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Supplementary Note S1 

 

Introduction 

 

We henceforth present a general summary of the possibilities offered by the MetHis software package, 

beyond the proof-of-concept implementation of the MetHis-ABC framework to reconstruct highly complex 

admixture histories from SNP data presented in the main text of the article (see a schematic figure presented 

in Supplementary Note S1 Figure S1.3 below). This supplementary note represents a complement to the 

software manual deposited on GitHub, but does not replace it. 

 

The MetHis software package is composed of three separate tools specifically designed for conducting 

genetic data simulations in an admixed population H under any version of the two source populations 

general model from Verdu and Rosenberg (2011). MetHis is designed primarily to reconstruct complex 

admixture histories with machine-learning Approximate Bayesian Computation Random-Forest model-

choice (Pudlo et al., 2016; Raynal et al., 2019) and Neural-Network posterior parameter estimation (Csilléry 

et al., 2012).  

The software package and source codes are available at https://github.com/romain-laurent/MetHis, together 

with user manual and example files corresponding to the implementation of MetHis described in the main 

text of the manuscript. 

 

The main tool (MetHis itself) is a C software to simulate independent SNPs or microsatellite markers in an 

admixed population H under models for which parameters are set by the user. 

 

The MetHis parameter generator tool is a Python software to build lists of parameter values within prior 

bounds set by the user, to be used for simulations with MetHis. 

 

The MetHis summary-statistics tool is a Python and R software to calculate summary statistics directly from 

the genetic data simulated with MetHis simulation tool. 
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1 | Admixture models considered in MetHis 

 

MetHis allows simulating data under any versions of the two source populations version of the Verdu and 

Rosenberg (2011) general mechanistic model of admixture. Nine admixture specific scenarios that MetHis 

can simulate can be found in the proof-of-concept implemented in the main text of the article. However, 

MetHis is not limited to these nine models. 

Note that parameters can be fixed by the user for deterministic simulations with MetHis, or drawn from 

prior distributions using MetHis parameter generator tool (see section 2 below), or separately as a list of 

parameters provided, independently of MetHis tools, by the user (and only fitting the input format required 

by MetHis simulator). 

 

Let G be the number of generations of the admixture process set freely by the user. Note that generation 0 

is the founding of the admixture process to be specified by the user, as in section 2.1.1 of the main text. 

 

For simplicity, we describe possible models implemented in MetHis from a given source population S. 

Models from the sources can then be combined at will (provided that they satisfy that the sum of 

introgression parameters at each generation never exceeds 1, see section 1.4 below) as illustrated in the 

main text of the manuscript. 

 

1.1 | n-pulse(s) of admixture  

 

MetHis allows simulating n-pulses of admixture from either source after the foundation of population H at 

generation 0, with n superior or equal to 0. These models are parameterized in MetHis, for each source 

population S separately, by the following parameters set by the user: 

 

- n, the number of pulses desired from a given source population S after the foundation of population H, 

between 1 and G. Note that n = G corresponds exactly to the two-source “full-blown” version of the Verdu 

and Rosenberg (2011) model. Alternatively, n = 0 corresponds to an admixture model with no additional 

admixture event from source population S after the foundation admixture event at generation 0. For 

instance, in the main text of the manuscript, we consider several models where n = 2. 
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- For each one of the n pulses, tS,n in [1,G] determines the time for the n-th pulse from population S; 

 

- For each one of the n pulses, sS,tS,n in [0,1] determines the rate of introgression from population S at time 

tS,n. 

 

Supplementary Note S1 Figure 1.1: Figure illustrates two possible n-pulses, n=4 and n=3 respectively on 

the left and right panels, of admixture models implementable in MetHis, from either source population S1 

or S2. 

 

 

1.2 | Recurring admixture 

 

MetHis allows for the simulation of periods of recurring admixture from either source. These are 

parameterized by five separate parameters to be set by the user: 

 

- Two “time” parameters, tS,on and tS,off, with tS,off  > tS,on, tS,on in [1,G-1] and tS,off in [2,G]. They determine, 

respectively, the onset and end of the recurring admixture period set by the user.  
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- Two introgression rates from population S, sS,tS,on and sS,tS,off, each in [0.,1], respectively corresponding to 

the relative contribution of population S to the gene-pool of population H, respectively at the onset and end 

of the admixture period. 

 

- The uS parameter in [0,1/2] which controls the shape of the recurring admixture in between tS,on and tS,off, 

as described in the main text of the manuscript and detailed in Supplementary Note S2. 

 

For instance, the user interested in simulating a constant recurring period of admixture (as in Verdu, & 

Rosenberg, (2011) special-case, and also explored in Buzbas, & Verdu, (2018)) from source population S, 

simply has to set: sS,tS,on = sS,tS,off, and uS = 1/2. Monotonically recurring increasing or decreasing admixture 

can also be set easily by setting the corresponding relationship between sS,tS,on and sS,tS,off, as exemplified in 

the main text of the article. 

 

Supplementary Note S1 Figure 1.2: This figure illustrates three possible recurring admixture models 

implementable in MetHis, from one source population S1. The leftmost scenario implements a recurring 

decreasing admixture model from S1. The central scenario implements a recurring increasing admixture 

model from S1. The rightmost scenario implements a recurring constant admixture model from S1. 
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IMPORTANT NOTE: these models are readily implemented in MetHis and parameter lists under these 

models can be automatically generated with MetHis parameter generator tools. However, the user can build 

her/his own parameter list independently of MetHis, and use it as input in MetHis to simulate other models 

at will, such as, for instance, two separate periods of recurring admixture during the admixture history of 

population H. 

 

1.3 | Effective population size in the admixed population  

 

MetHis allows the user to set parameters, at each generation of the admixture process, controlling the diploid 

effective population size Ng, with g in [0,G]. In the main text, we chose, for simplicity, to fix Ng. 

Alternatively, MetHis readily implements models of monotonic rectangular hyperbolic decrease or increase 

of Ng across generations, controlled by four parameters set by the user: 

 

- N0, the diploid effective population size of the admixed population at foundation at generation 0. 
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- N1, the diploid effective population size of the admixed population after foundation at generation 1. 

 

- Ng, the diploid effective population size of the admixed population at the end of the admixture process at 

generation G. 

 

- The uN parameter in [0,1/2] which controls the shape of the change in effective population size between 

generation 1 and present. This parameter is similar to the uS parameter for introgression rates under a 

recurring admixture scenario, and has the same properties as detailed in Supplementary Note S2. 

 

IMPORTANT NOTE: as above, these models are readily implemented in MetHis and parameter lists under 

these models can be automatically generated with MetHis parameter generator tools. However, the user 

can build her/his own parameter list independently of MetHis, and use it as input in MetHis to simulate 

other models at will. For instance, user can, independently of MetHis, define a bottleneck change in 

effective population sizes, calculate values of Ne at each generation following this model, and input this Ne 

list for MetHis simulations. 

 

1.4 | Combining admixture models from both source populations  

 

As exemplified in the main text of the article, admixture models from either source can be combined at will 

by the user, provided that they satisfy, at each generation of the admixture process between 1 and G, ���,� �

���,� � ℎ� 	 1, as defined in Verdu and Rosenberg (2011).  

 

For such an illustration, we reproduce here Figure 1 of the main text. 
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2 | Generating parameter lists with MetHis 

 

MetHis parameter generator tool allows to readily create parameter lists to be used as input for MetHis 

simulations.  

 

This parameter generator considers models described in the above sections 1.1, 1.2, 1.3, and 1.4, and uses, 

as input, the boundaries of the parameters described previously, set by the user. 

 

The user needs to define the number of simulations desired, the parameter generator will then draw model 

parameters as defined above in a uniform distribution within the parameter boundaries set by the user. 

MetHis parameter generator then automatically builds parameter lists satisfying, at each generation of the 

admixture process between 1 and G, ���,� � ���,� � ℎ� 	 1, as defined in Verdu and Rosenberg (2011). 

 

Again, note that users are invited to build their own parameter lists satisfying the above condition and input 

format, at will. 
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3 | Forward-in-time simulations with MetHis 

 

Elements in this section are also described in the Materials and Methods section of the main text of the 

article. 

 

3.1 | Genetic data from source populations 

 

MetHis, in its current form, does not allow for simulating the source populations for the admixture processes 

modeled in Verdu and Rosenberg (2011). Simulating source populations can be done separately using 

existing genetic data simulation software such as, for instance among many others, fastsimcoal2 sequential 

coalescent (Excoffier, Dupanloup, Huerta-Sanchez, Sousa, & Foll, 2013; Excoffier & Foll, 2011).  

 

Alternatively, if genetic data is readily available from known source populations at the root of the admixture 

process, source populations can be simulated directly from observed allelic frequencies as described in the 

main text section 2.2.2. 

 

3.2 | Simulating the admixed population with MetHis 

 

At each generation, MetHis performs simple Wright-Fisher (Fisher, 1922; Wright, 1931) forward-in-time 

simulations, individual-centered, in a panmictic population of diploid effective size Ng. For a given 

individual in the population H at the following generation (g + 1), MetHis independently draws each parent 

from the source populations with probability ��,�, or from population H with probability ℎ� 	 1 �

����,� � ���,�, randomly builds a haploid gamete of independent markers for each parent, and pairs the 

two constructed gametes to create the new individual.  
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4 | Genetic data simulated with MetHis 

 

4.1 | Single Nucleotide Polymorphisms and Microsatellites 

 

MetHis allows for simulating any number of independent SNPs or microsatellite markers set by the user. 

The admixed population is founded at generation 0 by the alleles respectively present in the source 

populations used as input for MetHis. 

SNPs need to be biallelic and microsatellites should be coded in numbers of repetition of the motif (decimals 

are allowed for motifs affected by insertions and deletions, see below 4.2). 

 

4.2 | General Stepwise Mutation Model in MetHis 

 

For microsatellite data, MetHis implements a GSMM model with possible insertion and deletions (Estoup, 

Jarne, & Cornuet, 2002), with a possibly infinite range of contiguous allelic states, and fully parameterized 

by the user. 

 

The bounds of the uniform prior distribution for the mean mutation rate (μ) across microsatellite loci are 

set by the user. Then, the mutation rates for each locus are drawn independently from a Gamma distribution 

with mean=μ and shape=2. The length in number of repeats of all mutation events is set to follow a 

geometric distribution of mean parameter p, drawn in a uniform distribution bounded by the user. Then, the 

length in number of repeats for each marker separately is drawn from a Gamma distribution with mean=p 

and shape=2. Finally, in order to simulate possible insertion and deletion that alter the microsatellite motif 

(e.g. di-, tri-, tetra-nucleotide, etc.), we draw the rate of a single nucleotide insertion-deletion event, 

independently for each marker, in a Gamma distribution with mean=2.5x10-8 and shape=2. 

An example of this mutation model for tetranucleotide microsatellite markers implemented for ABC 

demographic inference can be found in Verdu et al. (2009). 

 

Note that we recommend to consider only microsatellites with the same repetition-motif a priori, as 

microsatellites are known to have very different mutation rates across motifs. 
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5 | Sampling data simulated with MetHis 

 

MetHis can sample any number of individuals, at most equal to NG, in the admixed population at generation 

G (present), set by the user. 

The user can choose to sample individuals randomly, or excluding related individuals (see main text for an 

example of the latter). 

 

 

6 | Summary-statistics calculation with MetHis 

 

At the end of each simulation, MetHis summary statistics calculation tool can be used to automatically 

calculate the following population genetics summary statistics. Some (but not all) of the statistics computed 

with MetHis and presented in this section are also described in the Materials and Methods section of the 

manuscript. 

 

IMPORTANT NOTE 1: the user is not forced to use MetHis summary statistics calculation tools. Simulated 

genetic data can be used as input for alternative population genetics software. 

 

IMPORTANT NOTE 2: Given the model design, and given how source populations are simulated, some 

of the statistics below will be, a posteriori, constant, or possibly uninformative. For instance, in the proof-

of-concept investigated in the main text, source populations are fixed reservoirs. Thus in our case studies 

in the main text of the article, all of the statistics calculated only between population S1 and S2, below, are 

constant and thus uninformative, or only variable due to sampling. Similarly, as individuals are sampled to 

be unrelated and effective population sizes constant in this example (for simplicity), inbreeding coefficient 

statistics are uninformative.  

Nevertheless, other implementations and case-studies will benefit from these statistics beyond our specific 

case-study, for instance when interested in changes in effective population sizes in the admixed population 

where the inbreeding coefficient may help segregating among simulations. 

 

  



 

 

 

14 

 

6.1 | Distribution of admixture fractions as a summary statistic 

 

For each simulated dataset, we first calculated a pairwise inter-individual Allele Sharing Dissimilarity 

(Bowcock et al., 1994) matrix using asd software (https://github.com/szpiech/asd) using all pairs of 

sampled individuals and all markers (whether SNPs or microsatellites). Then we projected in two 

dimensions this pairwise ASD matrix with classical unsupervised metric Multidimensional Scaling (MDS) 

using the cmdscale function in R. We expect individuals in population H to be dispersed along an axis 

joining the centroids of the proxy source populations on the two-dimensional MDS plot. We projected 

population H individuals orthogonally onto this axis, and calculate each individual’s relative distance to 

each centroid. We considered this measure as an estimate of individual average admixture level from either 

source. Note that by doing so, some individuals might show “admixture fractions” higher than one, or lower 

than zero, as they might be projected on the other side of the centroid when being genetically close to 100% 

from one source population or the other. 

 

MetHis provides, as summary-statistics, the mean, mode, variance, skewness, kurtosis, minimum, 

maximum, and all 10%-quantiles of the admixture distribution in population H. 

 

6.2 | Within-population summary statistics 

 

6.2.1 | Within-population summary statistics for SNP data 

 

- SNP by SNP expected heterozygosities (Nei, 1978) within the admixed and source populations, separately. 

- Mean expected heterzygosity across SNPs within the admixed and source populations, separately. 

- Variance of expected heterozygosity across SNPs within the admixed and source populations, separately. 

- Mean pairwise ASD (see section 5.1) within the admixed and source populations, separately. 

- Variance of pairwise ASD (see section 5.1) within the admixed and source populations, separately. 

- Inbreeding coefficients are calculated with the method of moments similarly as in vcftools (Danecek, et 

al., 2011) within the admixed and source populations, separately. 

 

6.2.2 | Within-population summary statistics for microsatellite data 

- Mean number of microsatellite alleles per locus within the admixed and source populations, separately. 
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- Mean expected heterzygosity across microsatellites within the admixed and source populations, 

separately. 

- Mean allele size variance across microsatellites within the admixed and source populations, separately. 

- Mean pairwise ASD (see section 6.1 above) within the admixed and source populations, separately. 

- Variance of pairwise ASD within the admixed and source populations, separately. 

 

6.3 | Between-population summary statistics 

 

6.3.1 | Between-population summary statistics for SNP data 

- Multilocus pairwise FST (Weir, & Cockerham, 1984) between the admixed population and source 

population S1. 

- Multilocus pairwise FST (Weir, & Cockerham, 1984) between the admixed population and source 

population S2. 

- Multilocus pairwise FST (Weir, & Cockerham, 1984) between source population S1 and S2. 

- f3 statistics (Patterson et al., 2012) considering the admixed population as sink and populations S1 and S2 

as sources. 

- Mean pairwise ASD (see section 6.1 above) between the admixed population and source population S1. 

- Mean pairwise ASD (see section 6.1 above) between the admixed population and source population S2. 

- Mean pairwise ASD (see section 6.1 above) between source population S1 and S2. 

 

6.3.2 | Between-population summary statistics for microsatellite data 

- Multilocus pairwise FST (Weir, & Cockerham, 1984) between the admixed population and source 

population S1. 

- Multilocus pairwise FST (Weir, & Cockerham, 1984) between the admixed population and source 

population S2. 

- Multilocus pairwise FST (Weir, & Cockerham, 1984) between source population S1 and S2. 

- Mean pairwise ASD (see section 6.1 above) between the admixed population and source population S1. 

- Mean pairwise ASD (see section 6.1 above) between the admixed population and source population S2. 

- Mean pairwise ASD (see section 6.1 above) between source population S1 and S2. 
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7 | Computational cost of simulating and calculating summary statistics with MetHis 

 

Using 27 cores and the design described in the material and methods of the main text of the article (Figure 

1, Table 1), we performed the 90,000 simulations with MetHis in four days, with 2/3 of that time for 

summary statistics calculations only. Note that the computational cost of simulating data with MetHis does 

not rely excessively on the number of generations considered (within reason), nor on the absolute number 

of markers used (within reason), but rather on the effective population size in the admixed population set 

by the user (see section 1.3 above). 

 

8 | MetHis outputs 

 

The MetHis parameter generator tool outputs ordered lists of parameter vectors corresponding to the model 

of interest, in text format. These are parameter reference tables ready to be used as input for machine-

learning ABC R packages abcrf (Pudlo et al., 2016; Raynal et al., 2019) and abc (Csilléry et al., 2012). 

 

The MetHis simulation tool outputs individual genotype data (SNPs or microsatellite) in vcf format. For 

large amounts of simulations, as needed for instance in ABC inference, MetHis can be set to output only 

summary statistics, in which case genetic data is automatically deleted after summary statistics calculation. 

 

The MetHis summary statistics tool outputs lists of vectors of summary statistics corresponding to each 

simulation vector of parameter (in the same order), in text format. These are summary statistics reference 

tables ready to be used as input for machine-learning ABC R packages abcrf (Pudlo et al., 2016; Raynal et 

al., 2019) and abc (Csilléry et al., 2012). 
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9 | MetHis-ABC framework 

 

Supplementary Note S1 Figure 1.3: General pipeline for complex admixture inference using the MetHis-

ABC framework. Steps in red are also detailed in the main text of the article. 
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