66 ± 6	n.d.	80 ± 1	104 ± 11
formicarum			Methanol	79 ± 2	n.d.	71 ± 0	63 ± 1
Parameria	Apocynaceae	Stems	Chloroform	50 ± 1	n.d.	111 ± 5	119 ± 1
laevigata		+ Leaves	Methanol	98 ± 1	n.d.	79 ± 7	100 ± 8

The extract library for screening was created in the course of the project 'Drugs from nature targeting inflammation (DNTI)'³¹. Extracts were prepared according to the protocol of Thi Tran et al.³², which we slightly modified by exchanging dichloromethane by chloroform. ^a5-LOX product formation at 30 µg/mL (% control) and ^bIC₅₀ values (µg/mL) are given as mean \pm SEM; n = 2-5. ^cNot determined.

Compd.	Stereochemistry	$IC_{50}(5\text{-}LOX) \ [\mu mol/L]^a$	Score	R68	R101	E108	V110	H125	I126	Q129	H130	E134	E136	T137	R138	K140	Q141	D166
1a	$2R,\gamma S$	0.70	64.83				Х									Х		
1b	$2S,\gamma R$	0.70	72.62				Х				Х		Х			Х		
2a	$2R,\gamma R$	1.50	71.83			Х		Х				Х						
2b	$2S,\gamma S$	0.50	70.75		Х								Х			Х		
3a	$2R,\gamma R$		72.51			Х							Х					
3b	$2S,\gamma R$	0.80	71.07			Х							Х					
3c	$2R,\gamma S$	0.00	73.48						Х							Х		Х
3d	$2S,\gamma S$		71.33						Х							Х		
4 a	$2R,\gamma R$		69.23							Х			Х			Х		
4b	$2S,\gamma R$	0.46	63.83					Х				Х					Х	
4c	2R,yS	0.40	59.89										Х					
4d	$2S,\gamma S$		66.46				Х	Х			Х	Х		Х				
5a	S	0.51	73.76										Х			Х		
5b	R	0.51	76.62											Х				
6a	S	0.85	74.01									Х	Х			Х		
6b	R	0.05	84.61															Х
7a	S	0.59	78.89	Х		Х						Х						Х
7b	R	0.39	76.71									Х						
8a	R	>10	54.77	Х			Х											
8b	S	>10	53.12	Х										Х				
9a	R	5.70	53.43											Х				Х
9b	S	5.70	52.84															
10	S	>10	58.52								Х				Х			Х
11a	R	>10	56.10								Х			Х	Х			
11b	S	>10	53.42						Х			Х						
12		5.01	56.02								Х				Х			
13		>10	60.02	Х								Х		Х				
14		8.90	55.51						Х			Х		Х				
15		6.50	56.49	Х	Х										Х			
16		4.39	61.18											Х				
17		7.18	56.02				Х					Х		Х				
18		n.i.	35.02															

Table S2 Docking results overview: ChemPLP fitness score and hydrogen bond interactions with protein residues from the binding site for the best ranked pose of each compound.

 ${}^{a}IC_{50}$ values inhibition of human recombinant 5-LOX n.i. = no inhibition

	Lipid mediators	Vehicle	Compound 2	Compound 2	Compound 2	Compound 2	Compound 2
			(0.3 µmol/L)	(1 µmol/L)	(3 µmol/L)	(10 µmol/L)	(30 µmol/L)
5-LOX	20-OH-LTB ₄	488 ± 245	457 ± 196	429 ± 187	266 ± 79	147 ± 75	3 ± 3
	LTB4 isomers	354 ± 166	297 ± 112	258 ± 81	197 ± 89	107 ± 67	n.d.
	LTB_4	$2,\!494 \pm 1,\!365$	$2,\!080 \pm 1,\!024$	$2,060 \pm 1,030$	$1,\!278\pm377$	675 ± 346	13 ± 13
	5S,6R-diHETE	76 ± 34	77 ± 32	70 ± 31	45 ± 13	21 ± 11	n.d.
	5-HETE	$4,242 \pm 2,206$	$3,\!882\pm1,\!765$	$4,\!402\pm1,\!859$	$2{,}516\pm613$	$1,\!184\pm484$	294 ± 178
	5-HEPE	100 ± 39	94 ± 24	107 ± 27	63 ± 28	35 ± 17	6 ± 4
COX	PGE ₂	30 ± 6	23 ± 4	26 ± 3	29 ± 8	26 ± 6	30 ± 8
	PGD ₂	6 ± 4	5 ± 2	5 ± 1	3 ± 2	4 ± 2	8 ± 6
	TXB ₂	789 ± 319	587 ± 159	527 ± 128	561 ± 51	767 ± 254	894 ± 330
12/15-LOX	15-HETE	268 ± 135	163 ± 51	191 ± 44	190 ± 44	397 ± 192	563 ± 335
	14-HDHA	606 ± 195	529 ± 103	583 ± 73	549 ± 118	560 ± 142	793 ± 223
	12-HETE	$8,758 \pm 4,186$	$6{,}513 \pm 2{,}504$	$6,711 \pm 1,707$	$4,\!388\pm555$	$7,535 \pm 2,544$	9,761 ± 3,175
	12-HEPE	170 ± 56	146 ± 42	152 ± 18	110 ± 11	168 ± 48	231 ± 65
	4-HDHA	36 ± 13	26 ± 8	24 ± 6	49 ± 26	65 ± 32	93 ± 48
Fatty acids	AA	$92,406 \pm 13,862$	$87,\!940 \pm 9,\!780$	$950,\!120 \pm 10,\!076$	86,695 ± 4,318	$104,\!828 \pm 16,\!859$	110,693 ± 12,200
	EPA	$76,133 \pm 18,205$	$76,745 \pm 21,976$	$67,997 \pm 12,100$	$69,\!601 \pm 18,\!071$	$74,569 \pm 16,264$	$73,\!498 \pm 18,\!021$
	DHA	$123,473 \pm 35,237$	$123,\!537\pm26,\!295$	126,757 ± 31,681	120,295 ± 23,681	111,856 ± 34,923	114,093 ± 38,410
		· · ·					
	DHA Lipid mediators	Compound 5	Compound 5	Compound 5	Compound 5	Compound 5	Zileuton
5-1 OX	Lipid mediators	Compound 5 (0.3 μmol/L)	Compound 5 (1 µmol/L)	Compound 5 (3 µmol/L)	Compound 5 (10 µmol/L)	Compound 5 (30 µmol/L)	Zileuton (3 µmol/L)
j-LOX	Lipid mediators 20-OH-LTB ₄	Compound 5 (0.3 µmol/L) 488 ± 175	Compound 5 (1 µmol/L) 566 ± 227	Compound 5 (3 µmol/L) 824 ± 253	Compound 5 (10 μmol/L) 579 ± 264	Compound 5 (30 μmol/L) 455 ± 191	Zileuton (3 µmol/L) 236 ± 96
5-LOX	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers	Compound 5 (0.3 µmol/L) 488 ± 175 349 ± 137	Compound 5 (1 µmol/L) 566 ± 227 337 ± 120	Compound 5 (3 µmol/L) 824 ± 253 546 ± 164	Compound 5 (10 µmol/L) 579 ± 264 374 ± 147	Compound 5 (30 µmol/L) 455 ± 191 327 ± 156	Zileuton (3 μmol/L) 236 ± 96 115 ± 41
5-LOX	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers LTB ₄	Compound 5 (0.3 µmol/L) 488 ± 175 349 ± 137 2,251 ± 908	Compound 5 (1 µmol/L) 566 ± 227 337 ± 120 2,602 ± 1,028	Compound 5 (3 µmol/L) 824 ± 253 546 ± 164 3,807 ± 1,281	Compound 5 (10 µmol/L) 579 ± 264 374 ± 147 2,650 ± 1,299	Compound 5 (30 μmol/L) 455 ± 191 327 ± 156 2,322 ± 987	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577
5-LOX	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE	Compound 5 (0.3 µmol/L) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37	Compound 5 (1 µmol/L) 566 ± 227 337 ± 120 2,602 ± 1,028 100 ± 36	Compound 5 (3 µmol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49	Compound 5 (30 µmol/L) 455 ± 191 327 ± 156 2,322 ± 987 80 ± 34	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20
5-LOX	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers LTB ₄ 5S,6R-diHETE 5-HETE	Compound 5 ($0.3 \mu mol/L$) 488 \pm 175 349 \pm 137 2,251 \pm 908 92 \pm 37 4,183 \pm 1,884	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027	Compound 5 (3 μ mol/L) 824 \pm 253 546 \pm 164 3,807 \pm 1,281 141 \pm 41 6,669 \pm 2,182	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061
	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE 5-HETE 5-HEPE	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44	Compound 5 (3 μ mol/L) 824 \pm 253 546 \pm 164 3,807 \pm 1,281 141 \pm 41 6,669 \pm 2,182 181 \pm 50	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848 113 \pm 40	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14
	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE 5-HETE 5-HEPE PGE2	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 $2,251 \pm 908$ 92 ± 37 $4,183 \pm 1,884$ 110 ± 33 35 ± 8	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8	Compound 5 (3 μ mol/L) 824 \pm 253 546 \pm 164 3,807 \pm 1,281 141 \pm 41 6,669 \pm 2,182 181 \pm 50 59 \pm 18	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848 113 \pm 40 38 \pm 8	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7
	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers LTB ₄ 5S,6R-diHETE 5-HETE 5-HEPE PGE ₂ PGD ₂	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33 35 ± 8 4 ± 4	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5	Compound 5 (3 μ mol/L) 824 \pm 253 546 \pm 164 3,807 \pm 1,281 141 \pm 41 6,669 \pm 2,182 181 \pm 50 59 \pm 18 6 \pm 6	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848 113 \pm 40 38 \pm 8 4 \pm 4	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7
COX	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE 5-HETE 5-HEPE PGE2 PGD2 TXB2	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 $2,251 \pm 908$ 92 ± 37 $4,183 \pm 1,884$ 110 ± 33 35 ± 8 4 ± 4 763 ± 239	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397	Compound 5 (3 μ mol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41 6,669 ± 2,182 181 ± 50 59 ± 18 6 ± 6 1,326 ± 482	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4 1,013 \pm 349	Compound 5 ($30 \mu mol/L$) 455 ± 191 327 ± 156 $2,322 \pm 987$ 80 ± 34 $4,067 \pm 1,848$ 113 ± 40 38 ± 8 4 ± 4 1033 ± 383	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381
COX	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE 5-HETE 5-HEPE PGE2 PGD2 TXB2 15-HETE	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33 35 ± 8 4 ± 4 763 ± 239 223 ± 52	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397 253 \pm 69	Compound 5 (3 μ mol/L) 824 \pm 253 546 \pm 164 3,807 \pm 1,281 141 \pm 41 6,669 \pm 2,182 181 \pm 50 59 \pm 18 6 \pm 6 1,326 \pm 482 358 \pm 134	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4 1,013 \pm 349 277 \pm 100	Compound 5 ($30 \mu mol/L$) 455 ± 191 327 ± 156 $2,322 \pm 987$ 80 ± 34 $4,067 \pm 1,848$ 113 ± 40 38 ± 8 4 ± 4 1033 ± 383 290 ± 104	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381 228 \pm 90
cox	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE 5-HETE 5-HEPE PGE2 PGD2 TXB2	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33 35 ± 8 4 ± 4 763 ± 239 223 ± 52 660 ± 170	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397 253 \pm 69 715 \pm 180	Compound 5 (3 μ mol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41 6,669 ± 2,182 181 ± 50 59 ± 18 6 ± 6 1,326 ± 482 358 ± 134 957 ± 256	Compound 5 (10 μ mol/L) 579 ± 264 374 ± 147 2,650 ± 1,299 101 ± 49 4,818 ± 2,404 124 ± 42 44 ± 14 4 ± 4 1,013 ± 349 277 ± 100 722 ± 188	Compound 5 ($30 \mu mol/L$) 455 ± 191 327 ± 156 $2,322 \pm 987$ 80 ± 34 $4,067 \pm 1,848$ 113 ± 40 38 ± 8 4 ± 4 1033 ± 383 290 ± 104 765 ± 203	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381 228 \pm 90 564 \pm 88
COX	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers LTB ₄ 5S,6R-diHETE 5-HETE 5-HEPE PGE ₂ PGD ₂ TXB ₂ 15-HETE 14-HDHA 12-HETE	Compound 5 ($(0.3 \mu mol/L)$) 488 ± 175 349 ± 137 $2,251 \pm 908$ 92 ± 37 $4,183 \pm 1,884$ 110 ± 33 35 ± 8 4 ± 4 763 ± 239 223 ± 52 660 ± 170 $8,612 \pm 3,356$	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397 253 \pm 69 715 \pm 180 10,090 \pm 4,141	Compound 5 (3 μ mol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41 6,669 ± 2,182 181 ± 50 59 ± 18 6 ± 6 1,326 ± 482 358 ± 134 957 ± 256 12,256 ± 4,292	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4 1,013 \pm 349 277 \pm 100 722 \pm 188 10,300 \pm 4,315	Compound 5 ($30 \mu mol/L$) 455 ± 191 327 ± 156 $2,322 \pm 987$ 80 ± 34 $4,067 \pm 1,848$ 113 ± 40 38 ± 8 4 ± 4 1033 ± 383 290 ± 104 765 ± 203 $10,136 \pm 4371$	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381 228 \pm 90 564 \pm 88 8,473 \pm 2,992
COX	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers LTB ₄ 5S,6R-diHETE 5-HETE 5-HEPE PGE ₂ PGD ₂ TXB ₂ 15-HETE 14-HDHA 12-HETE 12-HEPE	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33 35 ± 8 4 ± 4 763 ± 239 223 ± 52 660 ± 170 8,612 ± 3,356 220 ± 77	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397 253 \pm 69 715 \pm 180 10,090 \pm 4,141 227 \pm 78	Compound 5 (3 μ mol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41 6,669 ± 2,182 181 ± 50 59 ± 18 6 ± 6 1,326 ± 482 358 ± 134 957 ± 256 12,256 ± 4,292 280 ± 79	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4 1,013 \pm 349 277 \pm 100 722 \pm 188 10,300 \pm 4,315 215 \pm 72	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848 113 \pm 40 38 \pm 8 4 \pm 4 1033 \pm 383 290 \pm 104 765 \pm 203 10,136 \pm 4371 227 \pm 62	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381 228 \pm 90 564 \pm 88 8,473 \pm 2,992 172 \pm 27
5-LOX COX 12/15-LOX	Lipid mediators 20-OH-LTB4 LTB4 isomers LTB4 5S,6R-diHETE 5-HETE 5-HEPE PGE2 PGD2 TXB2 15-HETE 14-HDHA 12-HETE 12-HEPE 4-HDHA	Compound 5 ($(0.3 \mu mol/L)$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33 35 ± 8 4 ± 4 763 ± 239 223 ± 52 660 ± 170 8,612 ± 3,356 220 ± 77 31 ± 8	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397 253 \pm 69 715 \pm 180 10,090 \pm 4,141 227 \pm 78 29 \pm 4	Compound 5 (3 μ mol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41 6,669 ± 2,182 181 ± 50 59 ± 18 6 ± 6 1,326 ± 482 358 ± 134 957 ± 256 12,256 ± 4,292 280 ± 79 38 ± 10	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4 1,013 \pm 349 277 \pm 100 722 \pm 188 10,300 \pm 4,315 215 \pm 72 27 \pm 3	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848 113 \pm 40 38 \pm 8 4 \pm 4 1033 \pm 383 290 \pm 104 765 \pm 203 10,136 \pm 4371 227 \pm 62 38 \pm 7	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381 228 \pm 90 564 \pm 88 8,473 \pm 2,992 172 \pm 27 34 \pm 6
COX	Lipid mediators 20-OH-LTB ₄ LTB ₄ isomers LTB ₄ 5S,6R-diHETE 5-HETE 5-HEPE PGE ₂ PGD ₂ TXB ₂ 15-HETE 14-HDHA 12-HETE 12-HEPE	Compound 5 ($0.3 \mu mol/L$) 488 ± 175 349 ± 137 2,251 ± 908 92 ± 37 4,183 ± 1,884 110 ± 33 35 ± 8 4 ± 4 763 ± 239 223 ± 52 660 ± 170 8,612 ± 3,356 220 ± 77	Compound 5 (1 μ mol/L) 566 \pm 227 337 \pm 120 2,602 \pm 1,028 100 \pm 36 4,879 \pm 2,027 131 \pm 44 39 \pm 8 9 \pm 5 984 \pm 397 253 \pm 69 715 \pm 180 10,090 \pm 4,141 227 \pm 78	Compound 5 (3 μ mol/L) 824 ± 253 546 ± 164 3,807 ± 1,281 141 ± 41 6,669 ± 2,182 181 ± 50 59 ± 18 6 ± 6 1,326 ± 482 358 ± 134 957 ± 256 12,256 ± 4,292 280 ± 79	Compound 5 (10 μ mol/L) 579 \pm 264 374 \pm 147 2,650 \pm 1,299 101 \pm 49 4,818 \pm 2,404 124 \pm 42 44 \pm 14 4 \pm 4 1,013 \pm 349 277 \pm 100 722 \pm 188 10,300 \pm 4,315 215 \pm 72	Compound 5 (30 μ mol/L) 455 \pm 191 327 \pm 156 2,322 \pm 987 80 \pm 34 4,067 \pm 1,848 113 \pm 40 38 \pm 8 4 \pm 4 1033 \pm 383 290 \pm 104 765 \pm 203 10,136 \pm 4371 227 \pm 62	Zileuton (3 μ mol/L) 236 \pm 96 115 \pm 41 1,167 \pm 577 37 \pm 20 1,995 \pm 1,061 36 \pm 14 20 \pm 7 7 \pm 7 746 \pm 381 228 \pm 90 564 \pm 88 8,473 \pm 2,992 172 \pm 27

Table S3 Effect of compound 2 on the lipid mediator profile of A23187-activated human blood.

Concentrations of lipid mediators analyzed by UPLC-MS/MS are given in pg/mL blood as mean \pm SEM, n = 3, n.d., not detectable (< 0.5 pg). 20-OH-LTB₄, 20-hydroxy-LTB₄; HEPE, hydroxy-eicosapentaenoic acid; (di)HETE, (di)hydroxy-eicosatetraenoic acid; HDHA, hydroxy-docosahexaenoic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

	Lipid mediators	Vehicle	Compound 2	Compound 2	Compound 2	Zileuton
			(0.3 µmol/L)	(3 µmol/L)	(30 µmol/L)	(3 µmol/L)
5-LOX	5-HEPE	116 ± 35	105 ± 32	91 ± 25	40 ± 8	42 ± 14
	5-HETE	$2{,}659 \pm 685$	$\textbf{2,601} \pm 584$	$2{,}217\pm435$	661 ± 190	515 ± 130
	LTB4 isomers	546 ± 248	424 ± 95	361 ± 89	127 ± 44	54 ± 10
	LTB ₄	$6{,}313\pm2$	$5{,}560 \pm 2{,}084$	$4,\!499 \pm 1697$	560 ± 366	207 ± 164
	5S,6R-diHETE	98 ± 33	97 ± 36	79 ± 26	16 ± 6	9 ± 3
COX	PGE ₂	877 ± 408	952 ± 476	887 ± 418	1 ± 472	706 ± 395
	PGD ₂	120 ± 56	135 ± 64	126 ± 55	162 ± 76	134 ± 90
	$PGF_{2\alpha}$	600 ± 289	596 ± 279	602 ± 294	739 ± 363	630 ± 423
	TXB ₂	$27,\!680 \pm 13,\!136$	26,424 ± 13,955	30,649 ± 15,827	25,354 ± 13,039	24,692 ± 13,119
12/15-LOX	17-HDHA	717 ± 203	698 ± 217	768 ± 214	598 ± 167	229 ± 22
	14-HDHA	9,190 ± 3,131	$8,\!912\pm3,\!173$	$9,\!077\pm3,\!105$	8030 ± 2834	$1{,}542\pm366$
	15-HEPE	172 ± 62	169 ± 71	164 ± 61	153 ± 57	65 ± 20
	12-HEPE	$2{,}913 \pm 1{,}180$	$2{,}799 \pm 1{,}403$	$2,\!807 \pm 1,\!291$	$\textbf{2,897} \pm \textbf{1,324}$	897 ± 388
	15-HETE	$3,750\pm790$	$\textbf{3,694} \pm \textbf{881}$	$3,\!762\pm734$	$\textbf{3,}\textbf{436} \pm \textbf{764}$	$1,765\pm353$
	12-HETE	$31,609 \pm 3,850$	$29,623 \pm 5,025$	$32,978 \pm 4,717$	$28,\!654\pm2,\!841$	$20,\!173\pm4417$
	7-HDHA	39 ± 15	41 ± 14	44 ± 16	33 ± 15	27 ± 10
	4-HDHA	63 ± 31	86 ± 35	79 ± 32	64 ± 35	76 ± 26
	5,15 di-HETE	69 ± 13	64 ± 10	67 ± 10	42 ± 9	20 ± 2
SPM	RvD5	6 ± 2	8 ± 2	7 ± 1	6 ± 2	2 ± 0
	RvE3	34 ± 23	38 ± 0	39 ± 1	44 ± 31	20 ± 6
Fatty acids	AA	$424,\!337 \pm 52,\!820$	$513{,}640 \pm 51{,}167$	$340,\!083 \pm 54,\!832$	$397,\!935 \pm 23,\!643$	$529{,}704 \pm 85{,}597$
	EPA	$68,\!231 \pm 20,\!988$	$75{,}093 \pm 16{,}682$	$53,\!637 \pm 13,\!559$	$50{,}745 \pm 5{,}157$	$67,\!085 \pm 10,\!737$
	DHA	$31,698 \pm 5,323$	$38,\!698 \pm 3,\!521$	$23,775 \pm 2,860$	$31,\!706\pm4,\!176$	$45,\!337 \pm 11,\!464$

Table S4 Effect of com	pound 2 on the lipi	id mediator profile of E.	<i>coli</i> -stimulated human blood.
------------------------	---------------------	---------------------------	--------------------------------------

Concentrations of lipid mediators analyzed by UPLC–MS/MS are given in pg/mL blood as mean \pm SEM, n = 4. HEPE, hydroxy-eicosapentaenoic acid; (di)HETE, (di)hydroxy-eicosatetraenoic acid; HDHA, hydroxy-docosahexaenoic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

	Lipid mediators	M1	Compound 2	Compound 2	M2	Compound 2	Compound 2
		vehicle	(0.3 µmol/L)	(3 µmol/L)	vehicle	(0.3 µmol/L)	(3 µmol/L)
5-LOX	5-HEPE	11 ± 4	5 ± 3	2 ± 1	103 ± 65	46 ± 13	20 ± 5
	5-HETE	36 ± 16	17 ± 7	10 ± 2	658 ± 449	282 ± 124	132 ± 44
	LTB4 isomers	8 ± 2	3 ± 1	2 ± 0	55 ± 31	25 ± 9	20 ± 10
	LTB_4	19 ± 3	16 ± 6	3 ± 0	58 ± 37	29 ± 13	21 ± 8
	5S,6R-diHETE	5 ± 1	3 ± 1	2 ± 1	41 ± 35	11 ± 7	4 ± 1
COX	PGE ₂	$2,\!334\pm888$	$\textbf{2,268} \pm \textbf{842}$	$1,785\pm558$	185 ± 70	219 ± 82	488 ± 172
	PGD ₂	24 ± 6	20 ± 5	26 ± 5	64 ± 28	70 ± 28	128 ± 52
	$PGF_{2\alpha}$	263 ± 115	227 ± 89	191 ± 43	145 ± 58	165 ± 66	210 ± 80
	TXB ₂	$2{,}799 \pm 440$	$2{,}503\pm366$	$2,\!821\pm503$	$16,293 \pm 7,141$	$16,\!040 \pm 6,\!659$	$11,502 \pm 4,470$
12/15-LOX	17-HDHA	19 ± 2	20 ± 1	30 ± 1	$1,038 \pm 879$	$2,\!982 \pm 2,\!032$	$4{,}691 \pm 1{,}694$
	14-HDHA	8 ± 4	7 ± 3	16 ± 9	200 ± 164	752 ± 468	$1,\!470\pm374$
	15-HEPE	4 ± 0	6 ± 1	10 ± 2	520 ± 450	$1,\!463\pm852$	$2{,}349 \pm 999$
	12-HEPE	4 ± 2	5 ± 3	5 ± 2	89 ± 76	249 ± 159	311 ± 142
	15-HETE	68 ± 10	87 ± 7	114 ± 9	$4,\!459\pm3,\!702$	$11,\!836 \pm 6,\!790$	$22,589 \pm 10,571$
	12-HETE	24 ± 8	29 ± 9	31 ± 9	350 ± 299	777 ± 459	$1,\!373\pm670$
	7-HDHA	7 ± 1	4 ± 2	6 ± 1	72 ± 45	123 ± 71	125 ± 35
	4-HDHA	7 ± 4	6 ± 3	7 ± 3	19 ± 5	20 ± 6	19 ± 5
	5,15-diHETE	31 ± 18	43 ± 7	9 ± 5	197 ± 140	388 ± 262	500 ± 344
SPM	PD1	n.d.	n.d.	n.d.	13 ± 11	42 ± 37	61 ± 40
	AT-PD1	n.d.	n.d.	n.d.	18 ± 16	55 ± 49	73 ± 46
	PDX	n.d.	n.d.	n.d.	2 ± 1	7 ± 5	14 ± 5
	RvD5	n.d.	n.d.	n.d.	159 ± 149	488 ± 414	598 ± 414
	MaR1	1 ± 0	n.d.	1 ± 0	6 ± 5	31 ± 22	58 ± 23
	RvE3	18 ± 1	16 ± 2	17 ± 1	28 ± 7	40 ± 18	74 ± 43
Fatty acids	AA	$10,\!197\pm3,\!150$	$32,\!298 \pm 27,\!652$	$34{,}503 \pm 28{,}783$	$79,\!482\pm33,\!388$	$64,\!172\pm23,\!650$	$67,772 \pm 28,023$
	EPA	$1{,}759\pm506$	$4,\!979 \pm 4,\!344$	$5{,}045 \pm 4{,}291$	$16{,}231\pm8{,}294$	$16{,}134\pm7{,}468$	$11,\!801 \pm 5,\!294$
	DHA	$2{,}197\pm625$	$6,\!497 \pm 5,\!152$	$7{,}482 \pm 6{,}001$	$19,\!427 \pm 14,\!305$	$19,499 \pm 14,221$	$15,678 \pm 10,296$

Table S5 Effect of compound 2 on the lipid mediator	profile of <i>E. coli</i> -stimulated M1 and M2 macrophages.

Concentrations of lipid mediators analyzed by UPLC–MS/MS are given in $pg/2 \times 10^6$ cells as mean \pm SEM, n = 3, n.d., not detectable (< 0.5 pg). HEPE, hydroxy-eicosapentaenoic acid; (di)HETE, (di)hydroxy-eicosatetraenoic acid; HDHA, hydroxy-docosahexaenoic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

	Lipid mediators	M1	Compound 2	Compound 2	M2	Compound 2	Compound 2
		vehicle	(0.3 µmol/L)	(3 µmol/L)	vehicle	(0.3 µmol/L)	(3 µmol/L)
5-LOX	5-HEPE	452 ± 96	193 ± 51	94 ± 8	515 ± 308	406 ± 181	179 ± 44
	5-HETE	$3,835\pm958$	$1,\!486\pm385$	333 ± 57	5707 ± 3607	$3{,}570 \pm 1{,}713$	$2{,}042\pm593$
	LTB4 isomers	355 ± 105	142 ± 34	36 ± 6	664 ± 374	524 ± 136	223 ± 36
	LTB_4	$1{,}206\pm316$	434 ± 121	37 ± 3	$1{,}624 \pm 1{,}011$	693 ± 316	301 ± 89
	5S,6R-diHETE	189 ± 90	51 ± 27	8 ± 2	240 ± 150	100 ± 59	42 ± 17
COX	PGE ₂	$2{,}718\pm648$	$3{,}925\pm908$	$4{,}055\pm944$	1073 ± 501	$1{,}234 \pm 498$	$2,\!885\pm998$
	PGD ₂	93 ± 13	110 ± 15	186 ± 28	276 ± 51	313 ± 48	677 ± 110
	$PGF_{2\alpha}$	$1{,}094 \pm 204$	$1{,}281 \pm 194$	$1{,}299 \pm 143$	655 ± 261	670 ± 194	957 ± 270
	TXB ₂	$21,\!837\pm1798$	$24,\!397 \pm 1,\!753$	$19,163 \pm 2,201$	$48,\!575 \pm 15,\!755$	$48,\!792 \pm 12,\!973$	$35{,}246 \pm 9{,}971$
12/15-LOX	17-HDHA	823 ± 102	787 ± 103	$1{,}240\pm72$	$25,\!340\pm2,\!360$	32,587 ± 7,358	$34,\!486\pm7,\!201$
	14-HDHA	446 ± 234	393 ± 167	635 ± 243	$\textbf{5,}\textbf{475} \pm \textbf{270}$	$7{,}298 \pm 1{,}444$	$8,674 \pm 1,782$
	15-HEPE	100 ± 19	112 ± 2	131 ± 16	$7{,}864 \pm 1{,}632$	$15,578 \pm 4,754$	$10{,}315\pm643$
	12-HEPE	224 ± 159	162 ± 50	295 ± 119	$1{,}572\pm252$	$2{,}909\pm581$	$1{,}687 \pm 232$
	15-HETE	$1{,}310\pm396$	$1,\!385\pm168$	$1{,}597 \pm 329$	$\textbf{70,086} \pm \textbf{10,744}$	$117,\!314 \pm 20,\!290$	$84{,}506\pm5{,}519$
	12-HETE	$1,\!412\pm1,\!076$	$2,051 \pm 1,236$	$3,\!199 \pm 1,\!547$	$13,\!557 \pm 2,\!704$	$18,\!108\pm1,\!178$	$16,\!147\pm2,\!646$
	7-HDHA	239 ± 59	115 ± 14	89 ± 9	513 ± 80	570 ± 95	590 ± 101
	4-HDHA	93 ± 14	92 ± 16	94 ± 13	97 ± 13	80 ± 19	91 ± 19
	5,15-diHETE	246 ± 150	63 ± 20	54 ± 29	$6{,}380 \pm 1{,}635$	$7{,}714 \pm 1{,}478$	$6{,}847 \pm 1{,}698$
SPM	PD1	14 ± 4	14 ± 1	17 ± 4	71 ± 20	114 ± 66	106 ± 31
	PDX	5 ± 0	4 ± 0	4 ± 1	88 ± 20	126 ± 40	166 ± 41
	RvD2	n.d.	n.d.	n.d.	49 ± 19	92 ± 67	75 ± 39
	RvD5	16 ± 3	9 ± 2	6 ± 0	2 ± 790	2 ± 1	2 ± 967
	MaR1	4 ± 1	6 ± 1	2 ± 1	319 ± 89	417 ± 118	444 ± 146
Fatty acids	AA	$140,\!934 \pm 25,\!617$	$121,\!829 \pm 14,\!902$	$100,344 \pm 15,784$	$163,\!429\pm56,\!176$	$155,\!166\pm50,\!390$	$146,\!874\pm45,\!143$
	EPA	$41,\!220\pm7,\!626$	$43,\!151 \pm 3,\!527$	$37,748 \pm 7,345$	$52,\!063 \pm 13,\!088$	$40,\!876\pm9,\!447$	$48,\!845 \pm 10,\!427$
	DHA	$105,\!163\pm17,\!328$	$125{,}609 \pm 10{,}283$	$97,\!478 \pm 14,\!163$	$67,\!446 \pm 6,\!404$	$59,757 \pm 2,036$	$62{,}539 \pm 1{,}086$

Table S6 Effect of compound 2 on the lipid mediator profile of *S. aureus*-stimulated M1 and M2 macrophages.

Concentrations of lipid mediators analyzed by UPLC-MS/MS are given in $pg/2 \times 10^6$ cells as mean \pm SEM, n = 3, n.d., not detectable (< 0.5 pg). The heatmap shows percentage changes upon administration of compound **2** relative to the vehicle control. HEPE, hydroxy-eicosapentaenoic acid; (di)HETE, (di)Hydroxy-eicosatetraenoic acid; HDHA, hydroxy-docosahexaenoic acid; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.