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WEB APPENDIX 1

1. Identification of outcome distributions under proxy representative

interventions when baseline covariates, time-varying exposures and

the outcome are measured

Here we review assumptions under which the function (1) of factual random variables

(L ≡ L0, AK , R, Y ) presented in the main text, for a choice of exposure at each time k =

0, . . . , K identifies the effect of proxy representative interventions in the study population,

that is the difference in the outcome mean had, on each day k, exposure been assigned

as a random draw from an intervention density f int(Ak|Ak−1, L0) selected as f(Ak|R =

r, Ak−1, L0) for r = 1 versus r = 0 with f(Ak|R = r, Ak−1, L0) the distribution of Ak in

the observational study among those with exposure history Ak−1, baseline covariates L0

and early BMI rebound status R = r. We allow that Ak is a vector of several modifiable

exposures at each k (see main text).

To understand this assignment mechanism concretely, we consider a very simplified

example. Suppose the population has only one level of L0 (e.g. L0 = 1), and suppose

a short intervention period with time-fixed exposure A0 taking 3 levels (A0 ∈ {1, 2, 3}).

Further, suppose the factual distribution (i.e. without intervention) of A0 in this study

population among those with proxy level R = 1 is f(a0|L0 = 1, R = 1) = P (A0 = a0|L =

1, R = 1) = 0.3, 0.5, and 0.2 for a0 = 1, a0 = 2, and a0 = 3 respectively. By contrast,

suppose the factual distribution of A0 in this study population among those with proxy

level R = 0 is f(a0|L0 = 1, R = 0) = P (A0 = a0|L = 1, R = 0) = 0.7, .2, and 0.1 for

a0 = 1, a0 = 2, and a0 = 3, respectively. Now suppose we enroll eligible individuals from

this study population in our target trial. To assign the value of A0 (either 1, 2 or 3) to

an eligible individual randomized to the “intervention 1” arm, we would draw a random

number from a multinomial distribution with probabilities 0.3, 0.5, and 0.2 for a0 = 1,
1
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a0 = 2, and a0 = 3 respectively (or roll a 3 sided die with these weights). Analogously,

to assign the value of A0 (either 1, 2 or 3) to an eligible individual randomized to the

“intervention 2” arm, we would draw a random number from a multinomial distribution

with probabilities 0.7, .2, and 0.1 for a0 = 1, a0 = 2, and a0 = 3 respectively (or roll a 3

sided die with these weights).

Let G be the set of all possible deterministic interventions g on Ak that may, at most,

depend on Ak−1, L0. Under a deterministic intervention, every individual in the study

population with the same values of Ak−1, L0 will be assigned the same values of exposure

Ak. Denote these values agk which may be a function of past exposure under g and baseline

covariates.

For each g ∈ G, let Y g be the outcome had, possibly contrary to fact, an individual in

this study population been assigned Ak at each k = 0, . . . , K according to the intervention

g and consider the following assumptions for each g:

(1) Consistency: If AK = agK then Y = Y g.

(2) Exchangeability: For k = 0, . . . , K

Y g
∐

Ak|Ak−1 = agk−1, L0

(3) Positivity: For k = 0, . . . , K

fAk−1,L0
(agk−1, l0) 6= 0 =⇒

fAk|,Ak−1,L0
(agk|a

g
k−1, l0) > 0.

Then let G ′ ⊆ G be the subset of all possible deterministic interventions g for which

the following condition would hold for all k:

-

-
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fAk−1,L0
(agk−1, l0) 6= 0 =⇒

f int(agk|a
g
k−1, l0) > 0.

That is, the subset under which positivity holds were we to replace the factual treatment

distribution at k conditional on past exposure and baseline covariates with the corresponding

intervention distribution in the positivity condition above.

Following [1], when these three assumptions hold for all g ∈ G ′, then the outcome mean

under this intervention rule is equal to

∑
aK

∑
l0

E[Y |AK = aK , L0 = l0]
K∏
j=0

f int(aj|aj−1, l0)f(l0) =

∑
aK

∑
l0

E[Y |AK = aK , L0 = l0]
K∏
j=0

f(aj|R = r, aj−1, l0)f(l0) =

∑
aK

∑
l0

E[Y |AK = aK , L0 = l0]f(ak|R = r, l0)f(l0),(1)

with A−1 ≡ 0 by convention. Importantly, these assumptions are completely agnostic

as to whether this intervention on Ak at all k = 0, . . . , K has any effect on early BMI

rebound status by the end of the intervention interval R in some or all individuals in

the population. As we can see, R plays no role in these assumptions other than the

choice of the intervention distribution, here dependent on features of the factual exposure

distribution in Project Viva, the observational study. Even had our data come, rather

than from an observational study like Project Viva, but instead from a study where

treatment was actually assigned according to this intervention, we could not guarantee

that this would result in all individuals having R = r (r = 1 or r = 0) nor is that

the goal. Therefore, the causal effects we consider are not generally interpretable as

effects of “early BMI rebound” because we only define Ak, k = 0, . . . , K and not R, as

“treatment” (“exposure”) and such effects are not the goal of the analysis. Of course
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these effects are dependent on the particular choice of Ak which we must articulate. In

later sections in the appendix, we consider weaker versions of the conditions above that

allow exchangeability to depend on other time-varying covariates besides past exposure.

As discussed in the main text, in addition to exposure, time-varying covariate changes

were not available within the exposure period of interest in our application given the

interval nature of measurement.
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2. Identification when only (L,R, Y ) are measured

As discussed in the main text, estimation of the function (1) requires measurement

of exposure AK . We now show that, when exposure is not measured but (L,R, Y ) are

measured, (1) can be estimated but under the additional assumption of proxy separation

given in the main text.

By the main text, ark is any value in the support of Ak under an intervention that assigns

Ak according to a proxy representative intervention characterized by f int(Aj|Aj−1, L0) =

f(Aj|R = r, Aj−1, L0). By this, the g-formula [1] in expression (1) is equivalent to

∑
arK

∑
l0

E[Y |AK = arK , L0 = l0]
K∏
j=0

f(arj |R = r, arj−1, l0)f(l0)

Under proxy separation and probability laws we can further rewrite (1) as

∑
l0

∑
arK

E[Y |AK = arK , R = r, L0 = l0]f(arK |R = r, l0)f(l0) =

∑
l0

∑
arK

∑
y

yf(y|arK , r, l0)f(arK |r, l0)f(l0) =

∑
l0

∑
arK

∑
y

yf(y|arK , r, l0)f(arK |r, l0)f(l0) =

∑
l0

∑
arK

∑
y

yf(y|arK , r, l0)f(arK |r, l0)f(l0) =

∑
l0

∑
arK

∑
y

yf(y, arK |r, l0)f(l0) =

∑
l0

∑
y

yf(y|r, l0)f(l0) =

∑
l0

E[Y |R = r, L0 = l]f(l0)(2)
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3. Relation to previous work

Our definition of a proxy representative intervention as an intervention that assigns AK

according to f(AK |R = r, L0) is related to previous definitions of a so-called representative

intervention, where the proxy is restricted to a particular coarsening of exposure. For

example for K = 0, and exposure A0 number of minutes of exercise per day and R an

indicator of exercising at least 30 minutes on that day [2, 3, 4, 5, 6]. In this case, the proxy

separation assumption holds by definition. Therefore, only exchangeability, positivity

and consistency with respect to Ak are required to identify effects of corresponding

representative interventions when exposure is unmeasured but the proxy is measured

(this is importantly not the case when exposure is time-varying and either the proxy is

time-varying or under weaker versions of exchangeability that require measures of baseline

and time-varying covariates as shown in [6] and as we discuss in later sections). Further,

in a trial that actually assigned exposure according to a representative intervention, it

is guaranteed that this intervention will control the value of R. By contrast, this is not

the case for a proxy representative intervention where any relation between exposure and

the proxy is an assumption made by the investigator whether in the context of a trial or

observational study. [5] also noted this case but limited explicit consideration to problems

where the proxy is still viewed as a “treatment”. Here we do not view the proxy as a

treatment but rather a measured variable that might be leveraged for identification of a

treatment effect when that treatment is difficult to measure.

Importantly, our definition of proxy separation requires no particular assumption on

the underlying causal structure between exposure and the proxy, including their temporal

order. For example, the simplified causal directed acyclic graphs (DAGs) in Figure 1

depicts a trivialized data generating assumption where, for added simplicity, L0 is taken as

constant (and therefore not depicted), a short intervention interval (K = 0) is considered

with A0 ≡ A and univariate and U is unmeasured. In Figure 1A, A causes R while in

Figure 1B A and R are only associated through U . However, both graphs in Figure 1 are

Web Figure 1

In Web Figure 1A,

Web Figure Web Figure 1 are
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consistent with the assumptions of proxy separation and exchangeability as defined above,

under the assumption that these graphs represent underlying nonparametric structural

equation models [7, 1, 8]. Notably, both graphs also make the assumption that R in fact

has no effect on the outcome but is only associated with the outcome through A, even

conditional on L0. This may be a reasonable assumption in many settings where the proxy

is a derived variable like BMI rebound, obesity status and other variables that have been

controversial with respect to the consistency assumption. In Figure 1A exchangeability

is unaffected by adding an arrow from R to Y , however, in Figure 1B, this arrow would

violate exchangeability.

Figures 2 and 3 depict more realistic settings allowing a higher dimensional Ak =

(A1k, A2k) and K = 1. Figure 2 is the same as Figure 1 in the main text. Figure 3

depicts an alternative scenario, similar to Figure 1B, where R is not a cause of Y and

A21 and A22 are only associated with R through a common cause (here U1).

In Web Figure 1A exchangeability

in Web Figure 1B, this arrow would

Web Figures 2 and 3

Web Figure 2 is the same as Web Figure 1 in the main text. Web Figure 3

similar to Web Figure 1B,
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A R Y

(a)

A R Y

U

(b)

Figure 1. Simplified assumptions on the data generating mechanism
for constant L0. Both figures are consistent with the proxy separation
assumption and exchangeability as defined in this appendix when exposure
is time-fixed (K = 0).

U0

L A11 A12 A21

U1

A22 R Y

Figure 2. A data generating scenario allowing multivariate time-varying
exposure. With all solid arrows present, exchangeability requires dashed
arrows absent. With all solid black arrows present, proxy separation may
fail by the presence of the red arrow.

Web Figure 1.

Web Figure 2.
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U0

L A11 A12 A21

U1

A22 R Y

Figure 3. An alternative data generating scenario that is not reasonable
for our application but is consistent with both the exchangeability and
proxy separation assumptions. In this case R, the proxy for treatment, is
not caused by treatments at time 2 (they are only associated through the
common cause U1) and also R is not a cause of the outcome. An investigator
drawing this graph would clearly have no interest in R as a treatment but
could leverage this treatment proxy to identify an effect on Y of a proxy
representative intervention on exposures unmeasured in the data set.

Web Figure 3.
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4. Measured time-varying exposure proxies and confounders

Consider a modified proxy representative intervention such that exposure is assigned

at each k = 0, . . . , K as a random draw from an intervention density f int(Ak|Lk, Ak−1)

selected as f(Ak|Rk = rk, Lk, Ak−1) where Rk is an exposure proxy in interval k and Lk

other covariates in that interval. This differs from the proxy representative interventions

considered above and in the main text in that the proxy changes by interval k (e.g. as

opposed to BMI rebound by the end of the intervention interval, define the proxy Rk

as an indicator of obesity in interval k) and also assignment depends on time-varying

covariate history (as opposed to only baseline covariates as above and in the main text).

Analogously consider the following weaker exchangeability condition, and corresponding

positivity and consistency conditions, for each g ∈ G where G is now the set of all possible

deterministic interventions g on Ak that may, at most, depend on Lk, Ak−1: For all

k = 0, . . . , K:

(1) Consistency: If Ak = agk then Lk+1 = L
g

k+1 with LK+1 ≡ Y and Lg
K+1 ≡ Y g

(2) Exchangeability: For all k = 0, . . . , K

Y g
∐

Ak|Lk, Ak−1 = agk−1

(3) Positivity:

fLk,Ak−1
(lk, a

g
k−1) 6= 0 =⇒

fAk|Lk,Ak−1
(agk|lk, a

g
k−1)

Again, following [1], when these three assumptions hold for the subset of all g ∈ G such

that positivity holds were we to replace the factual exposure distribution at k conditional

on Ak−1, Lk, with that under the chosen intervention rule f int(Ak|Ak−1, Lk) = f(Ak|Rk =
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rk, Ak−1, Lk), then the outcome mean under this intervention rule is equal to

(3)
∑
aK

∑
lk

E[Y |AK = aK , Lk = lk]
K∏
j=0

f int(aj|aj−1, lk)f(lk|ak−1, lk−1),

selecting f int(Aj|Aj−1, Lj) = f(Aj|R = r, Aj−1, Lj) and A−1 ≡ L−1 ≡ 0 by convention.

[6] considered these modified proxy representative interventions (which coincide with

those of the main text for time-fixed exposure, K = 0), when each Rk is selected as an

actual coarsening of Ak (e.g. for Ak minutes of exercise on day k, choose Rk an indicator

of exercising 30 minutes in that interval). In this case, an analogously modified proxy

separation assumption is guaranteed to hold, where ark is any value in the support of Ak

under this modified proxy representative intervention:

Modified proxy separation: Within each possibly observed covariate history Lk and each

exposure history consistent with intervention Ak−1 = ark−1, if Ak = ark then Rk = rk,

k = 0, . . . , K.

[6] showed that, given this modified proxy separation assumption, the g-formula (3)

indexed by this modified proxy representative intervention, which is a stochastic intervention

on a time-varying exposure, can be estimated with an inverse probability weighted algorithm

that is identical to what we would implement had we considered the proxy at each time

k as the actual exposure (even though conceptually it is not, for proxy representative

interventions). However, in this more general time-varying scenario, the exposure history

Ak−1 will “act” as past time-varying confounders in the algorithm (e.g. they are generally

required in the weight denominator). Therefore, modified proxy separation is not sufficient

to avoid the need to measure exposure in this general time-varying setting. We refer the

reader to [6] for details and proofs with related results discussed in [4].

To see this in a simple setting, suppose constant L0 and two time points (K = 1): By

ark any value in the support of Ak under this modified proxy representative intervention,
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(3) can be written as

∑
ar1,a

r
0,l1

E[Y |A1 = ar1, L1 = l1]f(ar1|R1 = r1, l1, a
r
0)f(l1|ar0)f(ar0|R0 = r0)

Under modified proxy separation and probability laws we can further rewrite (3) as

∑
ar1,a

r
0,l1

E[Y |ar1, R1 = r1, l1, a
r
0]f(ar1|R1 = r1, l1, a

r
0)f(l1|ar0)f(ar0|R0 = r0) =

∑
ar1,a

r
0,l1

∑
y

f(y|ar1, R1 = r1, l1, a
r
0)f(ar1|R1 = r1, l1, a

r
0)f(l1|ar0)f(ar0|R0 = r0) =

∑
ar0,l1

∑
y

f(y|R1 = r1, l1, a
r
0)f(l1|ar0)f(ar0|R0 = r0)(4)

We can see that the expression still depends on A0 by the last step. Additional

restrictive assumptions would need to be made to remove A0 from the expression, for

example, the strong assumption that f(y|R1 = r1, l1, a
r
0) = f(y|R1 = r1, l1, r0); that is,

the outcome distribution does not depend on past exposure A0 conditional on proxy and

covariate history.
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5. When distinctions between proxies and exposures are less clear:

more transparent analysis of interval cohorts with causal inference

goals

In our running example, by stating our question in terms of interventions on exercise

and diet, it is clear that the variable we have put in our estimation algorithm in the

role of exposure (early BMI rebound) is not the exposure and we must be relying on

additional assumptions - beyond the “usual” exchangeability, consistency and positivity

assumptions – to claim we have answered our question even without concerns of sampling

variability. However, this may need to be made more transparent in other settings.

For example, in many cohort studies, even when time-updated measurements are

available all changes in exposure are not possible to measure. A cohort study that contains

a measure of minutes of exercise per day may have a single self-reported measure at the

end of a long interval (possibly years). While we might understand this as a form of

measurement error, we might alternatively view the single exposure measure in interval

k as itself an exposure proxy, “acting” as exposure in the algorithm. Counterfactual

outcomes and interventions however, may be specified more precisely in terms of intervention

on exposure at a finer interval than the measurement interval. Reasoning about identification

might then proceed as in this appendix and in the main text.



Web Appendix 2: Description of steps in TMLE, parametric g-computation and inverse probability 

weighted estimators. 

 

For our primary analysis, we applied TMLE, an approach which has been described in detail 

elsewhere [9,10]. The function ∑ E[Y|R=r, L=l, δ=0] f(l) 
l  can be estimated using the following 

implementation of this approach implemented in the R package tmle.3 For r=1 and r=0: 

 

1. Obtain an estimate Q̅
n

0
 (R=r, L) of E(Y|R=r, L, δ=0); that is, the outcome regression for each level 

of baseline covariates in the sample L=Li, i=1,…,n. 

 

2. Obtain estimates Pn(R=r|L) and Pn(δ=0|R=r,L) of the probability of having rebound status r for 

covariate level L and of being uncensored among those with status r covariate level L 

respectively, for each L=Li, i=1,…,n. 

 

3. Fit a logistic regression model with dependent variable Y, independent variable  

Hr= 
I(R=r) I(δ=0)

Pn(R=r|L) Pn(δ=0|R=r, L)
 based on the estimates in step 2 and offset term logit Q̅

n

0
 (R=r, L) from 

step 1 to obtain  εr̂ , the estimated coefficient on Hr  in this model. 

 

4. Compute for each L=Li, logit Q̅
n

*
 (R=r, L) = logit Q̅̅̅

n

0
 (R=r, L) + εr̂Hr , with  Q̅̅̅

n

0
 (R=r, L)  from 

Step 1 and Hr and εr̂ , from step 3. 

 

The final estimate of ∑ E[Y|R=r, L=l, δ=0] f(l) 
l  is computed as a sum over i=1 to n of: Q̅

n

*
 (R=1, 

Li) - Q̅n

*
 (R=0, Li) from step 4 plugging in r=1 and r=0, respectively. The use of a logistic link in Step 

4 ensures estimates remain bounded within the parameter space [11].  

 

A parametric g-computation estimator of ∑ E[Y|R=r, L=l, δ=0] f(l) 
l  requires only step 1 of the 

TMLE algorithm above. This approach requires that E(Y|R=r, L, δ=0) is consistently estimated. An 

IPW estimator requires only step 2 of the TMLE algorithm above and can be computed as the 

estimated coefficient of a weighted linear regression with dependent variable Y, independent variable 

R and weights w = 
R × (1-δ)

P(R=1|L) P(δ|R=1,L)
 + 

(1-R)×(1-δ)

P(R=0|L) P(δ|R=0,L)
. This approach requires that P(R=r|L) and 

P(δ=0|R=r, L) are consistently estimated. Alternatively, stabilized weights with generally lower 

variability can be used that multiply w by estimates of P(R=r)*P(δ=0|R=r) for an individual with 

R=r. We implemented these methods using both standard parametric models and SuperLearner [12] 

for nuisance parameter estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Appendix 3: Stata code for G-computation 

 

***Y = observed outcome 

***A = R, the proxy (change of notation from main text) 

***L1,L2,L3 etc = list of covariates 

 

**Perform regression with main effects 

glm Y A L1 L2 L3 L4 L5, fam(gaussian) 

 

gen aa=A 

replace A = 1 

predict double Y1, mu 

replace A = aa 

drop aa 

 

gen aa=A 

replace A = 0 

predict double Y0, mu 

drop aa 

 

gen ATE = Y1 - Y0 

sum ATE 

 

**Generate 95% confidence intervals for 1000 bootstrapped samples of ATE 

set matsize 1000 

matrix t1 = J(1000, 1, .)  

forvalues i=1/1000 { 

bsample n 

glm Y A L1 L2 L3 L4 L5, fam(gaussian) 

gen aa=A 

replace A = 1 

predict double Y1, mu 

replace A = 0 

predict double Y0, mu 

replace A = aa 

drop aa 

gen ATE = Y1 - Y0 

sum ATE 

matrix t1[`i', 1] = r(mean) 

} 

svmat t11 

centile t11, centile(2.5 97.5) 

 

Note: n in “bsample” represents number of complete observations in the sample 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Appendix 4: Stata code for stabilized inversed probability weighting 

 

***Y = observed outcome 

***A = R, the proxy (change of notation from main text) 

***L1,L2,L3 etc = list of covariates 

 

**Perform regression to estimate P(A = 1) 

logit A 

predict pA, pr 

gen pn_A = (pA*A) + ((1-pA)*(1-A)) 

 

**Perform regression to estimate P(A = 1| L=L1,L2,L3) 

 

logit A L1 L2 L3 L4 L5 

predict pA_L, pr 

gen pd_A = (pA_L*A) + ((1-pA_L)*(1-A)) 

 

**Calculate stabilized weights 

gen w_A = pn_A / pd_A 

 

***Calculating censoring weights for missing outcomes (C) 

**Generate missing outcome indicator 

gen C=. 

replace C=0 if Y==. 

replace C=1 if Y!=. 

 

**Perform regression to estimate probability of having an observed outcome P(C=1 | A) 

logit C A 

predict p_C_A, pr 

gen pn_C = (p_C_A*C) + ((1-p_C_A)*(1-C)) 

 

**Perform regression to estimate P(C | A,L) 

logit C A L1 L2 L3 L4 L5 

predict p_C_A_L, pr 

gen pd_C = (p_C_A_L*C) + ((1-p_C_A_L)*(1-C)) 

 

**Calculate stabilized weights for missing outcome 

gen w_C = pn_C / pd_C 

 

**Calculate stabilized weights for A and missing outcome 

gen w = w_A * w_C 

 

**Calculate weighted regression using only those with C=1 

regress Y A [pw=w] 

 

**Generate 95% confidence intervals for 1000 bootstrapped samples  

set matsize 1000 

matrix t2 = J(1000, 1, .)  

forvalues i=1/1000 { 

bsample n 

logit A 

predict pA, pr 

gen pn_A = (pA*A) + ((1-pA)*(1-A)) 

logit A L1 L2 L3 L4 L5 

predict pA_L, pr 



 
 

 
 

gen pd_A = (pA_L*A) + ((1-pA_L)*(1-A)) 

gen w_A = pn_A / pd_A 

gen C=. 

replace C=0 if Y==. 

replace C=1 if Y!=. 

logit C A 

predict p_C_A, pr 

gen pn_C = (p_C_A*C) + ((1-p_C_A)*(1-C)) 

logit C A L1 L2 L3 L4 L5 

predict p_C_A_L, pr 

gen pd_C = (p_C_A_L*C) + ((1-p_C_A_L)*(1-C)) 

gen w_C = pn_C / pd_C 

gen w = w_A * w_C 

regress Y A [pw=w] 

matrix t2[`i', 1] = _b[A] 

} 

svmat t21 

centile t21, centile(2.5 97.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Appendix 5: R code for TMLE  

 

##Y = observed outcome 

##A = R, the proxy (change of notation from main text) 

##L1,L2,L3 etc = list of covariates 

 

##Load libraries 

library(tmle) 

 

## TMLE  

data <- read.csv(file="insert working directory for data file here",header=TRUE) 

tmleSL <- tmle(Y=data$Y, A=data$A, W=data[,2:13], Delta = data$C, Qform = 

Y~A+L1+L2+L3+L4+L5, gform = A~L1+L2+L3+L4+L5, g.Deltaform = Delta ~ 

A+L1+L2+L3+L4+L5) 

tmle.SL <- tmleSL[["psi"]][["A"]] 

 

Note: bold and italicized code is dependent on the covariates that were used for adjustment in the 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Appendix 6: R code for G-computation with SuperLearner 

 

##Load libraries 

library(SuperLearner) 

library(gam) 

library(biglasso) 

library(bartMachine) 

require(rJava) 

 

##Specify algorithms for SuperLearner libraries 

SL.library1 <- c("SL.glm", "SL.step","SL.glm.interaction") 

SL.library2 <- c("SL.glm", "SL.step","SL.glm.interaction", "SL.bartMachine", "SL.biglasso", 

"SL.gam") 

 

### G-computation + SuperLearner (parametric algorithms only) 

data <- subset(data,(!is.na(data$Y))) 

newData <- rbind(cbind(data[,2:13], A=1), cbind(data[,2:13], A=0)) 

SL.fit <- SuperLearner(Y=data$Y, X=data[,2:14], SL.library=SL.library1, family="gaussian", 

method="method.NNLS", newX=newData, verbose=TRUE) 

data$Y1.pred <- SL.fit$SL.predict[1:564] 

data$Y0.pred <- SL.fit$SL.predict[565:1128] 

gcomp.ATE.SL <- data$Y1.pred - data$Y0.pred 

gcomp.SL <- mean(gcomp.ATE.SL) 

 

### G-computation + SuperLearner (parametric + non-parametric algorithms) 

data <- subset(data,(!is.na(data$Y))) 

newData <- rbind(cbind(data[,2:13], A=1), cbind(data[,2:13], A=0)) 

SL.fit <- SuperLearner(Y=data$Y, X=data[,2:14], SL.library=SL.library2, family="gaussian", 

method="method.NNLS", newX=newData, verbose=TRUE) 

data$Y1.pred <- SL.fit$SL.predict[1:564] 

data$Y0.pred <- SL.fit$SL.predict[565:1128] 

gcomp.ATE.SL <- data$Y1.pred - data$Y0.pred 

gcomp.SL <- mean(gcomp.ATE.SL) 

 

Note: bold and italicized code is dependent on total number of observations in the sample, and 

covariates used for adjustment in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Appendix 7: R code for IPW with SuperLearner  

 

##Load libraries 

library(SuperLearner) 

library(gam) 

library(biglasso) 

library(bartMachine) 

require(rJava) 

 

##Specify algorithms for SuperLearner libraries 

SL.library1 <- c("SL.glm", "SL.step","SL.glm.interaction") 

SL.library2 <- c("SL.glm", "SL.step","SL.glm.interaction", "SL.bartMachine", "SL.biglasso", 

"SL.gam") 

 

## IPW + SuperLearner (parametric algorithms only) 

data <- read.csv(file="insert working directory for data file here",header=TRUE) 

gA <- glm(A ~ 1 , family = binomial, data = data) 

pA <- predict(gA, type = "response") 

pA_num <- (pA*data$A) + ((1-pA)*(1-data$A)) 

SL.gA <- SuperLearner(Y=data[,14], X=data[,2:13], SL.library=SL.library1, family="binomial", 

method="method.NNLS", verbose=TRUE) 

p_SL.gA <- SL.gA$SL.predict 

pA_denom <- (p_SL.gA*data$A) + ((1-p_SL.gA)*(1-data$A)) 

w_A <- pA_num / pA_denom 

g_C <- glm(C ~ A , family = binomial, data = data) 

p_C <- predict(g_C, type = "response") 

p.C_num <- (p_C*data$C) + ((1-p_C)*(1-data$C)) 

SL.g_C <- SuperLearner(Y=data[,16], X=data[,2:14], SL.library=SL.library1, family="binomial", 

method="method.NNLS", verbose=TRUE) 

p_SL.g_C <- SL.g_C$SL.predict 

p.C_denom <- (p_SL.g_C*data$C) + ((1-p_SL.g_C)*(1-data$C)) 

w_C <- p.C_num / p.C_denom 

w <- w_A*w_C 

ipw.ATE.SL <- glm(Y ~ A, family = gaussian, data=data, weights = w) 

 

## IPW + SuperLearner (parametric + non-parametric algorithms) 

data <- read.csv(file="insert working directory for data file here",header=TRUE) 

gA <- glm(A ~ 1 , family = binomial, data = data) 

pA <- predict(gA, type = "response") 

pA_num <- (pA*data$A) + ((1-pA)*(1-data$A)) 

SL.gA <- SuperLearner(Y=data[,14], X=data[,2:13], SL.library=SL.library2, family="binomial", 

method="method.NNLS", verbose=TRUE) 

p_SL.gA <- SL.gA$SL.predict 

pA_denom <- (p_SL.gA*data$A) + ((1-p_SL.gA)*(1-data$A)) 

w_A <- pA_num / pA_denom 

g_C <- glm(C ~ A , family = binomial, data = data) 

p_C <- predict(g_C, type = "response") 

p.C_num <- (p_C*data$C) + ((1-p_C)*(1-data$C)) 

SL.g_delta <- SuperLearner(Y=data[,16], X=data[,2:14], SL.library=SL.library2, 

family="binomial", method="method.NNLS", verbose=TRUE) 

p_SL.g_C <- SL.g_C$SL.predict 

p.C_denom <- (p_SL.g_C*data$C) + ((1-p_SL.g_C)*(1-data$C)) 

w_C <- p.C_num / p.C_denom 

w <- w_A*w_C 

ipw.ATE.SL <- glm(Y ~ A, family = gaussian, data=data, weights = w) 



 
 

 
 

Web Appendix 8: R code for TMLE with SuperLearner  

 

##Load libraries 

library(tmle) 

library(SuperLearner) 

library(gam) 

library(biglasso) 

library(bartMachine) 

require(rJava) 

 

##Specify algorithms for SuperLearner libraries 

SL.library1 <- c("SL.glm", "SL.step","SL.glm.interaction") 

SL.library2 <- c("SL.glm", "SL.step","SL.glm.interaction", "SL.bartMachine", "SL.biglasso", 

"SL.gam") 

 

## TMLE + SuperLearner (parametric algorithms only) 

data <- read.csv(file="insert working directory for data file here",header=TRUE) 

tmleSL <- tmle(Y=data$Y, A=data$A, W=data[,2:13], Delta = data$C, Q.SL.library = SL.library1, 

g.SL.library = SL.library1) 

tmle.SL <- tmleSL[["psi"]][["A"]] 

 

## TMLE + SuperLearner (parametric + non-parametric algorithms) 

data <- read.csv(file="insert working directory for data file here",header=TRUE) 

tmleSL <- tmle(Y=data$Y, A=data$A, W=data[,2:13], Delta = data$C, Q.SL.library = SL.library2, 

g.SL.library = SL.library2) 

tmle.SL <- tmleSL[["psi"]][["A"]] 

 

Note: bold and italicized code is dependent on the covariates that were used for adjustment in the 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Table 1: Characteristics of children included and excluded from the analytic cohort. 

Maternal factors 

Excluded 

n=353 

Included 

n=649 

Pre-pregnancy BMI (kg/m2) 24.1 (5.1)a 24.8 (5.1) 

College education 73a 71 

Smoking history   

 Never 69 72 

 Smoked before pregnancy 20 21 

 Smoked during pregnancy 12 7 

Gestational weight gain (kg) 15.8 (5.2) 15.4 (5.5) 

Abnormal glucose tolerance  

(IH, GIGT, GDM) 
16 17 

Pregnancy hypertension  

(GH, PE, CH) 
12 10 

Paternal BMI (kg/m2) 26.0 (3.2) 26.5 (4.0) 

Paternal college education 69 66 

Child factors   

Birth weight-for-gestational-age 

z-score (SD units) 
0.20 (0.97) 0.23 (0.94) 

Gestational age at delivery (weeks) 39.6 (1.7) 39.5 (1.6) 

No breastfeeding initiation 9 10 

Male sex 57 52 

White race/ethnicity 73 68 
a Mean (SD) or %. 

BMI: body mass index; IH: isolated hyperglycemia; GIGT: gestational impaired glucose tolerance; GDM: 

gestational diabetes mellitus; GH: gestational hypertension; PE: pre-eclampsia; CH: chronic hypertension; SD: 

standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Web Table 2: Distribution of stabilized weights according to different methods for nuisance 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Covariates L include maternal smoking status, education level, BMI, paternal education level, paternal BMI, 

gestational weight gain (GWG), birth weight-for-gestational-age, breastfeeding initiation, child sex, 

race/ethnicity and BMI in early childhood. 
b Parametric model with no interaction terms for nuisance parameters. 
c SuperLearner with prediction algorithms for generalized linear models, interaction terms and stepwise 

modeling for nuisance parameters. 
d SuperLearner with prediction algorithms for generalized linear models, interaction terms, stepwise modeling, 

penalized regression models, Bayesian additive regression trees and generalized additive models for nuisance 

parameters. 
e Covariates L include maternal smoking status, education level, BMI, pregnancy hypertension, total GWG, birth 

weight-for-gestational-age, gestational age, child race/ethnicity and BMI in early childhood. 
f Covariates L include maternal smoking status, education level, BMI, glucose tolerance, paternal education 

level, paternal BMI, child sex, race/ethnicity and BMI in early childhood. 
g Covariates L include maternal smoking status, education level, BMI, glucose tolerance, paternal education 

level, paternal BMI, child race/ethnicity and BMI in early childhood. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean Median Min, Max 

Fat-mass indexa    

 Parametric modelb 1.00 0.91 0.27, 2.97 

 SuperLearner v1c 0.99 0.92 0.27, 2.94 

 SuperLearner v2d 0.99 0.92 0.31, 3.01 

Blood pressure z-scoree    

 Parametric model 1.00 0.94 0.34, 2.70 

 SuperLearner v1 1.00 0.93 0.34, 2.56 

 SuperLearner v2 0.99 0.95 0.43, 2.26 

HOMA-IRf    

 Parametric model 1.00 0.92 0.35, 3.59 

 SuperLearner v1 1.00 0.93 0.34, 3.62 

 SuperLearner v2 0.98 0.92 0.41, 3.16 

Metabolic risk scoreg    

 Parametric model 1.00 0.93 0.39, 3.07 

 SuperLearner v1 0.99 0.93 0.36, 2.71 

 SuperLearner v2 0.98 0.93 0.44, 2.46 



 
 

 
 

Web Table 3: Sensitivity analysis of effect estimates of proxy representative interventions indexed by R=1 versus R=0. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Fat-mass (kg) / height (m)2 

b Adjusted for maternal smoking status, education level, BMI, paternal education level, paternal BMI, gestational weight gain (GWG), birth weight-for-gestational-age, breastfeeding initiation, 

child sex, race/ethnicity and BMI in early childhood. 
c Adjusted for maternal smoking status, education level, BMI, pregnancy hypertension, total GWG, birth weight-for-gestational-age, gestational age, child race/ethnicity and BMI in early 

childhood. 
d Adjusted for maternal smoking status, education level, BMI, glucose tolerance, paternal education level, paternal BMI, child sex, race/ethnicity and BMI in early childhood. 
e Adjusted for maternal smoking status, education level, BMI, glucose tolerance, paternal education level, paternal BMI, child race/ethnicity and BMI in early childhood. 
f  Parametric model with no interaction terms for nuisance parameters. 
g Sensitivity analysis where individuals were censored upon missing R, with weights incorporating these censoring weights as a function of L. 
h SuperLearner with prediction algorithms for generalized linear models, interaction terms and stepwise modeling for nuisance parameters. 
i SuperLearner with prediction algorithms for generalized linear models, interaction terms, stepwise modeling, penalized regression models, Bayesian additive regression trees and generalized 

additive models for nuisance parameters. 

Estimation method 

Fat-mass indexa,b 

(kg/m2) 

N = 500 

SBP z-scorec 

(SD units) 

N = 498 

DBP z-scorec 

(SD units) 

N = 498 

HOMA-IRd 

(units) 

N = 306 

Metabolic risk scoree 

(SD units) 

N = 302 

Effect 

estimate 
95% CI 

Effect 

estimate 
95% CI 

Effect 

estimate 
95% CI 

Effect 

estimate 
95% CI 

Effect 

estimate 
95% CI 

Parametric modelf           

 Main IPW finding -1.34 -1.88, -0.84 0.06 -0.11, 0.22 0.09 -0.04, 0.22 -0.09 -0.23, 0.05 -0.06 -0.17, 0.05 

 Sensitivity analysisg -1.31 -1.88, -0.77 0.07 -0.10, 0.23 0.09 -0.03, 0.22 -0.09 -0.24, 0.05 -0.06 -0.16, 0.04 

SuperLearner v1h           

 Main IPW finding -1.43 -1.75, -0.81 0.07 -0.08, 0.23 0.08 -0.05, 0.20 -0.09 -0.20, 0.06 -0.06 -0.14, 0.06 

 Sensitivity analysisg -1.43 -1.98, -0.88 0.07 -0.09, 0.22 0.08 -0.04, 0.21 -0.10 -0.23, 0.04 -0.06 -0.16, 0.04 

SuperLearner v2i           

 Main IPW finding -1.45 -1.79, -0.86 0.07 -0.08, 0.24 0.09 -0.04, 0.20 -0.09 -0.21, 0.05 -0.06 -0.15, 0.04 

 Sensitivity analysisg -1.43 -1.99, -0.89 0.07 -0.08, 0.22 0.08 -0.04, 0.20 -0.09 -0.23, 0.05 -0.06 -0.16, 0.03 
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