
Supplemental Methods 

Model Building 

Using the Psych package in R, the first model building step was an exploratory factor 

analysis (EFA). Eigenvalues, scree plots, a preference for parsimony, and theoretical 

rationale were considered when selecting the number of latent factors. Informed by the 

results of the EFA, confirmatory factor analysis (CFA) was used to determine the best 

fitting model using the “mirt” package in R. In the first CFA step, the seven test scores 

were entered as indicators without any residual covariances. Each of the seven 

continuous variables was recoded into an ordinal score with at least 10 observations in 

each response category [1, 2]. This recoding preserves the original distribution but 

facilitates factor score generation. Graded response models were fitted to the 

polytomous items using the Metropolis-Hastings Robbins-Monro (MHRM) method in 

mirt. Model fit indices were extracted using the M2 function with a C2 test of fit and 

quasi-monte carlo method on cases with complete data. The C2 variant is relevant for 

polytomous response models lacking sufficient degrees of freedom to compute the 

M2*statistic[3]. Local dependencies and fit indices, expert opinion, and knowledge of the 

expected covariance due to shared method variance (e.g., Trails A and B), were used to 

determine the best fitting, most parsimonious model.  To help with model selection, our 

criteria for model fit were the confirmatory fit index (CFI), the Tucker Lewis Index (TLI), 

and the root mean squared error of approximation (RMSEA), where criteria for excellent 

fit were CFI> 0.95, TLI >0.95, and RMSEA<0.05 [4]. 

After the best fit was determined, item response theory (IRT) methods [1, 5] were used 

to generate factor scores for each participant in the NACC dataset by fitting a two-



parameter graded response model using the mirt package in R. Item parameters were 

calibrated and saved, and scores were calculated using an expected a posteriori (EAP) 

method. IRT-derived scores have the important property of being invariant to the 

specific items used. Therefore, these scores should provide unbiased estimates of the 

latent trait regardless of which subtests are included; this property is particularly 

beneficial for retrospective research studies with missing data (as long as the missing 

data can be assumed to be missing at random). Latent variables were standardized with 

mean = 0 and SD = 1.  

Shape constrained additive model (SCAM) 

We first fit models allowing nonlinear corrections [6] for age and education (each 

constrained to be monotonic) along with an additive term for sex. Similar to the results 

of Kornak et al. [2], the nonlinear education effect was close to linear, so we refitted 

education with a linear term. Also consistent with this prior application [2], we next 

extracted residuals from the model, and estimated the standard deviation of the 

residuals at each age using a sliding window (width 11 years centered at that age). This 

windowing approach allowed for stable estimation in the presence of variability in the 

number of datapoints available at each year of age, effectively smoothing the SD 

estimate across an age range. A second SCAM was fitted to the estimated SD as a 

function of age. The resulting plot suggested that the SD was relatively constant as a 

function of age; we therefore fit a constant SD in the final model because these data 

suggest that the distribution of cognitive scores in healthy adults should not change to 

any clinically significant level across the age groups in this normative sample.  



As a result of this model, we created a look up table which provides an estimated mean 

and standard deviation for each combination of age, sex, and education. This table was 

then used to calculate z-scores for all individuals in the validation cohort based on their 

score, age, sex, and education level. Because of high variability and small numbers at 

the youngest and oldest age ranges in the NACC dataset we used an approach to 

truncate extreme values when calculating factor scores for the validation sample. 

Specifically, for anyone below age 50, we estimate their mean and standard deviation 

based on that of a 50-year-old. In other words, we consider subjects at all ages below 

50 to take on the model predicted score at age 50. Although the fit of the curve looks 

stable at ages below 50, the data are sparse. Therefore, we believe that any deviation 

in the fit seen below age 50 is not evidence-driven, but rather model extrapolation of the 

smoothness requirement in SCAM modeling. Instead of relying on model extrapolation, 

we used expert clinical knowledge to inform the assumption that cognitive test scores in 

the normative sample should not vary to any clinically significant degree between early-

mid adulthood and age 50. For the same reasons, for anyone with less than 10 years of 

education, we estimated their scores based on a 10th grade education level. The 

maximum education level was set to 20 years; anyone with more than 20 years in the 

dataset was considered to have 20 years of education. 

Other Neuropsychological Measures 

Modified Trail Making Test (EF): Modified trails is a mental set-shifting task that requires 

subjects to serially alternate between numbers and days of the week. The task has a 

two-minute time limit to complete 14 correct sequences (1, Sunday, 2, Monday, 



3…Saturday, 8). Completed lines per minute was used as the outcome measure for this 

task (e.g., 28 seconds to complete all 14 lines = 30 lines/minute). 

Design Fluency (EF): Design Fluency from the Delis-Kaplan Executive Function Scale 

(D-KEFS) requires the participant to quickly draw designs using four straight lines that 

connect dots, with every design being different. Our outcome was the total correct 

designs on the “filled dots” condition (Trial 1) completed in 1 minute. 

Letter Fluency (D-Words; EF): Participants must name as many unique words beginning 

with the letter “D” as quickly as they can in 1 minute. Rule violations include proper 

names (e.g., David, Doritos), places (e.g., Detroit), and providing the same word with 

different endings (e.g., drive, drives, driving). Our outcome was the number of correct, 

unique D-words produced in 1 minute. 

Craft Story (Memory): Participants are read a short story and asked to try and repeat 

the story back to the examiner verbatim (maximum 44 story units). There is an 

immediate recall trial followed by a 20-minute delayed free recall. Our outcome was the 

percent retention of verbatim story units (delayed recall story units divided by immediate 

recall story units). 

Benson Figure (Memory): Participants are asked to copy a complex geometric figure 

(maximum 17 points) and then, following a 10-minute delay, are asked to draw the 

figure from memory. Our outcome was the percent retention of figure details (delayed 

recall divided by copy trial). 

VOSP Number Location (Spatial): Participants are shown two squares oriented 

vertically with the top square containing an array of numbers and the bottom square 



containing a single dot. Participants must indicate which number in the top square 

corresponds with the position of the dot in the bottom square. Our outcome was the 

total correct items (maximum=10). 

15-Item Boston Naming Test (Language): Participants are shown line-drawing pictures 

of objects and asked to name the object. Pictures are arranged hierarchically by 

obscurity. Our outcome was the total items correct (spontaneous + semantically-cued). 

Mini-Mental State Examination (MMSE)[7] : A 30-item screen of global cognition with 

brief assessments of orientation, attention, memory, language, and visuoconstruction. 

Our outcome was the total correct items (maximum=30). 

Montreal Cognitive Assessment (MoCA)[8]: A 30-item screen of global cognition with 

brief assessments of orientation, attention, memory, language, and visuoconstruction. 

Our outcome was the total correct items (maximum=30).  

 

Neuroimaging Acquisition Parameters 

Magnetization prepared rapid gradient-echo (MPRAGE) sequences were used to 

obtained whole brain T1-weighted images (TR/TE/TI=2300/2.98/ 900 ms, α=9°; 

TR/TE/TI=2300/2.9/ 900 ms, α=9°). The field of view was 240x256mm, with 1x1 mm in-

plane resolution and 1mm slice thickness and sagittal orientation for both sequences.  

Image Processing 

Before processing, all T1-weighted images were visually inspected for quality control 

and those with excessive motion or image artifact were excluded. Magnetic field bias 

was corrected using the N3 algorithm [9]. Tissue segmentation was performed using 



unified segmentation in SPM12 [10]. Each subject’s gray matter segmentation was 

warped to create a study-specific template using Diffeomorphic Anatomical Registration 

using Exponentiated Lie algebra (DARTEL) [11]. Subject’s native space gray and white 

matter segmentations were then normalized and modulated to study-specific template 

space using nonlinear and rigid-body transformation. Images were smoothed using a 

Gaussian kernel of 4-mm full width half maximum. Each subject's segmentation was 

carefully inspected to ensure robustness of the process. 

For statistical purposes, linear and nonlinear transformations between DARTEL’s space 

and ICBM space were applied [12]. Quantification of volumes in specific brain regions 

was accomplished by transforming a standard parcellation atlas into International 

Consortium for Brain Mapping (ICBM) space and summing all modulated gray matter 

within each parcellated region of interest (ROI) [13]. Total intracranial volume was 

calculated for each subject as the sum of the gray matter, white matter, and 

cerebrospinal fluid segmentations. Putative “executive” regions included frontal grey 

matter, parietal grey matter, temporal grey matter, dorsolateral prefrontal cortex 

(DLPFC; caudal and rostral middle frontal gyrus), orbitofrontal cortex (OFC; medial and 

lateral orbital frontal gyrus), and anterior cingulate cortex (ACC; caudal and rostral 

anterior cingulate gyrus). We further assessed potential divergent validity from total 

occipital and pericalcarine grey matter volume. 
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