
Appendix II 
Role of metallic particles and ions in ALTR/ARMD 

It is important to briefly discuss here the dual role of metallic ions and particles in the onset and 
progression of the ALTR/ARMD reaction in the periprosthetic soft tissue and bone, which is also one of 
the most interesting topics of research regarding the occurrence of ALTR/ARMD associated with metallic 
wear debris generated at the bearing surface and/or modular junctions by various mechanisms.  Recent, 
comprehensive reviews of the literature have provided valuable hypotheses of cell damage and 
toxicological aspects related to ALTR/ARMD and suggested lines of further research in this important 
area of interaction between metallic nanoparticulate wear debris and host [1-3]. The local adverse 
effects of metallic ions/particles can be summarized in three main categories: (a) macrophage toxicity 
with formation of oxidative stress and cell death; (b) lymphocyte-dominant reaction associated or not 
with transmural tissue necrosis and myotoxicity; (c) stimulation of macrophages leading to 
periprosthetic bone invasion with a variable degree of osteolysis possibly leading to aseptic loosening of 
implant components.  The early literature on ALTR/ARMD focused on the MoM bearing surface of 
second generation HRA and THA and the differences in wear debris were mainly attributed to the 
bioreactivity of CoCr metallic nanoparticles and generation of free metallic ions interacting with synovial 
fluid and/or intracellular proteins forming organometallic complexes of undetermined and untested 
immunogenicity [4].  Around 2011, the attention shifted to the corrosion particles generated at the 
head/neck modular junction of MoM THA with MAS and the CoCr DMN/stem [5-8].   
 
Although the role of size, composition, oxidative stability, and dose of the particles with the addition of 
more subtle elements such the composition of absorbed proteins has been considered fundamental in 
the biology of the cell reaction [9], the prevalent hypothesis of the onset of the lymphocytic dominant 
reaction is centered on the role of cobalt ions with quantitative correlation of the Co and Cr ion level in 
blood, synovial fluid, and periprosthetic soft tissue [10-12] with host response by the interplay of innate 
and adaptive immunity [13].  There is a general consensus in the literature that the presence of Co rich 
particles and/or Co ions are important for the development some aspects of the ALTR/ARMD: (a) it is a 
relevant agent in the development of ALTR/ARMD [14] with the potential to activate TLR4 on local 
immune cells similar to the response to bacterial endotoxin [15], (b) it generates reactive oxidase 
species (ROS) with subsequent oxidative stress of the macrophages and their death [16] and possibly 
affecting T-cell activation as shown in vitro [17]. A recent study has shown generation of ROS after 
exposure to Co ions and not to metallic nanoparticles in vitro [18]: however, experimental conditions 
may not reflect the complexity of the factors in vivo, especially if different wear particles are generated 
at MoM bearing surface and metallic junctions and interact with the joint fluid before being 
phagocytized by macrophages.  
 
The role of soluble ions has been favored over particulate cobalt-alloy implant debris for the release of 
crucial cytokines for ALTR/ARMD [19] in spite of several reports showing lack of correlation between 
pseudotumors and metallic ion concentrations or Co to Cr ratio [20-22]. This indicates the important 
role of the variability in the chemical speciation of the particles released from different arthroplasty 
implants. It needs to be noted that the predominantly lymphocytic type of reaction with transmural soft 
tissue necrosis was not described before the use of second-generation MoM HRA and THA implants and 
Non-MoM THA with CoCr DMN, even in cases of catastrophic accumulation of abrasion metallic wear 
debris and very high blood and synovial fluid concentration of Co and less of Cr ions with systemic 
toxicity. Therefore, it seems reasonable to assume that metallic debris generated by various corrosion 



mechanisms is necessary for this type of ALTR/ARMD and could also play a role in the occurrence of 
macrophage-mediated osteolysis with aseptic loosening of the implant components. 
 
More recently, cohorts of patients implanted with a model of non-MoM THA with CoCr DMN and TMZF 
stem have shown a high prevalence of a lymphocytic-dominant reaction with soft tissue necrosis and 
slightly increased levels of serum Co (mean 5.4 and 8.6 μg/L) and Cr ions (mean 2.1 and 1.8 μg/L) [23, 
24] with a variable loss of material from the neck piece taper junction [25], also documented 
radiologically [26] and histologically [27, 28].  This implant generated corrosion metallic wear only at the 
neck/stem modular junction without any additional wear from the bearing surface [29].  Particle wear 
analysis has shown aggregates of nanosize corrosion particles and correlation between complexity of 
particle composition and degree of synovial macrophage and lymphocytic inflammation in MoM HRA, 
MoM LHTHA w/wo CoCr MAS, and non-MoM THA with CoCr DMN and TMZF stem [29].  These data 
point towards an unprecedented occurrence of particle-related toxicity and immunogenicity in the 
cohorts of patients implanted with this configuration, regardless of patients’ sex and age.  The 
importance of the metal particles over the ions is also corroborated, although to a lesser extent, by the 
toxicity/immunogenicity of the corrosion particle aggregates generated at the head/neck junction of 
MoM LHTHA with or without CoCrMAS and non-MoM THA with metallic heads and various metallic neck 
tapers [30], and total knee implants with modular femoral component [31, 32].   
 
Serum protein adsorption can vary according to particle physical and chemical features [33] and studies 
are needed to elucidate how metallic wear particles/ions generated by various types of corrosion exhibit 
a higher degree of local toxicity and immunogenicity than conventional metallic particles. Studies on the 
protein corona coating the nanoparticles and nanoparticle aggregates could shed light on pathways for 
the different occurrence of the lymphocytic dominant ALTR/ARMD [34-38] as well as the 
characterization of wear particles and metalloproteins in joint synovial fluid by different methods [39, 
40]. Different corrosion modes dictated by different metal alloy microstructure can be important in the 
different immunogenicity/toxicity of wear particles of similar size and metal composition [41]. This 
tribological analysis might also predict which type of wear particles might be released in vivo and 
possibly their effect with pre-marketing studies performed with the aid of bioreactors [42].  
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