POWER ANALYSES FOR DETECTION
calculate power analyses - traditional and weighted
library(tidyverse)
library(dplyr)
data.site.summ = data %>%
group_by(site,date)%>%
mutate(tot.bats.sampled = sum(N, na.rm=T))%>%
mutate(tot.bats.counted = sum(count, na.rm=T))%>%
mutate(prop.sampled = tot.bats.sampled/tot.bats.counted)%>%
mutate(weighted.average.prev.early = sum(weighted.average.early.num)/tot.bats.sampled)%>%
mutate(site.prob.missing.traditional = dbinom(x=0,size=tot.bats.sampled,prob=weighted.average.prev.early))%>%
mutate(site.prob.missing.all = (1 - weighted.average.prev.early)^(tot.bats.sampled)*(1-(1-weighted.average.prev.early)^(tot.bats.counted - tot.bats.sampled)))%>%
filter(season=="hiber_earl" & t=="winter")
summarise data by averaging
missing.value.cals = data.site.summ %>%
group_by(site)%>%
summarise(weighted.average.prev.early=mean(weighted.average.prev.early),
site.prob.missing.traditional=mean(site.prob.missing.traditional),
site.prob.missing.all=mean(site.prob.missing.all))
summarise detection probability across bats
summary(missing.value.cals$site.prob.missing.all)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.005171 0.017689 0.038582 0.063044 0.057758 0.326666
WHICH SPECIES ARE WE MOST LIKELY TO DETECT PD ON?
early winter analysis
modS1=glmer(gd~species + (1|site) ,data=mw0.trim,family="binomial", subset=t=="fall");summary(modS1)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: gd ~ species + (1 | site)
Data: mw0.trim
Subset: t == "fall"
AIC BIC logLik deviance df.resid
581.9 603.0 -286.0 571.9 496
Scaled residuals:
Min 1Q Median 3Q Max
-2.3486 -0.9002 -0.1708 0.9136 5.8562
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 2.327 1.525
Number of obs: 501, groups: site, 7
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8225 0.6642 -2.744 0.006075 **
speciesMYLU 1.7925 0.3844 4.662 3.12e-06 ***
speciesEPFU 1.4013 0.5117 2.738 0.006175 **
speciesMYSE 1.4387 0.3909 3.681 0.000232 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) spMYLU spEPFU
speciesMYLU -0.429
speciesEPFU -0.351 0.627
speciesMYSE -0.420 0.807 0.617
late winter analysis
modS2=glmer(gd~species + (1|site) ,data=mw0.trim,family="binomial", subset=t=="winter");summary(modS2)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: gd ~ species + (1 | site)
Data: mw0.trim
Subset: t == "winter"
AIC BIC logLik deviance df.resid
1032.6 1057.0 -511.3 1022.6 976
Scaled residuals:
Min 1Q Median 3Q Max
-1.3321 -0.6038 -0.3941 0.7507 4.6090
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.8578 0.9262
Number of obs: 981, groups: site, 15
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6848 0.3090 -5.453 4.94e-08 ***
speciesMYLU 0.9344 0.2221 4.207 2.59e-05 ***
speciesEPFU 0.6558 0.2954 2.220 0.02641 *
speciesMYSE 0.8375 0.2614 3.204 0.00135 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) spMYLU spEPFU
speciesMYLU -0.458
speciesEPFU -0.458 0.470
speciesMYSE -0.405 0.563 0.457
CATEGORICAL ANALYSIS - HOW DOES DIFFERENTIAL ARRIVAL IMPACT LATE WINTER METRICS?
create data subsets
data.trim=subset(data,species!="SUBSTRATE") #remove any substrate data (should be absent, but make sure to remove levels)
data.trim=subset(data.trim,species!="MYSO") #remove this species because only present in two sites
##manipulate and create dataframes that are subsets of larger data, but only from late or early hibernation#
#bring some early metric into late dataframe to determine explore what is the effect of early metrics on late winter metrics
mw0.trim$site.species = paste(mw0.trim$site,mw0.trim$species, sep = ".") #this is my match column
mw0.trim.late = subset(mw0.trim, season=="hiber_late") #subset to late hibernation
mw0.trim.early = subset(mw0.trim, season=="hiber_earl") #subset to early hibernation
mw0.trim.late$early.prev = mw0.trim.early$gd[match(mw0.trim.late$site.species,mw0.trim.early$site.species)]
#bring some early metric into late dataframe to determine explore what is the effect of early metrics on late winter metrics
data.trim$site.species = paste(data.trim$site,data.trim$species, sep=".") #match column
data.trim.late = subset(data.trim, season=="hiber_late") #late hibernation
data.trim.early = subset(data.trim, season=="hiber_earl") #early hibernation
#prevalence
data.trim.late$early.prev = data.trim.early$gd[match(data.trim.late$site.species,data.trim.early$site.species)] #match in early prevalence
#loads
data.trim.late$early.loads = data.trim.early$lgdL[match(data.trim.late$site.species,data.trim.early$site.species)] #match in early loads
#change negative bats to limit of detection in loads column only
data.trim.late$early.loads[is.na(data.trim.late$early.loads)==T] = -6
#add these average loads during early to my larger dataframe with each bat as a point
mw0.trim.late$early.loads = data.trim.late$early.loads[match(mw0.trim.late$site.species,data.trim.late$site.species)]
prev in late winter
mod2=glmer(gd~species*t + (1|site),weights=N, data=data.trim.late,family="binomial");summary(mod2)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: gd ~ species * t + (1 | site)
Data: data.trim.late
Weights: N
AIC BIC logLik deviance df.resid
258.9 278.9 -120.5 240.9 59
Scaled residuals:
Min 1Q Median 3Q Max
-3.3342 -0.4236 0.0902 0.5216 2.3033
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 4.47 2.114
Number of obs: 68, groups: site, 22
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.4459 1.0207 3.376 0.000735 ***
speciesEPFU -3.2814 0.7489 -4.382 1.18e-05 ***
speciesMYLU -0.4431 0.7344 -0.603 0.546278
speciesPESU -4.1628 0.7947 -5.238 1.62e-07 ***
twinter -2.2458 1.2101 -1.856 0.063473 .
speciesEPFU:twinter 1.5497 0.8804 1.760 0.078363 .
speciesMYLU:twinter 0.2899 0.8339 0.348 0.728128
speciesPESU:twinter 2.0029 0.9009 2.223 0.026205 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) spEPFU spMYLU spPESU twintr sEPFU: sMYLU:
speciesEPFU -0.447
speciesMYLU -0.453 0.588
speciesPESU -0.482 0.590 0.563
twinter -0.842 0.376 0.382 0.404
spcsEPFU:tw 0.377 -0.848 -0.499 -0.497 -0.444
spcsMYLU:tw 0.400 -0.518 -0.881 -0.498 -0.449 0.587
spcsPESU:tw 0.423 -0.519 -0.496 -0.878 -0.467 0.588 0.596
emmeans(mod2, pairwise ~ t|species)
$emmeans
species = MYSE:
t emmean SE df asymp.LCL asymp.UCL
fall 3.446 1.021 Inf 1.4454 5.446
winter 1.200 0.652 Inf -0.0784 2.479
species = EPFU:
t emmean SE df asymp.LCL asymp.UCL
fall 0.164 0.959 Inf -1.7147 2.044
winter -0.532 0.611 Inf -1.7288 0.666
species = MYLU:
t emmean SE df asymp.LCL asymp.UCL
fall 3.003 0.949 Inf 1.1419 4.864
winter 1.047 0.597 Inf -0.1239 2.218
species = PESU:
t emmean SE df asymp.LCL asymp.UCL
fall -0.717 0.944 Inf -2.5678 1.134
winter -0.960 0.606 Inf -2.1477 0.228
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$contrasts
species = MYSE:
contrast estimate SE df z.ratio p.value
fall - winter 2.246 1.21 Inf 1.856 0.0635
species = EPFU:
contrast estimate SE df z.ratio p.value
fall - winter 0.696 1.14 Inf 0.612 0.5404
species = MYLU:
contrast estimate SE df z.ratio p.value
fall - winter 1.956 1.12 Inf 1.746 0.0808
species = PESU:
contrast estimate SE df z.ratio p.value
fall - winter 0.243 1.12 Inf 0.217 0.8286
Results are given on the log odds ratio (not the response) scale.
loads in late winter
mod3=lmer(lgdL~species*t + (1|site), data=mw0.trim.late);summary(mod3)
Linear mixed model fit by REML ['lmerMod']
Formula: lgdL ~ species * t + (1 | site)
Data: mw0.trim.late
REML criterion at convergence: 1348.1
Scaled residuals:
Min 1Q Median 3Q Max
-2.90453 -0.62385 0.02865 0.58963 3.07815
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 1.021 1.011
Residual 1.194 1.093
Number of obs: 429, groups: site, 21
Fixed effects:
Estimate Std. Error t value
(Intercept) -1.6562 0.4426 -3.742
speciesPESU -1.5507 0.3339 -4.644
speciesMYLU -0.9636 0.1980 -4.866
speciesEPFU -2.1173 0.3475 -6.092
twinter -1.4356 0.5450 -2.634
speciesPESU:twinter 1.0992 0.4214 2.609
speciesMYLU:twinter 0.7705 0.2815 2.737
speciesEPFU:twinter 0.5327 0.4265 1.249
Correlation of Fixed Effects:
(Intr) spPESU spMYLU spEPFU twintr sPESU: sMYLU:
speciesPESU -0.224
speciesMYLU -0.274 0.387
speciesEPFU -0.133 0.153 0.305
twinter -0.812 0.182 0.222 0.108
spcsPESU:tw 0.177 -0.792 -0.307 -0.121 -0.271
spcsMYLU:tw 0.193 -0.272 -0.703 -0.215 -0.328 0.422
spcsEPFU:tw 0.108 -0.125 -0.249 -0.815 -0.218 0.233 0.374
emmeans(mod3, pairwise ~ t|species)
$emmeans
species = MYSE:
t emmean SE df lower.CL upper.CL
fall -1.66 0.443 20.2 -2.58 -0.734
winter -3.09 0.318 32.3 -3.74 -2.443
species = PESU:
t emmean SE df lower.CL upper.CL
fall -3.21 0.492 29.8 -4.21 -2.202
winter -3.54 0.330 36.5 -4.21 -2.873
species = MYLU:
t emmean SE df lower.CL upper.CL
fall -2.62 0.433 18.5 -3.53 -1.713
winter -3.28 0.298 24.9 -3.90 -2.671
species = EPFU:
t emmean SE df lower.CL upper.CL
fall -3.77 0.525 39.5 -4.84 -2.711
winter -4.68 0.319 31.6 -5.33 -4.025
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$contrasts
species = MYSE:
contrast estimate SE df t.ratio p.value
fall - winter 1.436 0.545 23.5 2.632 0.0147
species = PESU:
contrast estimate SE df t.ratio p.value
fall - winter 0.336 0.593 31.7 0.568 0.5743
species = MYLU:
contrast estimate SE df t.ratio p.value
fall - winter 0.665 0.525 20.2 1.266 0.2197
species = EPFU:
contrast estimate SE df t.ratio p.value
fall - winter 0.903 0.615 37.1 1.468 0.1504
Degrees-of-freedom method: kenward-roger
lambda in late winter
mod4=lmer(log.lambda~species*t + (1|site), data=data.trim.late.lambda);summary(mod4)
Linear mixed model fit by REML ['lmerMod']
Formula: log.lambda ~ species * t + (1 | site)
Data: data.trim.late.lambda
REML criterion at convergence: 31.9
Scaled residuals:
Min 1Q Median 3Q Max
-1.80892 -0.55960 -0.04786 0.60157 1.81107
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.05463 0.2337
Residual 0.04941 0.2223
Number of obs: 60, groups: site, 20
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.2439 0.1317 -1.852
speciesEPFU 0.5945 0.1645 3.614
speciesMYLU 0.3860 0.1283 3.008
speciesPESU 0.1889 0.1477 1.279
twinter 0.4350 0.1655 2.628
speciesEPFU:twinter -0.5674 0.1970 -2.880
speciesMYLU:twinter -0.4112 0.1636 -2.513
speciesPESU:twinter -0.2431 0.1818 -1.337
Correlation of Fixed Effects:
(Intr) spEPFU spMYLU spPESU twintr sEPFU: sMYLU:
speciesEPFU -0.380
speciesMYLU -0.487 0.390
speciesPESU -0.423 0.340 0.434
twinter -0.796 0.303 0.388 0.337
spcsEPFU:tw 0.317 -0.835 -0.326 -0.284 -0.445
spcsMYLU:tw 0.382 -0.306 -0.784 -0.341 -0.528 0.443
spcsPESU:tw 0.344 -0.276 -0.353 -0.812 -0.472 0.394 0.478
emmeans(mod4, pairwise~t|species)
$emmeans
species = MYSE:
t emmean SE df lower.CL upper.CL
fall -0.244 0.1317 33.5 -0.5116 0.0239
winter 0.191 0.1007 44.2 -0.0118 0.3940
species = EPFU:
t emmean SE df lower.CL upper.CL
fall 0.351 0.1679 49.0 0.0132 0.6880
winter 0.218 0.0966 41.9 0.0232 0.4132
species = MYLU:
t emmean SE df lower.CL upper.CL
fall 0.142 0.1317 33.5 -0.1257 0.4099
winter 0.166 0.0910 37.3 -0.0184 0.3503
species = PESU:
t emmean SE df lower.CL upper.CL
fall -0.055 0.1511 43.6 -0.3597 0.2496
winter 0.137 0.0970 41.7 -0.0589 0.3327
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$contrasts
species = MYSE:
contrast estimate SE df t.ratio p.value
fall - winter -0.4350 0.166 37.4 -2.624 0.0125
species = EPFU:
contrast estimate SE df t.ratio p.value
fall - winter 0.1324 0.194 47.5 0.683 0.4977
species = MYLU:
contrast estimate SE df t.ratio p.value
fall - winter -0.0239 0.160 34.7 -0.149 0.8824
species = PESU:
contrast estimate SE df t.ratio p.value
fall - winter -0.1919 0.180 43.0 -1.068 0.2913
Degrees-of-freedom method: kenward-roger
CONTINUOUS ANALYSIS - SAME AS ABOVE BUT CONTINUOUS
how are late winter loads affected by early prevalence?
mod6=lmer(lgdL~species+early.prev +(1|site), data=mw0.trim.late);summary(mod6)
Linear mixed model fit by REML ['lmerMod']
Formula: lgdL ~ species + early.prev + (1 | site)
Data: mw0.trim.late
REML criterion at convergence: 1261.6
Scaled residuals:
Min 1Q Median 3Q Max
-2.93185 -0.67037 0.01515 0.65539 2.98943
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 1.049 1.024
Residual 1.262 1.123
Number of obs: 394, groups: site, 19
Fixed effects:
Estimate Std. Error t value
(Intercept) -2.7819 0.2877 -9.668
speciesPESU -0.6462 0.2339 -2.762
speciesMYLU -0.2910 0.1773 -1.641
speciesEPFU -1.9322 0.2700 -7.155
early.prev 0.8494 0.2893 2.936
Correlation of Fixed Effects:
(Intr) spPESU spMYLU spEPFU
speciesPESU -0.401
speciesMYLU -0.459 0.520
speciesEPFU -0.341 0.379 0.438
early.prev -0.335 0.393 0.558 0.341
how is late winter prevalence affected by early prevalence?
mod5=glmer(gd~species+early.prev +(1|site),weights=N, data=data.trim.late,family="binomial");summary(mod5)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: gd ~ species + early.prev + (1 | site)
Data: data.trim.late
Weights: N
AIC BIC logLik deviance df.resid
204.3 216.3 -96.1 192.3 49
Scaled residuals:
Min 1Q Median 3Q Max
-1.9955 -0.5332 0.1541 0.6788 1.6161
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 4.231 2.057
Number of obs: 55, groups: site, 20
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6992 0.6009 2.828 0.00469 **
speciesEPFU -2.7521 0.6720 -4.095 4.21e-05 ***
speciesMYLU -0.2661 0.3614 -0.736 0.46151
speciesPESU -2.5151 0.4114 -6.114 9.71e-10 ***
early.prev 12.4435 6.2987 1.976 0.04820 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) spEPFU spMYLU spPESU
speciesEPFU -0.388
speciesMYLU -0.464 0.425
speciesPESU -0.492 0.445 0.686
early.prev -0.288 0.123 0.144 0.220
how are late winter impacts affected by early prevalence?
mod6=lmer(log.lambda~species+early.prev +(1|site), data=data.trim.late.lambda);summary(mod6)
Linear mixed model fit by REML ['lmerMod']
Formula: log.lambda ~ species + early.prev + (1 | site)
Data: data.trim.late.lambda
REML criterion at convergence: 24.1
Scaled residuals:
Min 1Q Median 3Q Max
-2.31360 -0.38344 -0.04979 0.62521 2.23076
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.05378 0.2319
Residual 0.05162 0.2272
Number of obs: 49, groups: site, 18
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.03862 0.08458 -0.457
speciesEPFU 0.20691 0.11698 1.769
speciesMYLU 0.13551 0.08910 1.521
speciesPESU 0.08589 0.09140 0.940
early.prev 0.48082 0.70962 0.678
Correlation of Fixed Effects:
(Intr) spEPFU spMYLU spPESU
speciesEPFU -0.433
speciesMYLU -0.482 0.398
speciesPESU -0.516 0.418 0.483
early.prev -0.158 -0.045 -0.234 0.006
OVERWINTER MOBILITY
Changes in counts over winter - site
summary(mod.overwinter.movements2)
Linear mixed model fit by REML ['lmerMod']
Formula: log.overwinter.lambda ~ log.early.winter.count + species + (1 | site)
Data: preWNS
REML criterion at convergence: 46.4
Scaled residuals:
Min 1Q Median 3Q Max
-2.83773 -0.48121 0.02284 0.56248 2.99240
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.02909 0.1706
Residual 0.07031 0.2652
Number of obs: 88, groups: site, 16
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.277126 0.113676 2.438
log.early.winter.count -0.152472 0.057270 -2.662
speciesMYLU 0.018150 0.090899 0.200
speciesMYSE -0.103511 0.100143 -1.034
speciesPESU -0.009488 0.088944 -0.107
Correlation of Fixed Effects:
(Intr) lg.r.. spMYLU spMYSE
lg.rly.wnt. -0.744
speciesMYLU -0.409 0.004
speciesMYSE -0.556 0.283 0.521
speciesPESU -0.571 0.208 0.602 0.568
Do model diagnostic plots look reasonable?
If we preserve structure of data and use Gamma distribution do we get a similar finding?
summary(mod.overwinter.movements2g)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Gamma ( log )
Formula: overwinter.lambda ~ log.early.winter.count + species + (1 | site)
Data: preWNS
AIC BIC logLik deviance df.resid
200.0 217.4 -93.0 186.0 81
Scaled residuals:
Min 1Q Median 3Q Max
-1.4921 -0.5895 -0.0835 0.4068 3.9362
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.2064 0.4544
Residual 0.3322 0.5763
Number of obs: 88, groups: site, 16
Fixed effects:
Estimate Std. Error t value Pr(>|z|)
(Intercept) 0.91237 0.28271 3.227 0.00125 **
log.early.winter.count -0.38356 0.12130 -3.162 0.00157 **
speciesMYLU -0.05143 0.19464 -0.264 0.79160
speciesMYSE -0.30116 0.22053 -1.366 0.17207
speciesPESU -0.14827 0.19353 -0.766 0.44360
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) lg.r.. spMYLU spMYSE
lg.rly.wnt. -0.654
speciesMYLU -0.409 0.070
speciesMYSE -0.520 0.322 0.580
speciesPESU -0.537 0.254 0.652 0.637
NUMEROUS COVARIATES AND THE EFFECT ON TIMING OF DETECTION
temperature
summary(gob8)
Call:
glm(formula = pd.arrival ~ mean.temp, family = "binomial", data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1451 -0.9399 -0.7092 1.4147 1.6224
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.1649 1.7413 -1.243 0.214
mean.temp 0.2083 0.2313 0.900 0.368
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 26.734 on 20 degrees of freedom
Residual deviance: 25.839 on 19 degrees of freedom
(1 observation deleted due to missingness)
AIC: 29.839
Number of Fisher Scoring iterations: 4
vapor pressure deficit
summary(gob9a)
Call:
glm(formula = pd.arrival ~ mean.vpd, family = "binomial", data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1390 -0.9353 -0.7392 1.2213 1.7577
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.04919 0.68436 -0.072 0.943
mean.vpd -17.61464 15.46895 -1.139 0.255
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 26.734 on 20 degrees of freedom
Residual deviance: 25.079 on 19 degrees of freedom
(1 observation deleted due to missingness)
AIC: 29.079
Number of Fisher Scoring iterations: 4
total bats
summary(gob1)
Call:
glm(formula = pd.arrival ~ log10(total), family = "binomial",
data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0612 -0.8776 -0.8166 1.4364 1.5859
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2752 1.3300 -0.959 0.338
log10(total) 0.2384 0.5736 0.416 0.678
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 27.522 on 21 degrees of freedom
Residual deviance: 27.350 on 20 degrees of freedom
AIC: 31.35
Number of Fisher Scoring iterations: 4
number of MYLU
summary(gob4)
Call:
glm(formula = pd.arrival ~ sum.mylu, family = "binomial", data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8931 -0.8930 -0.8903 1.4917 1.5964
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.133e-01 4.785e-01 -1.491 0.136
sum.mylu -6.548e-05 2.087e-04 -0.314 0.754
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 27.522 on 21 degrees of freedom
Residual deviance: 27.409 on 20 degrees of freedom
AIC: 31.409
Number of Fisher Scoring iterations: 4
number of EPFU
summary(gob6)
Call:
glm(formula = pd.arrival ~ sum.epfu, family = "binomial", data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8916 -0.8908 -0.8832 1.4931 1.6046
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.7172423 0.4970035 -1.443 0.149
sum.epfu -0.0008242 0.0037308 -0.221 0.825
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 27.522 on 21 degrees of freedom
Residual deviance: 27.470 on 20 degrees of freedom
AIC: 31.47
Number of Fisher Scoring iterations: 4
overwinter mobility
summary(gob14)
Call:
glm(formula = pd.arrival ~ log.overwinter.lambda, family = "binomial",
data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0806 -0.7973 -0.7248 0.1033 1.6431
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8887 0.6109 -1.455 0.146
log.overwinter.lambda -2.1356 2.6492 -0.806 0.420
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 17.995 on 15 degrees of freedom
Residual deviance: 17.161 on 14 degrees of freedom
(6 observations deleted due to missingness)
AIC: 21.161
Number of Fisher Scoring iterations: 4
effect of early winter sampling date
gob15 = glm(pd.arrival~early.pdates, family = "binomial", data=site.dat);summary(gob15)
Call:
glm(formula = pd.arrival ~ early.pdates, family = "binomial",
data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1193 -0.9260 -0.8429 1.3045 1.5832
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.9006 17.3967 -0.569 0.569
early.pdates 0.8049 1.5068 0.534 0.593
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 25.898 on 19 degrees of freedom
Residual deviance: 25.613 on 18 degrees of freedom
(2 observations deleted due to missingness)
AIC: 29.613
Number of Fisher Scoring iterations: 4
species richness
gob16 = glm(pd.arrival~spec.num, family = "binomial", data=site.dat);summary(gob16)
Call:
glm(formula = pd.arrival ~ spec.num, family = "binomial", data = site.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0358 -0.8487 -0.8487 1.3259 1.7686
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.3155 2.0912 -1.107 0.268
spec.num 0.4932 0.6356 0.776 0.438
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 27.522 on 21 degrees of freedom
Residual deviance: 26.871 on 20 degrees of freedom
AIC: 30.871
Number of Fisher Scoring iterations: 4
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayAtIEFwcGVuZGl4IGZvciBMYW5nd2lnIGV0IGFsLiBNaWR3aW50ZXIgQXJyaXZhbCBNcyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICBudW1iZXJfc2VjdGlvbnM6IHllcwogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKLS0tCgojIFBPV0VSIEFOQUxZU0VTIEZPUiBERVRFQ1RJT04KIyNjYWxjdWxhdGUgcG93ZXIgYW5hbHlzZXMgLSB0cmFkaXRpb25hbCBhbmQgd2VpZ2h0ZWQKYGBge3IsIGVjaG89VFJVRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgZXZhbD1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZHBseXIpCmRhdGEuc2l0ZS5zdW1tID0gZGF0YSAlPiUKICBncm91cF9ieShzaXRlLGRhdGUpJT4lCiAgbXV0YXRlKHRvdC5iYXRzLnNhbXBsZWQgPSBzdW0oTiwgbmEucm09VCkpJT4lCiAgbXV0YXRlKHRvdC5iYXRzLmNvdW50ZWQgPSBzdW0oY291bnQsIG5hLnJtPVQpKSU+JQogIG11dGF0ZShwcm9wLnNhbXBsZWQgPSB0b3QuYmF0cy5zYW1wbGVkL3RvdC5iYXRzLmNvdW50ZWQpJT4lCiAgbXV0YXRlKHdlaWdodGVkLmF2ZXJhZ2UucHJldi5lYXJseSA9IHN1bSh3ZWlnaHRlZC5hdmVyYWdlLmVhcmx5Lm51bSkvdG90LmJhdHMuc2FtcGxlZCklPiUKICBtdXRhdGUoc2l0ZS5wcm9iLm1pc3NpbmcudHJhZGl0aW9uYWwgPSBkYmlub20oeD0wLHNpemU9dG90LmJhdHMuc2FtcGxlZCxwcm9iPXdlaWdodGVkLmF2ZXJhZ2UucHJldi5lYXJseSkpJT4lCiAgbXV0YXRlKHNpdGUucHJvYi5taXNzaW5nLmFsbCA9ICgxIC0gd2VpZ2h0ZWQuYXZlcmFnZS5wcmV2LmVhcmx5KV4odG90LmJhdHMuc2FtcGxlZCkqKDEtKDEtd2VpZ2h0ZWQuYXZlcmFnZS5wcmV2LmVhcmx5KV4odG90LmJhdHMuY291bnRlZCAtIHRvdC5iYXRzLnNhbXBsZWQpKSklPiUKICBmaWx0ZXIoc2Vhc29uPT0iaGliZXJfZWFybCIgJiB0PT0id2ludGVyIikKYGBgCgojI3N1bW1hcmlzZSBkYXRhIGJ5IGF2ZXJhZ2luZwpgYGB7ciwgZXZhbD1GQUxTRX0KbWlzc2luZy52YWx1ZS5jYWxzID0gZGF0YS5zaXRlLnN1bW0gJT4lCiAgZ3JvdXBfYnkoc2l0ZSklPiUKICBzdW1tYXJpc2Uod2VpZ2h0ZWQuYXZlcmFnZS5wcmV2LmVhcmx5PW1lYW4od2VpZ2h0ZWQuYXZlcmFnZS5wcmV2LmVhcmx5KSwgCiAgICAgICAgICAgIHNpdGUucHJvYi5taXNzaW5nLnRyYWRpdGlvbmFsPW1lYW4oc2l0ZS5wcm9iLm1pc3NpbmcudHJhZGl0aW9uYWwpLCAKICAgICAgICAgICAgc2l0ZS5wcm9iLm1pc3NpbmcuYWxsPW1lYW4oc2l0ZS5wcm9iLm1pc3NpbmcuYWxsKSkKYGBgCgojIyNzdW1tYXJpc2UgZGV0ZWN0aW9uIHByb2JhYmlsaXR5IGFjcm9zcyBiYXRzCmBgYHtyfQpzdW1tYXJ5KG1pc3NpbmcudmFsdWUuY2FscyRzaXRlLnByb2IubWlzc2luZy5hbGwpICAKCmBgYAoKCgojIFdISUNIIFNQRUNJRVMgQVJFIFdFIE1PU1QgTElLRUxZIFRPIERFVEVDVCBQRCBPTj8KIyNlYXJseSB3aW50ZXIgYW5hbHlzaXMKYGBge3J9Cm13MC50cmltJHNwZWNpZXMgPSByZWxldmVsKG13MC50cmltJHNwZWNpZXMsIHJlZj0iUEVTVSIpCm1vZFMxPWdsbWVyKGdkfnNwZWNpZXMgKyAoMXxzaXRlKSAsZGF0YT1tdzAudHJpbSxmYW1pbHk9ImJpbm9taWFsIiwgc3Vic2V0PXQ9PSJmYWxsIik7c3VtbWFyeShtb2RTMSkKYGBgCgoKIyMgbGF0ZSB3aW50ZXIgYW5hbHlzaXMKYGBge3J9Cm13MC50cmltJHNwZWNpZXMgPSByZWxldmVsKG13MC50cmltJHNwZWNpZXMsIHJlZj0iUEVTVSIpCm1vZFMyPWdsbWVyKGdkfnNwZWNpZXMgKyAoMXxzaXRlKSAsZGF0YT1tdzAudHJpbSxmYW1pbHk9ImJpbm9taWFsIiwgc3Vic2V0PXQ9PSJ3aW50ZXIiKTtzdW1tYXJ5KG1vZFMyKQpgYGAKCgojIENBVEVHT1JJQ0FMIEFOQUxZU0lTIC0gSE9XIERPRVMgRElGRkVSRU5USUFMIEFSUklWQUwgSU1QQUNUIExBVEUgV0lOVEVSIE1FVFJJQ1M/IyMjCgojIyBjcmVhdGUgZGF0YSBzdWJzZXRzCgpgYGB7ciwgZXZhbD1GQUxTRX0KZGF0YS50cmltPXN1YnNldChkYXRhLHNwZWNpZXMhPSJTVUJTVFJBVEUiKSAjcmVtb3ZlIGFueSBzdWJzdHJhdGUgZGF0YSAoc2hvdWxkIGJlIGFic2VudCwgYnV0IG1ha2Ugc3VyZSB0byByZW1vdmUgbGV2ZWxzKQpkYXRhLnRyaW09c3Vic2V0KGRhdGEudHJpbSxzcGVjaWVzIT0iTVlTTyIpICNyZW1vdmUgdGhpcyBzcGVjaWVzIGJlY2F1c2Ugb25seSBwcmVzZW50IGluIHR3byBzaXRlcwoKIyNtYW5pcHVsYXRlIGFuZCBjcmVhdGUgZGF0YWZyYW1lcyB0aGF0IGFyZSBzdWJzZXRzIG9mIGxhcmdlciBkYXRhLCBidXQgb25seSBmcm9tIGxhdGUgb3IgZWFybHkgaGliZXJuYXRpb24jCiNicmluZyBzb21lIGVhcmx5IG1ldHJpYyBpbnRvIGxhdGUgZGF0YWZyYW1lIHRvIGRldGVybWluZSBleHBsb3JlIHdoYXQgaXMgdGhlIGVmZmVjdCBvZiBlYXJseSBtZXRyaWNzIG9uIGxhdGUgd2ludGVyIG1ldHJpY3MKbXcwLnRyaW0kc2l0ZS5zcGVjaWVzID0gcGFzdGUobXcwLnRyaW0kc2l0ZSxtdzAudHJpbSRzcGVjaWVzLCBzZXAgPSAiLiIpICN0aGlzIGlzIG15IG1hdGNoIGNvbHVtbgptdzAudHJpbS5sYXRlID0gc3Vic2V0KG13MC50cmltLCBzZWFzb249PSJoaWJlcl9sYXRlIikgI3N1YnNldCB0byBsYXRlIGhpYmVybmF0aW9uCm13MC50cmltLmVhcmx5ID0gc3Vic2V0KG13MC50cmltLCBzZWFzb249PSJoaWJlcl9lYXJsIikgI3N1YnNldCB0byBlYXJseSBoaWJlcm5hdGlvbgptdzAudHJpbS5sYXRlJGVhcmx5LnByZXYgPSBtdzAudHJpbS5lYXJseSRnZFttYXRjaChtdzAudHJpbS5sYXRlJHNpdGUuc3BlY2llcyxtdzAudHJpbS5lYXJseSRzaXRlLnNwZWNpZXMpXQojYnJpbmcgc29tZSBlYXJseSBtZXRyaWMgaW50byBsYXRlIGRhdGFmcmFtZSB0byBkZXRlcm1pbmUgZXhwbG9yZSB3aGF0IGlzIHRoZSBlZmZlY3Qgb2YgZWFybHkgbWV0cmljcyBvbiBsYXRlIHdpbnRlciBtZXRyaWNzCgpkYXRhLnRyaW0kc2l0ZS5zcGVjaWVzID0gcGFzdGUoZGF0YS50cmltJHNpdGUsZGF0YS50cmltJHNwZWNpZXMsIHNlcD0iLiIpICNtYXRjaCBjb2x1bW4KZGF0YS50cmltLmxhdGUgPSBzdWJzZXQoZGF0YS50cmltLCBzZWFzb249PSJoaWJlcl9sYXRlIikgI2xhdGUgaGliZXJuYXRpb24KZGF0YS50cmltLmVhcmx5ID0gc3Vic2V0KGRhdGEudHJpbSwgc2Vhc29uPT0iaGliZXJfZWFybCIpICNlYXJseSBoaWJlcm5hdGlvbgoKI3ByZXZhbGVuY2UKZGF0YS50cmltLmxhdGUkZWFybHkucHJldiA9IGRhdGEudHJpbS5lYXJseSRnZFttYXRjaChkYXRhLnRyaW0ubGF0ZSRzaXRlLnNwZWNpZXMsZGF0YS50cmltLmVhcmx5JHNpdGUuc3BlY2llcyldICNtYXRjaCBpbiBlYXJseSBwcmV2YWxlbmNlCgojbG9hZHMKZGF0YS50cmltLmxhdGUkZWFybHkubG9hZHMgPSBkYXRhLnRyaW0uZWFybHkkbGdkTFttYXRjaChkYXRhLnRyaW0ubGF0ZSRzaXRlLnNwZWNpZXMsZGF0YS50cmltLmVhcmx5JHNpdGUuc3BlY2llcyldICNtYXRjaCBpbiBlYXJseSBsb2FkcwoKI2NoYW5nZSBuZWdhdGl2ZSBiYXRzIHRvIGxpbWl0IG9mIGRldGVjdGlvbiBpbiBsb2FkcyBjb2x1bW4gb25seQpkYXRhLnRyaW0ubGF0ZSRlYXJseS5sb2Fkc1tpcy5uYShkYXRhLnRyaW0ubGF0ZSRlYXJseS5sb2Fkcyk9PVRdID0gLTYKCiNhZGQgdGhlc2UgYXZlcmFnZSBsb2FkcyBkdXJpbmcgZWFybHkgdG8gbXkgbGFyZ2VyIGRhdGFmcmFtZSB3aXRoIGVhY2ggYmF0IGFzIGEgcG9pbnQKbXcwLnRyaW0ubGF0ZSRlYXJseS5sb2FkcyA9IGRhdGEudHJpbS5sYXRlJGVhcmx5LmxvYWRzW21hdGNoKG13MC50cmltLmxhdGUkc2l0ZS5zcGVjaWVzLGRhdGEudHJpbS5sYXRlJHNpdGUuc3BlY2llcyldCgpgYGAKCiMjIHByZXYgaW4gbGF0ZSB3aW50ZXIKYGBge3J9Cm1vZDI9Z2xtZXIoZ2R+c3BlY2llcyp0ICsgKDF8c2l0ZSksd2VpZ2h0cz1OLCBkYXRhPWRhdGEudHJpbS5sYXRlLGZhbWlseT0iYmlub21pYWwiKTtzdW1tYXJ5KG1vZDIpCmBgYAoKYGBge3J9CmxpYnJhcnkoZWZmZWN0cyk7bGlicmFyeShlbW1lYW5zKQpkYXRhLnRyaW0ubGF0ZSRzcGVjaWVzID0gcmVsZXZlbChkYXRhLnRyaW0ubGF0ZSRzcGVjaWVzLCByZWY9Ik1ZU0UiKQplbW1lYW5zKG1vZDIsIHBhaXJ3aXNlIH4gdHxzcGVjaWVzKQpgYGAKCiMjIGxvYWRzIGluIGxhdGUgd2ludGVyCmBgYHtyfQptdzAudHJpbS5sYXRlJHNwZWNpZXMgPSByZWxldmVsKG13MC50cmltLmxhdGUkc3BlY2llcywgcmVmPSJNWVNFIikKbW9kMz1sbWVyKGxnZEx+c3BlY2llcyp0ICsgKDF8c2l0ZSksIGRhdGE9bXcwLnRyaW0ubGF0ZSk7c3VtbWFyeShtb2QzKQpgYGAKCmBgYHtyfQoKZW1tZWFucyhtb2QzLCBwYWlyd2lzZSB+IHR8c3BlY2llcykKCmBgYAoKIyMgbGFtYmRhIGluIGxhdGUgd2ludGVyCmBgYHtyfQpkYXRhLnRyaW0ubGF0ZSRsb2cubGFtYmRhID0gbG9nMTAoZGF0YS50cmltLmxhdGUkbGFtYmRhKQpkYXRhLnRyaW0ubGF0ZS5sYW1iZGEgPSBzdWJzZXQoZGF0YS50cmltLmxhdGUsIGxhbWJkYSE9SW5mKQptb2Q0PWxtZXIobG9nLmxhbWJkYX5zcGVjaWVzKnQgKyAoMXxzaXRlKSwgZGF0YT1kYXRhLnRyaW0ubGF0ZS5sYW1iZGEpO3N1bW1hcnkobW9kNCkKCmBgYAoKYGBge3J9CmVtbWVhbnMobW9kNCwgcGFpcndpc2V+dHxzcGVjaWVzKQoKYGBgCgojIENPTlRJTlVPVVMgQU5BTFlTSVMgLSBTQU1FIEFTIEFCT1ZFIEJVVCBDT05USU5VT1VTIAogIAojIyBob3cgYXJlIGxhdGUgd2ludGVyIGxvYWRzIGFmZmVjdGVkIGJ5IGVhcmx5IHByZXZhbGVuY2U/IApgYGB7cn0KbW9kNj1sbWVyKGxnZEx+c3BlY2llcytlYXJseS5wcmV2ICsoMXxzaXRlKSwgZGF0YT1tdzAudHJpbS5sYXRlKTtzdW1tYXJ5KG1vZDYpCgpgYGAKCiMjIGhvdyBpcyBsYXRlIHdpbnRlciBwcmV2YWxlbmNlIGFmZmVjdGVkIGJ5IGVhcmx5IHByZXZhbGVuY2U/IAoKYGBge3J9Cm1vZDU9Z2xtZXIoZ2R+c3BlY2llcytlYXJseS5wcmV2ICsoMXxzaXRlKSx3ZWlnaHRzPU4sIGRhdGE9ZGF0YS50cmltLmxhdGUsZmFtaWx5PSJiaW5vbWlhbCIpO3N1bW1hcnkobW9kNSkKCmBgYAoKIyMgaG93IGFyZSBsYXRlIHdpbnRlciBpbXBhY3RzIGFmZmVjdGVkIGJ5IGVhcmx5IHByZXZhbGVuY2U/IApgYGB7cn0KbW9kNj1sbWVyKGxvZy5sYW1iZGF+c3BlY2llcytlYXJseS5wcmV2ICsoMXxzaXRlKSwgZGF0YT1kYXRhLnRyaW0ubGF0ZS5sYW1iZGEpO3N1bW1hcnkobW9kNikKCmBgYAoKIyBPVkVSV0lOVEVSIE1PQklMSVRZCiMjIENoYW5nZXMgaW4gY291bnRzIG92ZXIgd2ludGVyIC0gc2l0ZQpgYGB7cn0KbW9kLm92ZXJ3aW50ZXIubW92ZW1lbnRzMiA9IGxtZXIobG9nLm92ZXJ3aW50ZXIubGFtYmRhfmxvZy5lYXJseS53aW50ZXIuY291bnQrc3BlY2llcysoMXxzaXRlKSwgZGF0YT1wcmVXTlMpCnN1bW1hcnkobW9kLm92ZXJ3aW50ZXIubW92ZW1lbnRzMikKYGBgCiMjIERvZXMgdGhlIGxvZyB0cmFuc2Zvcm1hdGlvbiBvZiBsYW1iZGEgaGVscCBub3JtYWxpdHk/ICMjCmBgYHtyfQpoaXN0KHByZVdOUyRsb2cub3ZlcndpbnRlci5sYW1iZGEpCmBgYAojIyBEbyBtb2RlbCBkaWFnbm9zdGljIHBsb3RzIGxvb2sgcmVhc29uYWJsZT8gIyMKYGBge3J9CnBsb3QobW9kLm92ZXJ3aW50ZXIubW92ZW1lbnRzMikKCmBgYAoKIyMgSWYgd2UgcHJlc2VydmUgc3RydWN0dXJlIG9mIGRhdGEgYW5kIHVzZSBHYW1tYSBkaXN0cmlidXRpb24gZG8gd2UgZ2V0IGEgc2ltaWxhciBmaW5kaW5nPwpgYGB7cn0KbW9kLm92ZXJ3aW50ZXIubW92ZW1lbnRzMmcgPSBnbG1lcihvdmVyd2ludGVyLmxhbWJkYX5sb2cuZWFybHkud2ludGVyLmNvdW50K3NwZWNpZXMrKDF8c2l0ZSksZmFtaWx5ID0gR2FtbWEobGluayA9ICJsb2ciKSwgZGF0YT1wcmVXTlMpCnN1bW1hcnkobW9kLm92ZXJ3aW50ZXIubW92ZW1lbnRzMmcpCgpgYGAKCgojIE5VTUVST1VTIENPVkFSSUFURVMgQU5EIFRIRSBFRkZFQ1QgT04gVElNSU5HIE9GIERFVEVDVElPTgojIyB0ZW1wZXJhdHVyZQpgYGB7cn0KZ29iOCA9IGdsbShwZC5hcnJpdmFsfm1lYW4udGVtcCwgZmFtaWx5ID0gImJpbm9taWFsIiwgZGF0YT1zaXRlLmRhdCkKc3VtbWFyeShnb2I4KQpgYGAKIyMgdmFwb3IgcHJlc3N1cmUgZGVmaWNpdApgYGB7cn0KZ29iOWEgPSBnbG0ocGQuYXJyaXZhbH5tZWFuLnZwZCwgZmFtaWx5ID0gImJpbm9taWFsIiwgZGF0YT1zaXRlLmRhdCkKc3VtbWFyeShnb2I5YSkKCmBgYAoKCiMjIHRvdGFsIGJhdHMKYGBge3J9Cgpnb2IxID0gZ2xtKHBkLmFycml2YWx+bG9nMTAodG90YWwpLCBmYW1pbHk9ImJpbm9taWFsIixkYXRhPXNpdGUuZGF0KQpzdW1tYXJ5KGdvYjEpCmBgYAoKIyMgbnVtYmVyIG9mIE1ZTFUKYGBge3J9Cgpnb2I0ID0gZ2xtKHBkLmFycml2YWx+c3VtLm15bHUsIGZhbWlseSA9ICJiaW5vbWlhbCIsIGRhdGE9c2l0ZS5kYXQpCnN1bW1hcnkoZ29iNCkKYGBgCgoKIyMgbnVtYmVyIG9mIEVQRlUKYGBge3J9Cgpnb2I2ID0gZ2xtKHBkLmFycml2YWx+c3VtLmVwZnUsIGZhbWlseSA9ICJiaW5vbWlhbCIsIGRhdGE9c2l0ZS5kYXQpCnN1bW1hcnkoZ29iNikKCmBgYAoKCiMjIG92ZXJ3aW50ZXIgbW9iaWxpdHkKYGBge3J9Cgpnb2IxNCA9IGdsbShwZC5hcnJpdmFsfmxvZy5vdmVyd2ludGVyLmxhbWJkYSwgZmFtaWx5ID0gImJpbm9taWFsIiwgZGF0YT1zaXRlLmRhdCkKc3VtbWFyeShnb2IxNCkKCmBgYAoKIyMgZWZmZWN0IG9mIGVhcmx5IHdpbnRlciBzYW1wbGluZyBkYXRlIApgYGB7cn0KZ29iMTUgPSBnbG0ocGQuYXJyaXZhbH5lYXJseS5wZGF0ZXMsIGZhbWlseSA9ICJiaW5vbWlhbCIsIGRhdGE9c2l0ZS5kYXQpO3N1bW1hcnkoZ29iMTUpCgpgYGAKIyMgc3BlY2llcyByaWNobmVzcwpgYGB7cn0KZ29iMTYgPSBnbG0ocGQuYXJyaXZhbH5zcGVjLm51bSwgZmFtaWx5ID0gImJpbm9taWFsIiwgZGF0YT1zaXRlLmRhdCk7c3VtbWFyeShnb2IxNikKCmBgYAoK