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Supplementary Methods 

Exome sequencing and variant filtering 

Exome sequencing of the RMS samples was performed at the Human Genome Sequencing Center 

(HGSC) at Baylor College of Medicine. Specifically, genomic DNA samples underwent exome capture using 

HGSC VCRome2.1 (35Mb covering ~24K genes; Roche) and were then sequenced on the Illumina NovaSeq 

platform with ~100X coverage. Alignment was performed using BWA-MEM (version 0.7.15-r1140) (1) against 

the human hs37d5 assembly, followed by Base Score Recalibration and Indel Realignment using GATK (version 

3.4-0) (2). Variant calling was performed using xAtlas (version 0.2.1) (3) to generate gvcf files for merging 

different sets of data. We did not call larger deletions in this study. Samples from the ARIC and VIVA cohorts 

have been sequenced at the HGSC on the same platform and described previously (4,5). Of note, both studies 

have used similar exome capture reagent (VCrome2.1) and were subjected to the same analytical pipelines as 

the RMS cohort.  

Next, we performed joint genotyping using GLnexus (v1.1.3) (6) to combine samples from the three 

datasets (RMS patients, ARIC controls, and VIVA controls) to increase consistency of variant calling. A series of 

quality control (QC) measures were then employed. First, for each variant in each sample, we assigned a 

missing genotype if the variant fulfilled one of the following criteria: read depth less than 15; quality score less 

than 15; allelic ratio less than 0.25 or greater than 0.75; or non-PASS variants from xAtlas variant call results. 

We then removed the variants with a genotyping rate less than 85% within each dataset. These QC measures 

were performed independently for single nucleotide variants (SNVs) and insertion/deletions (INDELs). For all 

the pathogenic variants found in RMS patients, we manually reviewed each of them in IGV (V2.3) (7) to 

validate the variant. In addition, we performed sample-wise QC by removing those samples with a missing 

genotyping rate >10%. We also removed samples with a heterozygosity rate >3 standard deviations to 
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eliminate potential sample contamination. For each set of the cohorts, we calculated individual-wise identity 

by descent (IBD) using PLINK (v1.90b2t) (8) and kept unrelated samples with IBD <0.1 via PRIMUS (v1.9.0) (9). 

None of the RMS samples were related based on the above criteria. Genetic ancestry of each individual was 

determined using ADMIXTURE (v1.3.0) (10). After filtering, we included 615 RMS patients (99.7% of variants > 

30X depth), 9,663 controls from ARIC (97.8% of variants > 30X depth), and 300 controls from VIVA (99.0% of 

variants > 30X depth) in the final analyses. 

 

Curation of cancer-predisposition genes (CPGs) 

We pre-curated a set of autosomal dominant CPGs (n = 24) from cancer-susceptibility syndromes that 

have specifically been implicated in RMS predisposition including Li-Fraumeni (11), neurofibromatosis type 1 

(12,13), Costello (14,15), DICER1 (16), Gorlin (17), Noonan (14), Cardiofaciocutaneous (14), constitutional 

(biallelic) mismatch repair deficiency (18), Beckwith-Wiedemann (19), and Rubinstein-Taybi (20). Notably, 21 

of these 24 RMS-associated CPGs were included in the assessment by Zhang et al. (21) for the prevalence of 

germline pathogenic variants in other cancers. We also included a set of additional autosomal dominant CPGs 

(n = 39) from the report by Zhang et al. (21). 

We also conducted a separate analysis to evaluate the frequency of pathogenic variants in autosomal 

recessive genes associated with sarcomas. We searched the “Online Mendelian Inheritance in Man” catalog 

using the search terms “rhabdomyosarcoma” and “sarcoma” to identify genes implicated in autosomal 

recessive disorders associated with sarcomas and selected the seven following genes: RECQL2, RECQL4, 

BUB1B, NBN, CEP57, TRIP13, and BLM. 
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Supplementary Tables 

Supplementary Table 1. Epidemiological features of cases and controls used in this study 

    Controls   
RMS cases 

    ARIC VIVA Total  

Number of samples 9,663 300 9,963   615 

Sex 
Female 5,417 (56.1%) 163 (54.3%) 5,580 (56.0%)  243 (39.5%) 
Male 4,246 (43.9%) 137 (45.7%) 4,383 (44.0%)  372 (60.5%) 

Population 

European American 7,122 (73.7%) 0 7,122 (71.5%)   405 (65.9%) 
African American 2,541 (26.3%) 0 2,541 (25.5%)   78 (12.7%) 

Hispanic 0 300 (100%) 300 (3.0%)   96 (15.6%) 
East Asian 0 0 0   28 (4.6%) 

South Asian 0 0 0   8 (1.3%) 

Age* 
(year) 

0 - 10 0 127 (42.3%) 127 (1.3%)  404 (65.7%) 

10- 20 0 146 (48.7%) 146 (1.5%)  198 (32.2%) 

20 - 30 0 0 0  13 (2.1%) 

30 - 40 0 0 0  0 

40 - 50 1,979 (20.5%) 0 1,979 (19.9%)  0 

50 - 60 2,986 (30.9%) 0 2,986 (30.0%)  0 

> 60 1,114 (11.5%) 0 1,114 (11.1%)  0 
NA 3,584 (37.1%) 27 (9.0%) 3,611 (36.2%)   0 

 
* For controls, Age represents the time when the sequencing experiment was performed. For RMS cases, Age represents the time when a diagnosis was made. 
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Supplementary Table 2. Associations between pathogenic or likely pathogenic (P/LP) variant frequencies and 
case / control status in different populations 
 

  RMS cases   Controls p value 
OR (95% CI)*   Total with P/LP  Total with P/LP 

European American 405 33 (8.2%)  7122 96 (1.4%) 2.20E-19 
7.27 (4.72-11.20) 

African American 78 5 (6.4%)  2541 47 (1.9%) 5.96E-3 
3.97 (1.49-10.60) 

Hispanic 96 5 (5.2%)  300 3 (1.0%) 3.27E-3 
13.2 (2.37-73.72) 

Chi-square tests across populations p = 0.57; χ² = 1.11   p = 0.16; χ² = 3.73   
 

*The control groups were served as the reference group for calculating odds ratio   
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Supplementary Figures 

 

Supplementary Figure 1. Age distributions for embryonal and alveolar rhabdomyosarcoma patients. Bar plots 

indicate the percentage of patients of a given age from each histology group. 

 

 


